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New nonlinear Picone identities with

variable exponents and applications

HicHEM KHELIFI, YOUSSEF EL HADFI

Abstract. This paper introduces two novel nonlinear anisotropic Picone iden-
tities with variable exponents that expand upon the traditional identity used
for the ordinary Laplace equation. Additionally, the research explores potential
applications of these findings in anisotropic Sobolev spaces featuring variable
exponents.

Keywords: anisotropic Picone identity; variable exponent

Classification: 35A23, 35A02, 35J75

1. Introduction

Let Q be a bounded open domain in RY, N > 3, with Lipschitz continuous
boundary 99Q. Let p;: © — R, for i = 1,..., N, be continuous functions repre-
senting the variable exponents. In recent years, there has been significant interest
in studying anisotropic operator with variable exponents

N

(1.1) > Di(|Diu

i=1

0
Pi@)=2 D), where D;u = 2

81‘1' ’

they participate in various areas of applied sciences. In certain instances, they
provide realistic models for studying natural occurrences in electrorheological flu-
ids (refer to citations in [1]). Another significant application is related to image
processing [5].

Note that in the classical case p;(z) = p, equation (1.1) represents the p-
Laplacian operator. However, in the constant case p;(z) = p;, equation (1.1) be-
comes the anisotropic Laplacian operator given by ZZ]\LI D;(|D;ulPi=2D;u), where
p; > 1. The p;-Laplacian operator exhibits homogeneity for every i = 1,..., N.
On the other hand, equation (1.1) represents a nonhomogeneous operator, as
it incorporates different exponents p; for each coordinate direction. The p;(z)-
Laplacian does not necessarily have a more complex nonlinearity compared to
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460 H. Khelifi, Y. El Hadfi

other types of Laplacians. The complexity of the nonlinearity depends on the spe-
cific form of the function p;(z), since there is not equivalence relation between the
pi(z) and p;(z) modular o(u) = [, |ulP"® dz + [, |Diu[P**) dz on the
anisotropic variable exponent Sobolev spaces W'Pi()(Q), see [4], [10], [17], [18],

norm |ju

and the references therein. For the isotropic case (i.e., p;(z) = p(x)), we define
the p(z)-Laplacian operator as A, ,yu = div(|Vu[P(®~=2Vu), where p(z) € C(Q)
and p(z) > 1 almost everywhere in €.

In [20], the following homogeneous linear differential system of the second order
is under study by M. Picone,

(a1 (x)u’) + az(z)u =0,
(b1 (x)v") + ba(z)v = 0,

and it has been proven that for differentiable functions v and v, both nonzero,
the following identity holds.

u / V' uN2
(1.2) (;(GIU/U - bluvl)) = (b2 — az)u® + (a1 — by)u? + by (u’ — T) )

In [21], (1.2) was extended to the Laplace operator. Specifically, for differentiable
functions v > 0 and v > 0, we have

2 2
(1.3) |Vu|* + u—2|Vv|2 — 25V Vo = |Vul? — V(u—) -Vu > 0.
v v v

The extension of equation (1.3) to the p-Laplacian operator with 1 < p < oo
was achieved by W. Allegretto and Y. Huang in their work cited as reference [3].
N. Yoshida in [22] proved the Picone identity with variable exponent

p(z) (z)—1 — (z)
V™ (E)p |Vol|P@)=2Vy . Vi + plz) -1 (%)p |Vo[P@

(1.4) p(z) v p(z)
_ |vu|p(z) _ |V |p(z)—2v V( ’U,p(w) ) >0
T ) ! U\ p@yer@1) =

Other authors have established different variable exponent Picone identities
than (1.4). Those alternative Picone identities can be found in various sources,
including [2], [8]. Additionally, T. Feng and X. Cui introduced in [7] a linear
Picone identity for the anisotropic Laplace operator. Furthermore, T. Feng and
K. Zhang extended in [7] the nonlinear Picone identity of T. Feng and X. Cui
beyond the Laplace operator. This extension presents a generalization of their
findings to Euclidean space and can be found in [9].

In this paper, our aim is to derive two nonlinear anisotropic Picone identities
with variable exponents and explore their applications. The following are the
main results presented in this study.
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Theorem 1.1. Let v > 0 and u > 0 be two differentiable functions in the set
Q c RN, N >3, and denote

N
v) = Z |D;u
upl(x) 1

721’1 P (@)= — 1 [Py

+ (pi(z) — 1)(;)%( ' Div

P 2D - Dip;(x)

. N ypi(@) (%)
pi(z) _ Z o |Djv

pi(z)iQDi’U . D,L’LL

pi(I),

N N
" N ul)ﬂ(l)
Rlu,v) = §|DW|M )_Z;|D [P @2 Dy . Dy ( p1<z>71)'
Then
(15) L(’LL,U) = R(uav)'

Moreover, if D;v(x) - D;p;(z) =0 for every i =1,...,N and every z € €, then
we have L(u,v) > 0. Furthermore, L(u,v) = 0 almost everywhere in Q if and
only if D;(u/v) =0 almost everywhere in Q for any i =1,..., N.

Theorem 1.2. Let v > 0 and u > 0 be two differentiable functions in the set
Q Cc RN, N > 3, and denote

N
pi(T) |
L(u,v) = Y [DiufP) — Zu nu|DiU|p”(”)_2DiU'Dipi(w)

i=1

zpz
v) = Z|Diu|pi<w> ZD (

where f(v) > 0 and f'(v) > (pi(z) — 1)[f(v)]P@)=2/@i@) =1 for all p;(z) > 1
and for all i =1,...,N. Then

’U,p‘( x)—

pi(x)
|Dv|p’("L) Div - Du—i—zu L(v)

| Dw|Pi @),
2 )P

wPi (@)

) |Dyw|Pi )2 D,

(1.6) L(u,v) = R(u,v).

Moreover, if D;v(z) - D;pi(x) = 0 for every i = 1,...,N and every x € (), we
have L(u,v) > 0. Furthermore, L(u,v) = 0 almost everywhere in Q if and only if
D;(u/v) = 0 almost everywhere in Q for any i=1,...,N.
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2. Preliminary results

This section provides a brief overview of anisotropic spaces with variable expo-
nents. For a more detailed discussion on Lebesgue—Sobolev spaces with variable
exponents, we recommend to consult [6], [13], [14], [23] and [16], [15], [12], [11],
as well as related references. Let Q be a bounded open subset of RV, N > 2. We
denote

p" =maxp(z), p~ =minp(z),
z€Q zeQ
and

Ci(Q)={peC(): p~ >1}.
Let p(-) € C4(Q). We define the space

LrO(Q) = {u: Q — RY measurable: / lu(z)|P® dx < oo},
Q

. u(z) |p(@)
sy = ooy = int {3 > 0 [ 22 a0 <1}

defines a norm in LP()(Q), called the Luxemburg norm. We define also the

and

Banach space
WoP(Q) = {f € LPO(Q): |Vf]| € LPO(Q) and f =0 on 90}

endowed with the norm ||f||W01,p(A)(Q) = [[V£llpcy- The space Wol’p(')(ﬂ) is sepa-
rable and reflexive provided that with 1 < p~ < p* = max,cq p(x) < oo.
Let p;: Q — (1,00) be continuous functions. We introduce the anisotropic
variable exponent Sobolev space
WhPiO(Q) := {u € LP (Q) - Dju € L (Q)},
and
W Q) == {u e WH(Q) - Dju € L7 (Q)},

which are Banach spaces under the norm
[ullygrrior gy = lullpeio@) + 1Dl v, i=1,.... N

Proposition 2.1. Let a > 0, b > 0 and let p;,q;: © — (1,00) be continuous
functions for every i =1,..., N, with 1/p;(x) + 1/¢;(x) = 1. Then

aPi(@)  pai(x)
_l’_

21 ab = pi(z) qi(x) ’

Moreover, the equality holds if and only if a?(®) = %) for every i =1,...,N.
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3. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1: We see with a direct computation that

pi(x)

N

i pPi(@=1D; (uPi(@)) — i (@) D (pPi(@)=1)

|Pi(x) =271y
(vm(w)—l)2 | Div Div
N
D;(upi )
_ i(x) _ i(x)—2
fZ|Dzup Z e |D;v? D;v
i=1 i=1
N
upi(i)D.(vPi(w)*l)
2 |Pi(z)=2 7).
+ Zl (ore@) 12 |D;v D;v
N
- Z|D pi(z)
i=1
N pi(@) s . pi(x)—1p).
B Z In Uszz(z) + pz(l‘)u D’Lu |D»L'U pi(z)iQDi’U

YPi (z)—1

§° @ OO oDipi(e) + (sla) = Do "2Di)

+ 2 (vpi(2)=1)2
X Di’l) pl(z)iQDi’U
3 @ _ @@y (2)-2
= Z|Diu|p" —Z @1 | D;v|Pt D;v - D;p;(x)
i=1 i=1

pi(z)—
- sz Zp (@)1 |DiU|pi’(w)_2DiU . Diu = L(u,v).

Now we prove that L(u,v) is nonnegative. We rewrite L(u,v) as

sz [ Diu

ufP®) 4 ML:C)I ((%|Div|)pi(l)_l)p"(‘”)/(m(w)—l)}

i
’U,pl( z)—1 1
- sz P (z) 1 |D |D u|
’U,pl( z)—1

+ sz @1 |D; ~2[|Dsv||Dyu| — DyvDyul
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N ypi(@) Iy »

=2 e Dol

i=1

)72Di’U - D;p; (ZL‘)

(3.1) =TZixn+ZLi2+ 13,

Liy = sz [—|D ulPi® 4 %((%mwopim1)Pi<r>/<m<z>1>}

upl z)—
_Zpl ,Up,(z) 1|D1’U

uP1 )2
Ii2=sz e 1|Dzvpl<> [|Div||Diul — DivDju],

pi(x 1|D ul,

N
upz(-L) In
Ii,3: _Z ppi(@)—1 |D
1=1

)72Di’U . szz(l‘)

By Young’s inequality, see Proposition 2.1, inequality (1.6), (here a = |D;ul,
— (uDiol/0) @1 and gi(x) = pi(e)/(pi(w) — 1)), we obtain

w pi(z)— u;vq( z)— (o)
L1 > pz(l‘)|Dzu|(Z|D1’U|) — Zpl oPi o) =1 |Di’U|pl( ) 1|Dlu|

(32) "

(s

1

\Y
=

Using the fact that |D;v||D;u| — D;vD;u > 0, we have
(3.3) Z,2 > 0.

From (3.2)—(3.3) and the fact that Z; 3 = 0 (since D;v - D;p;(z) = 0), it follows
that L(u,v) > 0.

If D;(u/v) = 0 ae. in Q for every ¢ = 1,...,N, then v = cv, and thus,
L(u,v) = 0. Now we show that L(u,v) = 0 implies D;(u/v) = 0 for every
i=1,...,N. In fact, if L(u,v)(zo) =0 for all 2y € 2, then we consider the two
cases u(zg) # 0 and u(xo) = 0, respectively.

(1) If u(xg) # 0, then Z; 1(xo) = 0, Z; 2(xo) = 0 and Z; 3(x9) = 0. One shows
by Ii,l(zo) = 0 that

(3.4) \Diu| = 2|Dw|,  Vi=1,...,N.
v
Using Z; 2(xo) = 0, we get

(3.5) D;u = c¢D;v, Vi=1,...,N,
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where ¢ is a positive constant. Putting (3.8) into (3.7) yields u = cv,
namely D;(u/v) =0 for everyi=1,...,N.

(2) If u(xzg) = 0,denote S = {x € Q: u(x) =0} and thenforall i =1,..., N,
D;u =0 a.e.in S. Thus

D1<E) _ vD;u ;uDiv _o.
v v
This finishes the proof of Theorem 1.1. ([

PROOF OF THEOREM 1.2: Expanding R(u,v) by direct calculation one easily
sees that L(u,v) = R(u,v). Now the proof that L(u,v) is nonnegative, is similar
to proof of Theorem 1.1. We rewrite L(u,v) as

(3.6) L(u,v) =Tin + Ti2 + Tiz + Tias

where

N
1 (z
1= E pz(l‘) |:p(l‘) |Diu|pv,( )
i=1 !

) — 1 supi(®)-1 i(z)/(pi(z)—1)
n pz(x) (u |Div|m(w) 1)p b }
pz(iﬂ) f(v)
Pﬂ( )
zpz ) Dol @1 Dy,
up7( ) 1

|D; v|pl(l) 2[ |D;v||D;ju| — DyvDjul,

N
Ji2 = Zpi(iﬂ) 70)

> i(@)=1 pi(@)/(pi(a)—1)
Ta= - <pi<x>—1>(“”f() D
=1
uPi (@) f(v)
7D p,(l)
* O D]

upl(x) lnu _
Jia = Z |D;w[P®=2Dyv - Dipi(x).

By Young’s inequality, see Proposition 2.1, inequality (1.6), (here a = |D;ul,
b= (uP®) =1/ f(v))|Dyw|P @)1 and ¢;(z) = pi(x)/(ps(z) — 1)), and using the fact
that | D;v||D;u| — D;vD;u > 0, we obtain

(37) ._71',1 Z 0 and \71‘72 Z 0
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Since f(v) >0 and f'(v) > (pi(z) — 1)[f(v)]P:@)=2/@i(@)=1) e have

N
upi(@)—1 o1\ Pi(@)/(pi(2)-1)
Jiz 2 Z(pl(ac) - 1)[— ( ) | D[P (@) 1)
(3.8) i=1
uPi @[ f (v)]) @i (@) =2)/(pi(x)=1) o
* HOE [Diof? @] 0.

From (3.6)—(3.8) and the fact that J;4 = 0 (since D;v - D;p;(x) = 0), it follows
that L(u,v) > 0. On the other hand, similar arguments as those used in the proof
of Theorem 1.1 show that L(u,v) = 0 a.e. in Q if and only if D;(u/v) =0 a.e.
in Q for any ¢ = 1,..., N. This completes the proof of Theorem 1.2. O

4. Some applications and examples

4.1 Applications. We give three examples of applications of Theorems 1.1-1.2.
First we will show a sturmian comparison principle to the anisotropic elliptic
equation with variable exponent, by Theorem 1.1.

Proposition 4.1. Let A > 0 and k(z) be a nonnegative weight. Suppose that
a function v € C?(Q2) and v > 0, satisfying

o ) pi ()
(4.1) *ZWDMDW Djv) >

=1 7

Me(z)uP ™ in Q.

-

1

Then for any u € C}(2) with u > 0, there holds

N N
(4.2) Z/ |DjulPi®) da > )\Z/ k(z)uP ®) dz.
=179 =179

PRrROOF: By Theorem 1.1 and (4.1), we obtain

OS/L(u,v)dx:/R(u,v)dz
Q Q
:Z/ | DyufPr@ dx—Z/ |Diu|w<l>—2Diu-Di(_71)dx
=179 =179 opi@)=
N N pi(z)
:Z/Qmiuv’i(@ dx—i—Z/QﬁDiUDivPi(l)_QDiv)dx
=1 =1

N N
< Z/Q | Dyu|P®) dz — )\Z /Q k(z)uP @ da,
i=1 i=1

which gives (4.2). O
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Let Q be an open and bounded domain in RN, N > 2, with a Lipschitz
boundary 9. Consider a nonnegative function f that belongs to L™(€2), where
m > 1. We assume that the exponent variable y(-): © — (0, 00) is a continuous
and smooth function, and that p;(-): Q@ — (1,00), i = 1,..., N, are continuous
functions that satisfy the following conditions:

pi(z) <po(x) <---<pn(z),  plx) <N, VzeQ,
where

11 1 _
— = . VzeQ
p(z) N ; pi(z)

Let us now present the following proposition to provide an example of using

Picon’s inequality to demonstrate the uniqueness of the solution.

Proposition 4.2. Let u; > 0, us > 0 be two functions in Wol’p"(')(ﬂ) which are
an energy solution of the problem

N
=Y Di(|Du[P" 7 Dju) = ——  in Q,
(4 3) — u’Y(I)
' uw>0 in Q,
u=20 on 0f).

Then Uy = Ug.

PRrROOF: The existence of the solution is proven by the author in [19]. Let u; and
uz be two solutions of problem (4.3), suppose that us > uy. Using the anisotropic
Picone identities in Theorem 1.1 to u; and wus, it follows that

0 < R(u,v) = L(u,v)

i(z)
_ (o) _ i@ =27 (R
,;wmfﬂ ;u)wp Div D1<vpi(z)71)
Then
N N o ugl(a:)
> [ 10w @ar =30 [ DD w0, )
(44) =1 =1 1

Q

Q u'lY(I) u:ll)ai(l)—l o u'lY(I)-‘rpi(I)—l'

On the other hand, we get

N
45 / Diu Pi<w>dx:/fu*”<””>“.
(4.5) ; Q| 2 T
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Combining (4.4) and (4.5), we have
/ Fuy 1@ > / Fuli (@ 1@ =piCe)
Q —Ja

Case 1. If v(x) =1 then

(4.6) / f[l - “gi(x)} da > 0.
Q

ufi (z)

Since ug > u1, we have 1 — ugi(x)/ufi(z) < 0. By (4.6), we obtain

(@)
/Qf[l%}dxo.

Thanks to Theorem 1.1, we get

N e = (-2 ) o
72/9 |DZ’U,2 pi de = Z/QDZGD,L’U& pi Dzul) pi()—1’
i=1 =1 1

which implies that
R(u1,u2) = L{ui,uz) =0 a.e. in Q.

Then

Uy . .

Di-(—)zo, a.e.in ), Vi=1,... N,

U2
we obtain u; = cug for some ¢ > 0. Taking into consideration that u; and us
solve problem (4.3) it follows that ¢; = 1, and then wu; = uo.

Case 2. If v(x) # 1 we have

/ fug 1@ > / Fuli @ 1=1@)=pite)
Q Q

which is equivalent to
uPi®)
(4.7) /f[l— 2 }dxzo.
Q

In order to get (since u; < ugz)

pi(@)+y(z)-1
1— Uy <0 o ugi(w)+7(w)—1 < ung(IHv(I)—l

@@ =

< pi(x)+vy(x)—1>0

it suffices that v(x) > 1 — p;(z), and that is true since v(z) > 0 and p;(z) > 1.
This completes the proof. Il
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We finish with a theorem of Liouville for an anisotropic elliptic system with vari-
able exponents. Let v > 0, f(v) > 0 and f'(v) > (pi(x)—1)[f(v)]P:(@)=2)/Pi(z)=1)
for p;(x) > 1 and for all i =1,...,N.

Proposition 4.3. Let g(u,v) be an integrable function in ). Assume that
(u,v) € Wol’p"(')(Q) X Wol’pi(')(Q) is a pair of solution to an anisotropic elliptic
system

pi(z) — g(u,v) in €,

i|D-u
(4.8) ZD (“p )|D v

u>0,v>0 in €,
u=0,v=0 on 0f.

Pi@) 2Dy = g(u,v) in Q,

Then uw = cv a.e. in Q for some constant c.

PrROOF: By Theorem 1.2 and (4.8), we obtain

/QL(u,v)dx:/QR(u,v)dz
—Z|DU|P7<I> ZD(

:g(u,v) —g(u,v) =0.

)|D v|pl(l) 2D

Thus, u = cv a.e. in  for some constant c. ([
4.2 Examples.

Example 1. Let Q be a set contained in RY, and €; be subsets of Q such that
Q= Ul[\il Qi with Q;NQ; =0 for all i # j. Consider a function v defined on R
with values in R, given by

N
2) = xa,(z)
i=1
The characteristic function on the set €2; is defined as follows

1 if ze Qi,
0 otherwise.
Define p;(z) as

0 if x €y,
pi(z) {

x; otherwise.
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We can easily verify that

For example, when IV = 3, the function v is given by

T if z € Ql,
'U(l') =qxy ifxe QQ,

r3 if x € Qg,
and

0, IGQl T2, l‘te T3 l‘te
(@) =qz1, z€Qy, p2r) =40, 2€Q, ps@)=qz3 Q.
r1, x € Q3 T9, x € Qg3 0, z€Qg3

Then we obtain

1-0=0 if z€Qq,
Div(z) - Dipi(z) =¢0-1=0 if x € Q,
0-1=0 if x € Qg,
0-1=0 ifzeQ,
Dov(z) - Dapa(xz) =4 1-0=0 if x € Q,
0-1=0 if z € Qg,
and
0-1=0 ifze,
Dsv(z) - Daps(z) =<0-1=0 if 2 € Qo,
1.0=0 if z € Qs

Then, D;v(z)D;p;(z) =0 forall i =1,...,N and all z € Q.

Example 2. Let v be a function defined on RY with values in R, given by

N
v(z) =Y aj,
j=1
JF#i
and

pi(z) = 22 + 1, Vi=1,...,N.
We can easily verify that
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On the other hand, we have
D;pi(x) = 2x; + 1, Vi=1,...
then,
D;v(z)D;p;(z) =0, Vi=1,...,

Let us consider the trivial cases, for N = 3, we obtain

3+ 1 for i =1,

v(xz) =x2+ 23 and pi(x)

v(r) =21+ 23 and po(z) =25 +1 for i = 2,

3+ 1 for i = 3.

v(z) =21 + 22 and p3(x)
Hence, D;v(x)D;p;(x) =0 for all i =1,2,3 and for all z € Q.

Example 3. Let v: RY — R be a function defined by

N

v@) =[5, pilz)=e"+1,  Vi=1,...,N.
i=1
J#i

We can readily confirm that

N

Hl‘la j 7& ia
=1

1#£1

0, J

DZ’U(IL‘) =

i.

On the other hand, we observe that
D;p;(z) = e, Vi=1,...,N,
then,

DZU(IL‘)DZ[),L(IL‘) = 0, Vi = 1, ceey N, Yz € Q.
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