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New nonlinear Picone identities with

variable exponents and applications

Hichem Khelifi, Youssef El Hadfi

Abstract. This paper introduces two novel nonlinear anisotropic Picone iden-
tities with variable exponents that expand upon the traditional identity used
for the ordinary Laplace equation. Additionally, the research explores potential
applications of these findings in anisotropic Sobolev spaces featuring variable
exponents.

Keywords: anisotropic Picone identity; variable exponent

Classification: 35A23, 35A02, 35J75

1. Introduction

Let Ω be a bounded open domain in R
N , N ≥ 3, with Lipschitz continuous

boundary ∂Ω. Let pi : Ω → R, for i = 1, . . . , N , be continuous functions repre-

senting the variable exponents. In recent years, there has been significant interest

in studying anisotropic operator with variable exponents

(1.1)

N
∑

i=1

Di(|Diu|
pi(x)−2Diu), where Diu =

∂u

∂xi
,

they participate in various areas of applied sciences. In certain instances, they

provide realistic models for studying natural occurrences in electrorheological flu-

ids (refer to citations in [1]). Another significant application is related to image

processing [5].

Note that in the classical case pi(x) = p, equation (1.1) represents the p-

Laplacian operator. However, in the constant case pi(x) = pi, equation (1.1) be-

comes the anisotropic Laplacian operator given by
∑N

i=1 Di(|Diu|pi−2Diu), where

pi > 1. The pi-Laplacian operator exhibits homogeneity for every i = 1, . . . , N .

On the other hand, equation (1.1) represents a nonhomogeneous operator, as

it incorporates different exponents pi for each coordinate direction. The pi(x)-

Laplacian does not necessarily have a more complex nonlinearity compared to
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other types of Laplacians. The complexity of the nonlinearity depends on the spe-

cific form of the function pi(x), since there is not equivalence relation between the

norm ‖u‖pi(x) and pi(x) modular ̺(u) =
∫

Ω
|u|pi(x) dx +

∫

Ω
|Diu|pi(x) dx on the

anisotropic variable exponent Sobolev spaces W 1,pi(·)(Ω), see [4], [10], [17], [18],

and the references therein. For the isotropic case (i.e., pi(x) = p(x)), we define

the p(x)-Laplacian operator as ∆p(x)u = div(|∇u|p(x)−2∇u), where p(x) ∈ C(Ω)

and p(x) > 1 almost everywhere in Ω.

In [20], the following homogeneous linear differential system of the second order

is under study by M. Picone,

(a1(x)u
′)′ + a2(x)u = 0,

(b1(x)v
′)′ + b2(x)v = 0,

and it has been proven that for differentiable functions u and v, both nonzero,

the following identity holds.

(1.2)
(u

v
(a1u

′v − b1uv
′)
)′

= (b2 − a2)u
2 + (a1 − b1)u

′2 + b1

(

u′ −
v′u

v

)2

.

In [21], (1.2) was extended to the Laplace operator. Specifically, for differentiable

functions u ≥ 0 and v > 0, we have

(1.3) |∇u|2 +
u2

v2
|∇v|2 − 2

u

v
∇u · ∇v = |∇u|2 −∇

(u2

v

)

· ∇v ≥ 0.

The extension of equation (1.3) to the p-Laplacian operator with 1 < p < ∞

was achieved by W. Allegretto and Y. Huang in their work cited as reference [3].

N. Yoshida in [22] proved the Picone identity with variable exponent

(1.4)

|∇u|p(x)

p(x)
−
(u

v

)p(x)−1

|∇v|p(x)−2∇v · ∇u+
p(x)− 1

p(x)

(u

v

)p(x)

|∇v|p(x)

=
|∇u|p(x)

p(x)
− |∇v|p(x)−2∇v · ∇

( up(x)

p(x)vp(x)−1

)

≥ 0.

Other authors have established different variable exponent Picone identities

than (1.4). Those alternative Picone identities can be found in various sources,

including [2], [8]. Additionally, T. Feng and X. Cui introduced in [7] a linear

Picone identity for the anisotropic Laplace operator. Furthermore, T. Feng and

K. Zhang extended in [7] the nonlinear Picone identity of T. Feng and X. Cui

beyond the Laplace operator. This extension presents a generalization of their

findings to Euclidean space and can be found in [9].

In this paper, our aim is to derive two nonlinear anisotropic Picone identities

with variable exponents and explore their applications. The following are the

main results presented in this study.
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Theorem 1.1. Let v > 0 and u > 0 be two differentiable functions in the set

Ω ⊂ R
N , N ≥ 3, and denote

L(u, v) =

N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

upi(x) ln
(

u
v

)

vpi(x)−1
|Div|

pi(x)−2Div ·Dipi(x)

−
N
∑

i=1

pi(x)
upi(x)−1

vpi(x)−1
|Div|

pi(x)−2Div ·Diu

+ (pi(x)− 1)
(u

v

)pi(x)

|Div|
pi(x),

R(u, v) =

N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

|Div|
pi(x)−2Div ·Di

( upi(x)

vpi(x)−1

)

.

Then

(1.5) L(u, v) = R(u, v).

Moreover, if Div(x) ·Dipi(x) = 0 for every i = 1, . . . , N and every x ∈ Ω, then

we have L(u, v) ≥ 0. Furthermore, L(u, v) = 0 almost everywhere in Ω if and

only if Di(u/v) = 0 almost everywhere in Ω for any i = 1, . . . , N .

Theorem 1.2. Let v > 0 and u > 0 be two differentiable functions in the set

Ω ⊂ R
N , N ≥ 3, and denote

L(u, v) =

N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

upi(x) lnu

f(v)
|Div|

pi(x)−2Div ·Dipi(x)

−
N
∑

i=1

pi(x)
upi(x)−1

f(v)
|Div|

pi(x)−2Div ·Diu+

N
∑

i=1

upi(x)f ′(v)

[f(v)]2
|Div|

pi(x),

R(u, v) =

N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

Di

(upi(x)

f(v)

)

· |Div|
pi(x)−2Div,

where f(v) > 0 and f ′(v) ≥ (pi(x) − 1)[f(v)](pi(x)−2)/(pi(x)−1) for all pi(x) > 1

and for all i = 1, . . . , N . Then

(1.6) L(u, v) = R(u, v).

Moreover, if Div(x) · Dipi(x) = 0 for every i = 1, . . . , N and every x ∈ Ω, we

have L(u, v) ≥ 0. Furthermore, L(u, v) = 0 almost everywhere in Ω if and only if

Di(u/v) = 0 almost everywhere in Ω for any i = 1, . . . , N .
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2. Preliminary results

This section provides a brief overview of anisotropic spaces with variable expo-

nents. For a more detailed discussion on Lebesgue–Sobolev spaces with variable

exponents, we recommend to consult [6], [13], [14], [23] and [16], [15], [12], [11],

as well as related references. Let Ω be a bounded open subset of R
N , N ≥ 2. We

denote

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x),

and

C+(Ω) = {p ∈ C(Ω): p− > 1}.

Let p(·) ∈ C+(Ω). We define the space

Lp(·)(Ω) =

{

u : Ω → R
N measurable:

∫

Ω

|u(x)|p(x) dx < ∞

}

,

and

‖u‖p(·) := ‖u‖Lp(·)(Ω) = inf

{

λ > 0:

∫

Ω

∣

∣

∣

u(x)

λ

∣

∣

∣

p(x)

dx ≤ 1

}

defines a norm in Lp(·)(Ω), called the Luxemburg norm. We define also the

Banach space

W
1,p(·)
0 (Ω) = {f ∈ Lp(·)(Ω): |∇f | ∈ Lp(·)(Ω) and f = 0 on ∂Ω}

endowed with the norm ‖f‖
W

1,p(·)
0 (Ω)

= ‖∇f‖p(·). The space W
1,p(·)
0 (Ω) is sepa-

rable and reflexive provided that with 1 < p− ≤ p+ = maxx∈Ω p(x) < ∞.

Let pi : Ω → (1,∞) be continuous functions. We introduce the anisotropic

variable exponent Sobolev space

W 1,pi(·)(Ω) := {u ∈ Lpi(Ω) · Diu ∈ Lpi(Ω)},

and

W
1,pi(·)
0 (Ω) := {u ∈ W 1,1

0 (Ω) · Diu ∈ Lpi(Ω)},

which are Banach spaces under the norm

‖u‖
W

1,pi(·)

0 (Ω)
= ‖u‖Lpi(·)(Ω) + ‖Diu‖L1,pi(·)(Ω), i = 1, . . . , N.

Proposition 2.1. Let a ≥ 0, b ≥ 0 and let pi, qi : Ω → (1,∞) be continuous

functions for every i = 1, . . . , N , with 1/pi(x) + 1/qi(x) = 1. Then

(2.1) ab ≤
api(x)

pi(x)
+

bqi(x)

qi(x)
, ∀i = 1, . . . , N.

Moreover, the equality holds if and only if api(x) = bqi(x) for every i = 1, . . . , N .
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3. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1: We see with a direct computation that

R(u, v) =

N
∑

i=1

|Diu|
pi(x)

−
N
∑

i=1

vpi(x)−1Di(u
pi(x))− upi(x)Di(v

pi(x)−1)

(vpi(x)−1)2
|Div|

pi(x)−2Div

=

N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

Di(u
pi(x))

vpi(x)−1
|Div|

pi(x)−2Div

+

N
∑

i=1

upi(x)Di(v
pi(x)−1)

(vpi(x)−1)2
|Div|

pi(x)−2Div

=

N
∑

i=1

|Diu|
pi(x)

−
N
∑

i=1

upi(x) lnuDipi(x) + pi(x)u
pi(x)−1Diu

vpi(x)−1
|Div|

pi(x)−2Div

+

N
∑

i=1

upi(x)(vpi(x)−1 ln vDipi(x) + (pi(x) − 1)vpi(x)−2Div)

(vpi(x)−1)2

× |Div|
pi(x)−2Div

=
N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

upi(x) lnu

vpi(x)−1
|Div|

pi(x)−2Div ·Dipi(x)

−
N
∑

i=1

pi(x)
upi(x)−1

vpi(x)−1
|Div|

pi(x)−2Div ·Diu = L(u, v).

Now we prove that L(u, v) is nonnegative. We rewrite L(u, v) as

L(u, v) =
N
∑

i=1

pi(x)
[ 1

pi(x)
|Diu|

pi(x) +
pi(x)− 1

pi(x)

((u

v
|Div|

)pi(x)−1)pi(x)/(pi(x)−1)]

−
N
∑

i=1

pi(x)
upi(x)−1

vpi(x)−1
|Div|

pi(x)−1|Diu|

+
N
∑

i=1

pi(x)
upi(x)−1

vpi(x)−1
|Div|

pi(x)−2[|Div||Diu| −DivDiu]
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−
N
∑

i=1

upi(x) ln u
v

vpi(x)−1
|Div|

pi(x)−2Div ·Dipi(x)

= Ii,1 + Ii,2 + Ii,3,(3.1)

where

Ii,1 =

N
∑

i=1

pi(x)
[ 1

pi(x)
|Diu|

pi(x) +
pi(x)− 1

pi(x)

((u

v
|Div|

)pi(x)−1)pi(x)/(pi(x)−1)]

−
N
∑

i=1

pi(x)
upi(x)−1

vpi(x)−1
|Div|

pi(x)−1|Diu|,

Ii,2 =

N
∑

i=1

pi(x)
upi(x)−1

vpi(x)−1
|Div|

pi(x)−2
[

|Div||Diu| −DivDiu
]

,

Ii,3 = −
N
∑

i=1

upi(x) ln u
v

vpi(x)−1
|Div|

pi(x)−2Div ·Dipi(x).

By Young’s inequality, see Proposition 2.1, inequality (1.6), (here a = |Diu|,

b = (u|Div|/v)pi(x)−1 and qi(x) = pi(x)/(pi(x) − 1)), we obtain

(3.2)
Ii,1 ≥

N
∑

i=1

pi(x)|Diu|
(u

v
|Div|

)pi(x)−1

−
N
∑

i=1

pi(x)
upi(x)−1

vpi(x)−1
|Div|

pi(x)−1|Diu|

≥ 0.

Using the fact that |Div||Diu| −DivDiu ≥ 0, we have

(3.3) Ii,2 ≥ 0.

From (3.2)–(3.3) and the fact that Ii,3 = 0 (since Div · Dipi(x) = 0), it follows

that L(u, v) ≥ 0.

If Di(u/v) = 0 a.e. in Ω for every i = 1, . . . , N , then u = cv, and thus,

L(u, v) = 0. Now we show that L(u, v) = 0 implies Di(u/v) = 0 for every

i = 1, . . . , N . In fact, if L(u, v)(x0) = 0 for all x0 ∈ Ω, then we consider the two

cases u(x0) 6= 0 and u(x0) = 0, respectively.

(1) If u(x0) 6= 0, then Ii,1(x0) = 0, Ii,2(x0) = 0 and Ii,3(x0) = 0. One shows

by Ii,1(x0) = 0 that

(3.4) |Diu| =
u

v
|Div|, ∀i = 1, . . . , N.

Using Ii,2(x0) = 0, we get

(3.5) Diu = cDiv, ∀i = 1, . . . , N,
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where c is a positive constant. Putting (3.8) into (3.7) yields u = cv,

namely Di(u/v) = 0 for every i = 1, . . . , N .

(2) If u(x0) = 0, denote S = {x ∈ Ω: u(x) = 0} and then for all i = 1, . . . , N ,

Diu = 0 a.e. in S. Thus

Di

(u

v

)

=
vDiu− uDiv

v2
= 0.

This finishes the proof of Theorem 1.1. �

Proof of Theorem 1.2: Expanding R(u, v) by direct calculation one easily

sees that L(u, v) = R(u, v). Now the proof that L(u, v) is nonnegative, is similar

to proof of Theorem 1.1. We rewrite L(u, v) as

(3.6) L(u, v) = Ji,1 + Ji,2 + Ji,3 + Ji,4,

where

Ji,1 =
N
∑

i=1

pi(x)
[ 1

pi(x)
|Diu|

pi(x)

+
pi(x) − 1

pi(x)

(upi(x)−1

f(v)
|Div|

pi(x)−1
)pi(x)/(pi(x)−1)]

−
N
∑

i=1

pi(x)
upi(x)−1

f(v)
|Div|

pi(x)−1|Diu|,

Ji,2 =

N
∑

i=1

pi(x)
upi(x)−1

f(v)
|Div|

pi(x)−2[ |Div||Diu| −DivDiu],

Ji,3 =

N
∑

i=1

−(pi(x) − 1)
(upi(x)−1

f(v)
|Div|

pi(x)−1
)pi(x)/(pi(x)−1)

+
upi(x)f ′(v)

[f(v)]2
|Div|

pi(x),

Ji,4 = −
N
∑

i=1

upi(x) lnu

f(v)
|Div|

pi(x)−2Div ·Dipi(x).

By Young’s inequality, see Proposition 2.1, inequality (1.6), (here a = |Diu|,

b = (upi(x)−1/f(v))|Div|
pi(x)−1 and qi(x) = pi(x)/(pi(x) − 1)), and using the fact

that |Div||Diu| −DivDiu ≥ 0, we obtain

(3.7) Ji,1 ≥ 0 and Ji,2 ≥ 0.



466 H. Khelifi, Y. El Hadfi

Since f(v) > 0 and f ′(v) ≥ (pi(x)− 1)[f(v)](pi(x)−2)/(pi(x)−1), we have

(3.8)

Ji,3 ≥
N
∑

i=1

(pi(x)− 1)
[

−
(upi(x)−1

f(v)
|Div|

pi(x)−1
)pi(x)/(pi(x)−1)

+
upi(x)[f(v)](pi(x)−2)/(pi(x)−1)

[f(v)]2
|Div|

pi(x)
]

= 0.

From (3.6)–(3.8) and the fact that Ji,4 = 0 (since Div · Dipi(x) = 0), it follows

that L(u, v) ≥ 0. On the other hand, similar arguments as those used in the proof

of Theorem 1.1 show that L(u, v) = 0 a.e. in Ω if and only if Di(u/v) = 0 a.e.

in Ω for any i = 1, . . . , N . This completes the proof of Theorem 1.2. �

4. Some applications and examples

4.1 Applications. We give three examples of applications of Theorems 1.1–1.2.

First we will show a sturmian comparison principle to the anisotropic elliptic

equation with variable exponent, by Theorem 1.1.

Proposition 4.1. Let λ > 0 and k(x) be a nonnegative weight. Suppose that

a function v ∈ C2(Ω) and v > 0, satisfying

(4.1) −
N
∑

i=1

upi(x)

vpi(x)−1
Di(|Div|

pi(x)Div) ≥
N
∑

i=1

λk(x)upi(x) in Ω.

Then for any u ∈ C1
0 (Ω) with u ≥ 0, there holds

(4.2)

N
∑

i=1

∫

Ω

|Diu|
pi(x) dx ≥ λ

N
∑

i=1

∫

Ω

k(x)upi(x) dx.

Proof: By Theorem 1.1 and (4.1), we obtain

0 ≤

∫

Ω

L(u, v) dx =

∫

Ω

R(u, v) dx

=
N
∑

i=1

∫

Ω

|Diu|
pi(x) dx−

N
∑

i=1

∫

Ω

|Div|
pi(x)−2Div ·Di

( upi(x)

vpi(x)−1

)

dx

=
N
∑

i=1

∫

Ω

|Diu|
pi(x) dx+

N
∑

i=1

∫

Ω

upi(x)

vpi(x)−1
Di(|Div|

pi(x)−2Div) dx

≤
N
∑

i=1

∫

Ω

|Diu|
pi(x) dx− λ

N
∑

i=1

∫

Ω

k(x)upi(x) dx,

which gives (4.2). �
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Let Ω be an open and bounded domain in R
N , N ≥ 2, with a Lipschitz

boundary ∂Ω. Consider a nonnegative function f that belongs to Lm(Ω), where

m ≥ 1. We assume that the exponent variable γ(·) : Ω → (0,∞) is a continuous

and smooth function, and that pi(·) : Ω → (1,∞), i = 1, . . . , N , are continuous

functions that satisfy the following conditions:

p1(x) ≤ p2(x) ≤ · · · ≤ pN (x), p(x) < N, ∀x ∈ Ω,

where

1

p(x)
=

1

N

N
∑

i=1

1

pi(x)
, ∀x ∈ Ω.

Let us now present the following proposition to provide an example of using

Picon’s inequality to demonstrate the uniqueness of the solution.

Proposition 4.2. Let u1 ≥ 0, u2 ≥ 0 be two functions in W
1,pi(·)
0 (Ω) which are

an energy solution of the problem

(4.3)



















−
N
∑

i=1

Di(|Diu|
pi(x)−2Diu) =

f

uγ(x)
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Then u1 = u2.

Proof: The existence of the solution is proven by the author in [19]. Let u1 and

u2 be two solutions of problem (4.3), suppose that u2 ≥ u1. Using the anisotropic

Picone identities in Theorem 1.1 to u1 and u2, it follows that

0 ≤ R(u, v) = L(u, v)

=

N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

|Div|
pi(x)−2Div ·Di

( upi(x)

vpi(x)−1

)

.

Then

(4.4)

N
∑

i=1

∫

Ω

|Di · u2|
pi(x) dx ≥

N
∑

i=1

∫

Ω

Di(|Di · u1|
pi(x)−2Di · u1)

u
pi(x)
2

u
pi(x)−1
1

=

∫

Ω

f

u
γ(x)
1

u
pi(x)
2

u
pi(x)−1
1

=

∫

Ω

fu
pi(x)
2

u
γ(x)+pi(x)−1
1

.

On the other hand, we get

(4.5)

N
∑

i=1

∫

Ω

|Diu2|
pi(x) dx =

∫

Ω

fu
−γ(x)+1
2 .
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Combining (4.4) and (4.5), we have
∫

Ω

fu
−γ(x)+1
2 ≥

∫

Ω

fu
pi(x)
2 u

1−γ(x)−pi(x)
1 .

Case 1. If γ(x) = 1 then

(4.6)

∫

Ω

f
[

1−
u
pi(x)
2

u
pi(x)
1

]

dx ≥ 0.

Since u2 ≥ u1, we have 1− u
pi(x)
2 /u

pi(x)
1 ≤ 0. By (4.6), we obtain

∫

Ω

f
[

1−
u
pi(x)
2

u
pi(x)
1

]

dx = 0.

Thanks to Theorem 1.1, we get

−
N
∑

i=1

∫

Ω

|Diu2|
pi(x) dx =

N
∑

i=1

∫

Ω

Di(|Diu1|
pi(x)−2Diu1)

u
pi(x)
2

u
pi(x)−1
1

,

which implies that

R(u1, u2) = L(u1, u2) = 0 a.e. in Ω.

Then

Di ·
(u1

u2

)

= 0, a.e. in Ω, ∀i = 1, . . . , N,

we obtain u1 = cu2 for some c > 0. Taking into consideration that u1 and u2

solve problem (4.3) it follows that c1 = 1, and then u1 = u2.

Case 2. If γ(x) 6= 1 we have
∫

Ω

fu
−γ(x)+1
2 ≥

∫

Ω

fu
pi(x)
2 u

1−γ(x)−pi(x)
1 ,

which is equivalent to

(4.7)

∫

Ω

f
[

1−
u
pi(x)
2

u
pi(x)
1

]

dx ≥ 0.

In order to get (since u1 ≤ u2)

1−
u
pi(x)+γ(x)−1
1

u
pi(x)+γ(x)−1
2

≤ 0 ⇔ u
pi(x)+γ(x)−1
2 ≤ u

pi(x)+γ(x)−1
2

⇔ pi(x) + γ(x)− 1 ≥ 0

it suffices that γ(x) ≥ 1− pi(x), and that is true since γ(x) ≥ 0 and pi(x) ≥ 1.

This completes the proof. �
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We finish with a theorem of Liouville for an anisotropic elliptic system with vari-

able exponents. Let v > 0, f(v) > 0 and f ′(v) ≥ (pi(x)−1)[f(v)](pi(x)−2)/(pi(x)−1)

for pi(x) ≥ 1 and for all i = 1, . . . , N .

Proposition 4.3. Let g(u, v) be an integrable function in Ω. Assume that

(u, v) ∈ W
1,pi(·)
0 (Ω) × W

1,pi(·)
0 (Ω) is a pair of solution to an anisotropic elliptic

system

(4.8)











































N
∑

i=1

|Diu|
pi(x) = g(u, v) in Ω,

N
∑

i=1

Di

(upi(x)

f(v)

)

|Div|
pi(x)−2Div = g(u, v) in Ω,

u > 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω.

Then u = cv a.e. in Ω for some constant c.

Proof: By Theorem 1.2 and (4.8), we obtain

∫

Ω

L(u, v) dx =

∫

Ω

R(u, v) dx

=

N
∑

i=1

|Diu|
pi(x) −

N
∑

i=1

Di

(upi(x)

f(v)

)

|Div|
pi(x)−2Div

= g(u, v)− g(u, v) = 0.

Thus, u = cv a.e. in Ω for some constant c. �

4.2 Examples.

Example 1. Let Ω be a set contained in R
N , and Ωi be subsets of Ω such that

Ω =
⋃N

i=1 Ωi with Ωi∩Ωj = ∅ for all i 6= j. Consider a function v defined on R
N

with values in R, given by

v(x) =
N
∑

i=1

χΩi
(x)xi.

The characteristic function on the set Ωi is defined as follows

χΩi
(x) =

{

1 if x ∈ Ωi,

0 otherwise.

Define pi(x) as

pi(x) =

{

0 if x ∈ Ωi,

xi otherwise.
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We can easily verify that

Div(x)Dipi(x) = 0, ∀i = 1, . . . , N.

For example, when N = 3, the function v is given by

v(x) =















x1 if x ∈ Ω1,

x2 if x ∈ Ω2,

x3 if x ∈ Ω3,

and

p1(x) =















0, x ∈ Ω1

x1, x ∈ Ω2

x1, x ∈ Ω3

, p2(x) =















x2, x ∈ Ω1

0, x ∈ Ω2

x2, x ∈ Ω3

, p3(x) =















x3 x ∈ Ω1

x3, x ∈ Ω2

0, x ∈ Ω3

.

Then we obtain

D1v(x) ·D1p1(x) =















1 · 0 = 0 if x ∈ Ω1,

0 · 1 = 0 if x ∈ Ω2,

0 · 1 = 0 if x ∈ Ω3,

D2v(x) ·D2p2(x) =















0 · 1 = 0 if x ∈ Ω1,

1 · 0 = 0 if x ∈ Ω2,

0 · 1 = 0 if x ∈ Ω3,

and

D3v(x) ·D3p3(x) =















0 · 1 = 0 if x ∈ Ω1,

0 · 1 = 0 if x ∈ Ω2,

1 · 0 = 0 if x ∈ Ω3.

Then, Div(x)Dipi(x) = 0 for all i = 1, . . . , N and all x ∈ Ω.

Example 2. Let v be a function defined on R
N with values in R, given by

v(x) =

N
∑

j=1
j 6=i

xj ,

and

pi(x) = x2
i + 1, ∀i = 1, . . . , N.

We can easily verify that

Div(x) =

{

1, j 6= i,

0, j = i.
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On the other hand, we have

Dipi(x) = 2xi + 1, ∀i = 1, . . . , N,

then,

Div(x)Dipi(x) = 0, ∀i = 1, . . . , N.

Let us consider the trivial cases, for N = 3, we obtain

v(x) = x2 + x3 and p1(x) = x2
1 + 1 for i = 1,

v(x) = x1 + x3 and p2(x) = x2
2 + 1 for i = 2,

v(x) = x1 + x2 and p3(x) = x2
3 + 1 for i = 3.

Hence, Div(x)Dipi(x) = 0 for all i = 1, 2, 3 and for all x ∈ Ω.

Example 3. Let v : R
N → R be a function defined by

v(x) =
N
∏

j=1
j 6=i

xj , pi(x) = exi + 1, ∀i = 1, . . . , N.

We can readily confirm that

Div(x) =



















N
∏

l=1
l 6=i

xl, j 6= i,

0, j = i.

On the other hand, we observe that

Dipi(x) = exi , ∀i = 1, . . . , N,

then,

Div(x)Dipi(x) = 0, ∀i = 1, . . . , N, ∀x ∈ Ω.
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