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ALMOST COMPLETE CONVERGENCE OF A RECURSIVE
KERNEL ESTIMATOR OF THE DENSITY WITH
COMPLETE AND CENSORED INDEPENDENT DATA

Safia Leulmi, Sarra Leulmi, Kenza Assia Mezhoud, and Soheir Belaloui

In this paper, we firstly introduce a recursive kernel estimator of the density in the censored
data case. Then, we establish its pointwise and uniform almost complete convergences, with
rates, in both complete and censored independent data. Finally, we illustrate the accuracy of
the proposed estimators throughout a simulation study.

Keywords: recursive kernel estimator, density, almost complete convergence, censored in-
depented data, right censored data, rate of convergence

Classification: 62G20, 62N01, 62G05, 62G07

1. INTRODUCTION

Nonparametric density function estimation has been the subject of intense investigation
in several inference problems. A classical density kernel estimator has been studied in
literature by many authors, such as [4, 13] and [6].

However, the recursive method allows us to update the estimation whenever new ob-
servations are obtained which is not the case of non recursive kernel one. This provides
an important saving in computational time, memory and adaptability, especially for
large sequential datasets, making it a more practical and scalable solution for modern
data analysis tasks. In contrast to the classical kernel estimator, these methods enable
iterative updates without requiring full recalculations, making them both practical and
easy to implement. This efficiency makes the recursive method is better suitable for
handling large, streaming, or dynamically changing datasets, offering superior efficiency
and scalability than classical method. Another important advantage of the recursive es-
timator is that the variance of the estimator defined in [1] reduces the variance compared
to the variance of classical estimator.

In this field, [16] is the forerunners to introduce the kernel recursive estimators.
Inspired by these works, [1] introduced the generalized form of the recursive estimator
and established its almost sure convergence for complete independent data. Then, [12]
extended the result for complete weak dependent data. The asymptotic normality and

DOI: 10.14736/kyb-2025-1-0001

http://doi.org/10.14736/kyb-2025-1-0001


2 S. LEULMI, S. LEULMI, K.A. MEZHOUD AND S. BELALOUI

mean square error of the recursive estimator were investigated by [2] for strongly mixing
data.

In the reliability and survival time studies, the data are often unavailable due to the
lag of information, which makes the setting of censored data more suitable in practice. [9]
studied the almost sure convergence of the conditional density recursive kernel estimator
for censored data. Recently, [10] established the asymptotic normality and mean square
error for adaptive recursive kernel conditional density estimator under censoring data.

Our work is motivated by the fact that the previous results focused on the almost sure
convergence of recursive kernel estimators, which is weaker than the almost complete
one. Furthermore, to the best of our knowledge the recursive kernel density estimator
for right censored independent data has not been studied yet in literature.

To this aim, the paper is organized as follows. Firstly, in section 2, we introduce a
new recursive kernel estimator of density which extends the estimator studied in [1] to
right censored data case. Then, we devote the sections 3 and 4 to derive the pointwise
and the uniform almost complete convergences under mild conditions in our context for
complete and right censored data cases. The performance of our estimator is validated
by a simulation study. Finally, the proofs of the theoretical results are developed in the
Appendix.

2. ESTIMATION

Let T be a nonnegative lifetime which has an unknown probability density function
(p.d.f.) f with respect to Lebesgue measure. In the case of complete data, [1] intro-
duced the recursive kernel estimator of the density f based on a sample of independent
identically distributed (i.i.d.) observations (Ti) of T by the following expression

f̄ ℓ
n(t) =

1∑n
i=1 h

1−ℓ
i

n∑
i=1

h−ℓ
i K

(
t− Ti

hi

)
, t ∈ R, (1)

where ℓ ∈ [0, 1] is a smoothing parameter, hn is a given positive sequence decreasing to
0 and K is a density function.

Regrettably, Ti is unavailable in practice. We can only observe a sample (Yi, δi)1≤i≤n

of i.i.d., observations of (Y = T ∧C, δ), where the nonnegative censoring variables Ci are
i.i.d. with unknown continuous survival function G and δ = 1{T≤C} (where 1A denotes
the indicator function of the set A).

We need the following assumption.

• (C.1) C and T are independent.

Combining the ideas in [1] and [7] and the fact that

E

(
K

(
t− Yi

hi

)
δi

G(Yi)

)

= E

K
(

t−Ti

hi

)
G(Ti)

E(δi/Ti)
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= E

(
K

(
t− Ti

hi

))
,

we can construct a pseudo recursive kernel estimator of f by

f̃ ℓ
n(t) =

1∑n
i=1 h

1−ℓ
i

n∑
i=1

h−ℓ
i K

(
t− Yi

hi

)
δi

G(Yi)
, t ∈ R. (2)

Since G is usually unknown, we will replace it by its [8] estimator Gn defined as

Gn(t) =


∏n

i=1

(
1− 1−δ(i)

n−i+1

)1{Y(i)≤t}
if t < Y(n)

0 if t ⩾ Y(n),

where Y(1) < Y(2) < · · · < Y(n) are the order statistics of Yi and δ(i) the noncensoring
indicator corresponding to Y(i).

Therefore, a feasible estimator of f(t) is given by

f̂ ℓ
n(t) =

1∑n
i=1 h

1−ℓ
i

n∑
i=1

h−ℓ
i K

(
t− Yi

hi

)
δi

Gn(Yi)
, t ∈ R. (3)

The recursive formulation (3) facilitates the updating of estimates without the need to
recalculate the entire dataset as new observations are introduced. Indeed the estima-
tor (3) fullfils

f ℓ
n+1(t) =

∑n
i=1 h

1−ℓ
i∑n+1

i=1 h1−ℓ
i

f ℓ
n(t) +

1∑n+1
i=1 h1−ℓ

i

Kn+1(t− Yn+1)
δn+1

Gn+1(Yn+1)
,

with Kn+1(t− Yn+1) =
1

hℓ
n+1

K
(

t−Yn+1

hn+1

)
.

3. POINTWISE ALMOST COMPLETE CONVERGENCE

3.1. Complete data

To establish the pointwise almost complete convergence of f̄ ℓ
n(t) for a fixed point t ∈ R,

we need the following standard conditions.

• (H.1) limn→∞ hn = 0, limn→∞ nhn = ∞, limn→∞
lnn
nhn

= 0.

• (H.2) βn,r = 1
n

∑n
i=1

(
hi

hn

)r
→ βr < ∞, as n → ∞, r ≤ 3.

• (F.1) f is continuous.

• (F.2) f is twice continuously differentiable around t.

• (K.1) K is bounded and integrable function, with compact support.

• (K.2)
∫
vK(v) dv = 0.
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Remark 3.1. Since K has a compact support and hn converges to 0, we can take
in both sums (2) and (3) Yi ∈ [0, θ] (for all large enough n), where θ < TY , where
TY := TFY

= sup {t ∈ R;FY (t) < 1} denote the upper endpoint of the support of Y .

The following theorem gives the pointwise almost complete convergence of the recursive
estimator f̄ ℓ

n(t).

Theorem 3.2. Assume that the assumptions (H.1), (H.2) and (K.1) are fulfilled.

(i) If (F.1) is satisfied, we get

f̄ ℓ
n(t)− f(t) = oa.co(1).

(ii) If (F.2) and (K.2) are satisfied, we obtain

f̄ ℓ
n(t)− f(t) = O(h2

n) +Oa.co

(√
lnn

nh2
n

)
.

The proof of theorem 3.2 follows directly from the decomposition given by

f̄ ℓ
n(t)− f(t) =

(
f̄ ℓ
n(t)− Ef̄ ℓ

n(t)
)
+
(
Ef̄ ℓ

n(t)− f(t)
)
, (4)

and the accompanying lemmas, which proofs are deferred to the appendix.

Lemma 3.3. Under assumptions (H.1), (H.2) and (K.1), we get

f̄ ℓ
n(t)− Ef̄ ℓ

n(t) = Oa.co

(√
lnn

nh2
n

)
.

Lemma 3.4. Under assumptions (H.1), (H.2) and (K.1).

(i) If (F.1) is satisfied, we have

Ef̄ ℓ
n(t) → f(t) as n → ∞.

(ii) If (F.2) and (K.2) are satisfied, we obtain

Ef̄ ℓ
n(t)− f(t) = O(h2

n).

3.2. Censored data

In this section, we study the pointwise almost complete convergence of f̂ ℓ
n(t) for a fixed

point t ∈ R, t ≤ θ. For this aim, we need the same conditions as in complete data in
addition to the right censoring condition (C.1).

Theorem 3.5. Assume that the assumptions (C.1), (H.1), (H.2) and (K.1) are full-
filled.
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(i) If (F.1) is satisfied, we have

f̂ ℓ
n(t)− f(t) = oa.co(1).

(ii) If (F.2) and (K.2) are satisfied, we obtain

f̂ ℓ
n(t)− f(t) = O(h2) +Oa.co

(√
lnn

nh2
n

)
.

The proof of the Theorem 3.5 is a direct consequence of the decomposition given by

f̂ ℓ
n(t)− f(t) = (f̂ ℓ

n(t)− f̃ ℓ
n(t)) + (f̃ ℓ

n(t)− Ef̃ ℓ
n(t)) + (Ef̃ ℓ

n(t)− f(t)), (5)

and the following lemmas, which proofs are postponed to the appendix.

Lemma 3.6. Under assumptions (C.1), (H.1), (H.2) and (K.1), we get

f̃ ℓ
n(t)− Ef̃ ℓ

n(t) = Oa.co

(√
lnn

nh2
n

)
.

Lemma 3.7. Assume that the assumptions (C.1), (H.1), (H.2) and (K.1) are fulfilled.

(i) If (F.1) is satisfied, we have

Ef̃ ℓ
n(t) → f(t) as n → ∞.

(ii) If (F.2) and (K.2) are satisfied, we get

Ef̃ ℓ
n(t)− f(t) = O(h2

n).

Lemma 3.8. Under assumptions (C.1), (H.1), (H.2) and (K.1) we have

f̂ ℓ
n(t)− f̃ ℓ

n(t) = Oa.co

(√
lnn

nh2
n

)
.

4. UNIFORM ALMOST COMPLETE CONVERGENCE

In the sequel, we extend the previous results to the uniform convergence with both
complete and censored data. For this purpose, we need the following conditions in
addition to the conditions (H.1), (H.2), (K.1), (K.2) and (C.1). Throughout this section,
let S ∈ [0, TY [ be a fixed compact subset of R and let us θ < TY .

• (F’.1) f is continuous on a compact subset S.

• (F’.2) f is twice continuously differentiable on S.

• (K.3) K is Lipschitzian, ∃β > 0, ∃C > 0, ∀x, y ∈ S, |K(x)−K(y)| ≤ C|x− y|β .
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4.1. Complete data

Theorem 4.1. Assume that the assumptions (H.1), (H.2) (K.1) and (K.3) are satisfied.

(i) If (F ′.1) is satisfied, we obtain

sup
t∈S

|f̄ ℓ
n(t)− f(t)| = oa.co(1).

(ii) If (F ′.2) and (K.2) are satisfied, we get

sup
t∈S

|f̄ ℓ
n(t)− f(t)| = O(h2

n) +Oa.co

(√
lnn

nh2
n

)
.

Remark 4.2. Notice that this rate of convergence is the same as that of the classical
density estimator in the complete data case, see Theorem 2 in [11], where L = 0 and
R = +∞.

The proof of Theorem 4.1 is based on the decomposition (4) and the following Lemmas
for which the proofs are given in the Appendix.

Lemma 4.3. Under assumptions (H.1), (H.2), (K.1) and (K.3), we have

sup
t∈S

|f̄ ℓ
n(t)− Ef̄ ℓ

n(t)| = Oa.co

(√
lnn

nh2
n

)
.

Lemma 4.4. Assume that hypotheses (H.1), (H.2) and (K.1) hold,

(i) If (F ′.1) is fulfilled, we get

sup
t∈S

|Ef̄ ℓ
n(t)− f(t)| → 0, as n → ∞.

(ii) If (F ′.2) and (K.2) are fulfilled, we have

sup
t∈S

|Ef̄ ℓ
n(t)− f(t)| = O(h2

n).

4.2. Censored data

Theorem 4.5. Assume that the assumptions (C.1), (H.1), (H.2), (K.1) and (K.3) are
fulfilled.

(i) If (F ′.1) is satisfied, we have

sup
t∈S

|f̂ ℓ
n(t)− f(t)| = oa.co(1).

(ii) If (F ′.2) and (K.2) are satisfied, we obtain

sup
t∈S

|f̂ ℓ
n(t)− f(t)| = O(h2) +Oa.co

(√
lnn

nh2
n

)
.
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Remark 4.6. It is worth noting that this rate of convergence is the same as that of the
classical density estimator in the right censored data case, see Theorem 2 in [11], where
L = 0.

The proof of Theorem 4.5 is a direct consequence of the decomposition (5) and the
following lemmas, the proofs of which are relegated to the Appendix.

Lemma 4.7. Under assumptions (C.1), (H.1), (H.2) (K.1) and (K.3), we get

sup
t∈S

|f̃ ℓ
n(t)− Ef̃ ℓ

n(t)| = Oa.co

(√
lnn

nh2
n

)
.

Lemma 4.8. Assume that the assumptions (C.1), (H.1), (H.2) and (K.1) are fulfilled.

(i) If (F ′.1) is satisfied, we obtain

sup
t∈S

|Ef̃ ℓ
n(t)− f(t)| → 0, as n → ∞.

(ii) If (F ′.2) and (K.2) are satisfied, we have

sup
t∈S

|Ef̃ ℓ
n(t)− f(t)| = O(h2

n).

Lemma 4.9. Under assumptions (C.1), (H.1), (H.2) and (K.1) we have

sup
t∈S

|f̂ ℓ
n(t)− f̃ ℓ

n(t)| = Oa.co

(√
lnn

nh2
n

)
.

5. SIMULATION STUDY

This section aims to examine the behavior of our estimators (RKD) for different sample
sizes (n = 100, 300, 500, 1000) in both complete and censored data cases.

For the computation of our estimator(RKD) and the classical kernel density estimator
(CKD), we use Epanechnikov kernel K(u) = 3

4 (1− u)21|u|≤1 and the bandwidth of the

form hi = c i−
1
5 , c > 0, i = 1, n, for RKD estimator and hn = c′ n− 1

5 , c′ > 0 for CKD
estimator.

The results are plotted in Figures 3 – 4, where, the continuous curve (resp. the dashed
ones) correspond to the true density (resp. the estimated ones obtained by the mentioned
method).

To be more precise, we assess their empirical mean square errors (EMSE), with

EMSE =
1

n

n∑
1

(f̂(Xi)− f(Xi))
2

where f(Xi) (resp.f̂(Xi)) is the real (resp. the estimated) value.



8 S. LEULMI, S. LEULMI, K.A. MEZHOUD AND S. BELALOUI

5.1. Effect of the parameters ℓ and n

5.1.1. Complete data

We generate an i.i.d. sample of the variable Ti from Weibull distribution W (12, 10).
The obtained results are in Table 1.

n = 100 n = 300 n = 500 n = 1000
RKD ℓ = 0 0.00084 0.00073 0.000275 0.00014
RKD ℓ = 0.5 0.00087 0.00073 0.00026 0.00012
RKD ℓ = 1 0.00092 0.00073 0.00026 0.00010

CKD 0.00097 0.00069 0.000275 0.00022

Tab. 1. EMSE for density estimators according to sample sizes for

complete data.

Fig. 1. Representation of the CKD and RKD estimator of the

density with l = 1 and n = 100 for complete data.

Fig. 2. Representation of the CKD and RKD estimator of the

density with l = 1 and n = 500 for complete data.
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From Figures (1) – (2), as well as the CKD estimator, it is clear that the estimators
RKD (dashed curve) converge to the true density (continuous curve). Notice that the
shapes are improved when n increases. This is comfirmed by the results of EMSE for
different values of ℓ in Table 1. Also, we see that the choice of ℓ has non influence.

5.1.2. Censored data

Now, we adopt the censored mechanism (min(Ti, Ci), δi = 1Ti≤Ci)i=1,··· ,n, where the

values of Ti and Ci are generated independently fromWeibull distribution T ∼ W (12, 10)
and C ∼ W (12, 14). The obtained results are in Table 2.

Fig. 3. Representation of the CKD and the RKD estimator of the

density with l = 1 and n = 100 for censored data CR = 30%.

Fig. 4. Representation of the CKD and the RKD estimator of the

density with l = 1 and n = 500 for censored data CR = 30%.
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n = 100 n = 300 n = 500 n = 1000
RKD ℓ = 0 0.00108 0.00091 0.00045 0.0003561
RKD ℓ = 0.5 0.00095 0.00085 0.00044 0.00031
RKD ℓ = 1 0.00094 0.00083 0.00034 0.00021

CKD 0.00108 0.00069 0.00043 0.00022

Tab. 2. EMSE for density estimators according to sample sizes for

censored data.

We conclude from Figures (3) – (4) and Table 2, without surprise, that the quality of
all estimators is better for large sample size n, even for censored data. Additionally, we
observe that the choice of ℓ has no influence in the censored case either.

5.2. Computational time

This subsection highlights a key advantage of the recursive estimator over the classi-
cal estimator defined by (1), specifically in terms of the computational time taken (in
seconds) for each method.

The results obtained are presented in Tables 3 and 4.
The time of computation in seconds is given for different sample sizes n = 300,

n = 500, n = 1000, n = 2000 and n = 5000 and a fixed ℓ = 1.

5.2.1. Complete data

n = 300 n = 500 n = 1000 n = 2000 n = 5000
RKD 0.13 0.16 0.3 0.74 3.39
CKD 0.31 0.37 0.89 1.53 7.23

Tab. 3. Comparison of the computational time of the RKD and

CKD for complete data.

The computational duration is clearly shorter when utilizing the RKD in comparison
to the CKD.

5.2.2. Censored data

n = 300 n = 500 n = 1000 n = 2000 n = 5000
RKD 0.27 0.3 0.43 1.03 3.62
CKD 1.33 0.45 20.94 30.36 35.43

Tab. 4. Comparison of the computational time of the RKD and

CKD for censored data.
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While computational time increases with sample size, there are significant differences
in computation time between the two estimators. In particular, the recursive estimator
(RKD) requires substantially less time compared to the classical kernel estimator (CKD)
(see Table (3) and Table (4).

6. CONCLUSION

In conclusion, both our theoretical and practical analyses highlight the robust perfor-
mance of the density recursive kernel estimator for both complete and right censored
data.

7. APPENDIX

P r o o f of Lemma 3.3
Let us set,

f̄ ℓ
n(t)− Ef̄ ℓ

n(t) =
1

n

n∑
i=1

ξi,

such that

ξi =
nh−ℓ

i∑n
i=1 h

1−ℓ
i

[
K

(
t− Ti

hi

)
− EK

(
t− Ti

hi

)]
. (6)

We need first to prove that |ξi| is bounded.
Indeed, since hi is decreasing and under (K.1), we obtain

0 ≤ nh−ℓ
i∑n

i=1 h
1−ℓ
i

K

(
t− Yi

hi

)
≤ 2∥K∥∞

nh−ℓ
i∑n

i=1 h
1−ℓ
i

≤ C

hn
.

Finally, according to Theorem 2 in [17], with ϵ = η
√

lnn
nh2

n
, we get

P

(∣∣∣f̃ ℓ
n(t)− Ef̃ ℓ

n(t)
∣∣∣ >√ lnn

nh2
n

)
≤ exp

{
−2η2 lnn

C

}
≤ n

−2η2

C , (7)

thus, the right term of this inequality is a general term of Riemann series for an appro-
priate choice of η and C. □

P r o o f of Lemma 3.4
Let us set

Ef̄ ℓ
n(t) =

1∑n
i=1 h

1−ℓ
i

n∑
i=1

h−ℓ
i E

(
K

(
t− Ti

hi

))

=
1∑n

i=1 h
1−ℓ
i

n∑
i=1

h−ℓ
i

∫
K

(
t− u

hi

)
f(u) du.
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(i) With a change of variable z = t− u, we get

Ef̄ ℓ
n(t) =

1∑n
i=1 h

1−ℓ
i

n∑
i=1

h1−ℓ
i

∫
1

hi
K

(
z

hi

)
f(t− z) dz

=
1

βn,1−ℓ

1

n

n∑
i=1

(
hi

hn

)1−ℓ ∫
1

hi
K

(
z

hi

)
f(t− z) dz.

Under conditions (H.1), (F.1) and (K.1), Bochner theorem is applicable and gives

lim
i−→∞

∫
1

hi
K

(
z

hi

)
f(t− z) dz = f(t),

hence, under (H.2), we can use Lemma 2.4.1. in [1] to obtain

lim
n−→∞

Ef̄ ℓ
n(t) =

1

β1−ℓ
β1−ℓf(t) = f(t).

(ii) With a change of variable z = t−u
hi

, we have

|Ef̄ ℓ
n(t)− f(t)| ≤ 1∑n

i=1 h
1−ℓ
i

n∑
i=1

h1−ℓ
i

∫
K(x)|f(t− hix)− f(t)|dx.

Because of hypothesis (F.2), Taylor formula gives

f(t− xhi) = f(t) + xhif
′(t) +

x2h2
i

2!
f (2)(t− θhix),

where θ ∈]0, 1[.
Into account (K.1) and (K.2), we obtain

|Ef̄ ℓ
n(t)− f(t)| ≤ 1

2
∑n

i=1 h
1−ℓ
i

n∑
i=1

h3−ℓ
i

∫
x2K(x)f (2)(t− θhix) dx.

The assumptions (F.2) and the dominate convergence theorem imply that

lim
i→∞

∫
x2K(x)f (2)(t− θhix) dx = f (2)(t)

∫
x2K(x) dx.

Thus, by applying the Lemma 2.4.1. in [1] under (H.2), we have

lim
n→∞

h−2
n |Ef̄ ℓ

n(t)− f(t)| = β3−ℓ

2β1−ℓ
< ∞.

□
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P r o o f of Lemma 3.6
Let us set

f̃ ℓ
n(t)− Ef̃ ℓ

n(t) =
1

n

n∑
i=1

ζi,

where

ζi =
nh−ℓ

i∑n
i=1 h

1−ℓ
i

[
K

(
t− Yi

hi

)
δi

G(Yi)
− E

(
K

(
t− Yi

hi

)
δi

G(Yi)

)]
.

Under assumptions (C.1) and (K.1), we have

0 ≤ nh−ℓ
i∑n

i=1 h
1−ℓ
i

K

(
t− Yi

hi

)
δi

G(Yi)
≤ 2∥K∥∞

G(θ)

nh−ℓ
i∑n

i=1 h
1−ℓ
i

≤ C

hn
.

According to Theorem 2 in [17], with ϵ = η′
√

lnn
nh2

n
, we get

P

(∣∣∣f̃ ℓ
n(t)− Ef̃ ℓ

n(t)
∣∣∣ >√ lnn

nh2
n

)
≤ exp

{
−2η

′2 lnn

C

}
≤ n

−2η
′2

C , (8)

thus, the right term of this inequality is a general term of Riemann series for an appro-
priate choice of η′ and C. □

P r o o f of Lemma 3.7
As E (δ/T ) = G(T ), we get

Ef̃ ℓ
n(t) =

1∑n
i=1 h

1−ℓ
i

n∑
i=1

h−ℓ
i E

(
δi

G(Yi)
K

(
t− Yi

hi

))

=
1∑n

i=1 h
1−ℓ
i

n∑
i=1

h−ℓ
i E

(
K

(
t− Ti

hi

))
.

So, it is clear that the rest of the proof is similar to the proof of Lemma 3.4. □

P r o o f of Lemma 3.8
Because of the definitions of f̂ ℓ

n(t) and f̃ ℓ
n(t) and the assumption (C.1), we can write

|f̂ ℓ
n(t)− f̃ ℓ

n(t)| ≤ C
supt<θ |Gn(t)−G(t)|

Gn(θ)G(θ)
|f̄ ℓ

n(t)|.

Moreover, by Theorem 1 of [3], we obtain, under assumption (C.1)

sup
t<θ

|Gn(t)−G(t)| = Oa.s

(√
lnn

n

)
,

which is equals to Oa.s

(√
lnn
nh2

n

)
. The proof is then ended. □
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P r o o f of Lemma 4.3
To study the first term, using the compactness of the interval S, we have

S ⊂ ∪λn
i=1]xi − γn, xi + γn[, with γn = cλ−1

n , c > 0. (9)

Taking first xt = argminx∈{x1,...,xλn} |t− x|, we can write

P

(
sup
x∈S

|f̄ ℓ
n(t)− Ef̄ ℓ

n(t)| > ϵ

)
≤ P

(
sup
x∈S

|f̄ ℓ
n(t)− f ℓ

n(xt)| > ϵ

)
+P

(
sup
x∈S

|Ef̄ ℓ
n(xt)− Ef̄ ℓ

n(t)| > ϵ

)
+P

(
sup
x∈S

|f̄ ℓ
n(xt)− Ef̄ ℓ

n(xt)| > ϵ

)
:= I1 + I2 + I3.

The first and the second term are treated similarly, since K is Lipschitzian in the con-
dition (K.3), we get

|f̄ ℓ
n(t)− f̄ ℓ

n(xt)| ≤
Cγβ

n

hβ+1
n

.

Choosing now γn = n− β+1
β , we find

I1 <
C

(nhn)β+1

and we can derive

I2 <
C

(nhn)β+1
.

Hence, the assumption (H.1) and the choice ϵ=ϵ0
√

lnn
nh2

n
give P

(
C

(nhn)β+1 >ϵ0
√

lnn
nh2

n

)
=0,

for n sufficiently large. Thus, we get

∑
n

P

(
I1 > ϵ0

√
lnn

nh2
n

)
< ∞ and

∑
n

P

(
I2 > ϵ0

√
lnn

nh2
n

)
< ∞.

Finally, for the term I3, we have

P

(
I3 > ϵ0

√
lnn

nh2
n

)
= P

(
max
i=1:λn

|f̄ ℓ
n(xi)− Ef̄ ℓ

n(xi)| > ϵ0

√
lnn

nh2
n

)
(10)

≤
λn∑
i=1

P

(
|f̄ ℓ

n(xi)− Ef̄ ℓ
n(xi)| > ϵ0

√
lnn

nh2
n

)
≤ λnn

−p,

thanks to the relation (7), with p =
2ϵ20
C . Using the fact that λn = n

β+1
β , we find, for

p > β+1
β + 1, ∑

n≥0

P

(
I3 > ϵ0

√
lnn

nh2
n

)
< ∞.
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P r o o f of Lemma 4.4
Taking into account hypotheses (F ′.1) and (F ′.2), along with condition (K.3), the

proof follows the same structure as that of Lemma 3.4. □

P r o o f of Lemma 4.7
The compactness of S permits us to write that

P

(
sup
x∈S

|f̃ ℓ
n(t)− Ef̃ ℓ

n(t)|) > ϵ

)
≤ P

(
sup
x∈S

|f̃ ℓ
n(t)− f̃ ℓ

n(xt)| > ϵ

)
+P

(
sup
x∈S

|Ef̃ ℓ
n(xt)− Ef̃ ℓ

n(t)| > ϵ

)
+P

(
sup
x∈S

|f̃ ℓ
n(xt)− Ef̃ ℓ

n(xt)| > ϵ

)
:= T1 + T2 + T3.

First, as K is Lipschitzian and G is decreasing, we have

|f̃ ℓ
n(t)− f̃ ℓ

n(xt)| ≤
Cγβ

n

hβ+1
n G(θ)

,

This, together with γn = n− β+1
β allows us to obtain

T1 <
C

(nhn)β+1
,

and we can also deduce that

T2 <
C

(nhn)β+1
.

Thus, the assumption (H.1) and the choice ϵ = ϵ′0

√
lnn
nh2

n
give

∑
n

P

(
T1 > ϵ′0

√
lnn

nh2
n

)
< ∞ and

∑
n

P

(
T2 > ϵ′0

√
lnn

nh2
n

)
< ∞, ϵ′0 > 0.

Finally, for the term T3, we proceed as in (10) and use the relation (8) instead of (7) to
obtain ∑

n≥0

P

(
T3 > ϵ′0

√
lnn

nh2
n

)
< ∞.

□

P r o o f of Lemma 4.8
Considering hypotheses (F ′.1) and (F ′.2), together with condition (K.3), the proof

proceeds in the same manner as in Lemma 3.7. □

P r o o f of Lemma 4.9
The proof is analogous to the one in Lemma 3.8. □
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