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DISCOUNTED MARKOV DECISION PROCESSES
WITH FUZZY COSTS

Salvador De-Jesús-Hernández, Hugo Cruz-Suárez,
and Raúl Montes-de-Oca

This article concerns a class of discounted Markov decision processes on Borel spaces where,
in contrast with the classical framework, the cost function C̃ is a fuzzy function of a trapezoidal
type, which is determined from a classical cost function C by applying an affine transformation
with fuzzy coefficients. Under certain conditions ensuring that the classical (or standard) model
with a cost function C has an optimal stationary policy fo with the optimal cost Vo, it is shown
that such a policy is also optimal for the fuzzy model with a cost function C̃, and that the
optimal fuzzy value Ṽo is obtained from Vo via the same transformation used to go from C to C̃.
And these results are obtained with respect to two cases: the max-order of the fuzzy numbers
and the average ranking order of the trapezoidal fuzzy numbers. Besides, a fuzzy version of the
classical linear-quadratic model without restrictions is presented.

Keywords: discounted Markov decision processes, trapezoidal fuzzy costs, max-order, av-
erage ranking

Classification: 90C40, 93C42

1. INTRODUCTION

In the realm of decision-making and uncertainty modeling, fuzzy set theory, introduced
by L. Zadeh (see [24]), has emerged as a powerful tool for handling imprecise and am-
biguous information. Fuzzy Theory provides a framework to represent and manipulate
uncertainty through the concept of fuzzy number (see [9, 23], and [24]). Fuzzy numbers,
in a certain sense, can be thought of as a generalization of real numbers along with their
order (Remarks 2.3, 2.10, and 2.11). In this way, fuzzy numbers have a structure that
can be applied to various problems. Over the years, this theory has found wide appli-
cations in various fields (see [8, 10, 13], and [25]). The concept of uncertainty modeled
by fuzzy numbers, combined with the uncertainty from probability theory, forms the
basis of the fuzzy random variables theory proposed by Puri and Ralescu (see [17] and
[18]). Unlike classical random variables, which are real-valued, fuzzy random variables
take values in the space of fuzzy numbers. This approach opens new ways for modeling
systems where uncertainties are not easily quantifiable in a traditional sense.
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On the other hand, Markov Decision Processes (MDPs) (see [12]) are stochastic mod-
els used to represent systems where outcomes are influenced by random factors and can
be altered through the selection of specific decision variables or controls. They are
valuable for modeling decision-making in uncertain environments. MDPs are applied
in various fields to optimize decision-making strategies over time under uncertainty and
require the development of decision-making policies that optimize a suitable optimiza-
tion criterion. The discounted MDP (see [12]), in particular, has garnered significant
attention due to its mathematical tractability and practical relevance in modeling deci-
sion problems in economics. This article deals with an infinite horizon discounted MDP,
(X,A, {A(x) : x ∈ X}, Q,C), where X and A represent the state and action spaces,
respectively, both being Borel spaces, {A(x) : x ∈ X} represents the collection of ad-
missible controls for the state x ∈ X, Q represents the transition law and C represents
the cost-per-stage function. In this article, the authors will refer to this model as the
standard discounted MDP.

If in the standard discounted MDP, the cost-per-stage function C is replaced by the
trapezoidal number C̃ (that depends on C), a discounted fuzzy MDP is obtained, whose
optimization criterion is the expected discounted total cost. The expectation taken in
the discounted total cost refers to fuzzy expectation. The solution to the discounted
cost optimization problem is considered concerning the order of the α-cuts of fuzzy
numbers, and its solution is given in terms of the corresponding standard discounted
MDP. It is essential to note that in the case where C is considered as a fuzzy number (see
Remark 2.3 below) the fuzzy problem reduces to the standard problem. In this sense, the
standard theory of discounted MDPs is extended. Besides, a similar analysis is presented
for the approach of the average ranking order on the trapezoidal fuzzy numbers. The
results obtained contribute to the growing body of literature on fuzzy decision-making
and provide valuable insights for practical application. By incorporating trapezoidal
fuzzy numbers into the cost-per-stage function, ambiguity is captured in decision-making
environments, offering insights into real-world scenarios where precise information may
be lacking or difficult to obtain.

Now, there are some comments on the previous works on fuzzy MDPs. Firstly, in
[4] and [6] fuzzy MDPs on discrete spaces and with objective functions other than the
total discounted cost are presented. Secondly, in [3, 7, 14, 15, 16], and [22], discounted
MDPs with different fuzzy characteristics have been provided, for which: (i) Both the
state and decision spaces are finite, or (ii) Both the state and the decision spaces are
compact sets, or (iii) The standard MDPs considered are deterministic. This excludes,
for instance, the fuzzy version of the linear-quadratic (LQ) model provided and solved
in Section 6 below, in which neither (i), (ii) nor (iii) holds. In contrast with the models
developed in [3, 7, 14, 15, 16], and [22], here, as it was already indicated, fuzzy extensions
of the standard discounted MDPs on Borel spaces are obtained which allows to deal with
MDPs general enough covering the cases (i), (ii) and (iii).

The organization of this article is as follows: In Section 2, the authors provide a
comprehensive overview of fuzzy theory. Section 3 discusses fuzzy random variables
and their expectation. Section 4 provides the fact that certain functions are fuzzy
random variables in the sense of Puri and Ralescu. In Section 5 an overview of Markov
decision processes is given, then fuzzy MDPs are presented, focusing on the discounted
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framework. Section 6 presents a fuzzy version of the LQ model. Finally, in Section 7
the conclusions are presented.

Notation 1. In the article, the following standard mathematical symbols will be distin-
guished in the fuzzy context with an asterix symbol: “ * ” (or sometimes the symbol “
** ”). That is, in the fuzzy context, “≤”, “+” and “

∑
”, will be denoted by “≤∗”, “+∗”

and “
∑∗

”, respectively. Similarly, in the fuzzy context, the expectation operator “E”,
the limit “lim” and the infimum “inf”, will be denoted by “E∗”, “lim∗” and “inf∗”,
respectively. Also, the notations: “≤∗∗” and “inf∗∗” are used for a second comparison
between trapezoidal fuzzy numbers referent to the ranking order. It is important to
mention that the product of a real number λ and a fuzzy number Υ will be simply
denoted as λΥ. Moreover, some special functions which appear as fuzzy quantities, say,
the cost function, the optimal value function, and so on, will be distinguished with a
“tilde”; for instance, the fuzzy cost function will be written as C̃.

2. PRELIMINARES ON FUZZY THEORY

The first part of this section presents some definitions and basic results about the fuzzy
set theory (see [9, 23], and [24]).

Basic definitions. Let Λ be a non-empty set. Then a fuzzy set Γ on Λ is defined
in terms of the membership function Γ′, which assigns to each element of Λ a real
value from the interval [0, 1]. The α-cut of Γ, denoted by Γα, is defined to be the set
Γα := {x ∈ Λ | Γ′(x) ≥ α} (0 < α ≤ 1) and Γ0 is the closure of {x ∈ Λ | Γ′(x) > 0}
denoted by cl{x ∈ Λ | Γ′(x) > 0}.

Definition 2.1. A fuzzy number Γ is a fuzzy set defined on the set of real numbers R
(i. e., taking Λ = R in the previous definition), which satisfies:

a) Γ′ is normal, i. e., there exists x0 ∈ R with Γ′(x0) = 1;

b) Γ′ is convex, i. e., Γα is convex for all α ∈ [0, 1];

c) Γ′ is upper semicontinuous;

d) Γ0 is compact.

The set of the fuzzy numbers will be denoted by F(R).

Definition 2.2. A fuzzy number Γ is called a trapezoidal fuzzy number if its membership
function has the following form:

Γ′(x) =



0 if x ≤ l
x−l
m−l if l < x ≤ m

1 if m < x ≤ n
p−x
p−n if n < x ≤ p

0 if p < x ,

(1)

where l, m, n and p are real numbers, with l < m ≤ n < p. A trapezoidal fuzzy number
is simply denoted by (l,m, n, p).
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Remark 2.3. a) The case in which m = n in (1) will be named a triangular fuzzy
number and it will be simply denoted as (l,m, p). And, considering the degenerated
case in which l = m = p in a triangular number, the fuzzy representation of the
real number m is obtained with the membership function given by:

m′(x) =

{
1 if x = m

0 if x ̸= m.
(2)

b) For a trapezoidal fuzzy number Γ = (l,m, n, p) the corresponding α-cuts are given
by Γα = [(m− l)α+ l, p− (p− n)α], α ∈ [0, 1] (see [21]).

Definition 2.4. Let Γ and Υ be fuzzy numbers. If “ ⋆ ” denotes the addition or the
scalar mutiplication, then it is defined as a fuzzy set on R, Γ ⋆ Υ, by the membership
function:

(Γ ⋆Υ)′(u) = sup
u=x⋆y

min{Γ′(x),Υ′(y)},

for all u ∈ R.

As a consequence of Definition 2.4, it is possible to obtain the following result for
trapezoidal fuzzy numbers (see [21]).

Lemma 2.5. If H = (bl, bm, bn, bp) and I = (dl, dm, dn, dp) are two trapezoidal fuzzy
numbers and letting λ be a positive number, then it follows that

a) λH = (λbl, λbm, λbn, λbp), and

b) H+∗ I = (bl+dl, bm+dm, bn+dn, bp+dp). And, it also holds: if {(btl , btm, btn, b
t
p) :

0 ≤ t ≤ N} is a finite set of N trapezoidal fuzzy numbers, then

N∑∗

t=0

(btl , b
t
m, btn, b

t
p) =

( N∑
t=0

btl ,

N∑
t=0

btm,

N∑
t=0

btn,

N∑
t=0

btp

)
.

Convergence. Let D denote the set of all closed bounded intervals on the real line R.
For Ψ = [bl, bu], Φ = [dl, du] ∈ D define

dH(Ψ,Φ) = max(|bl − dl| , |bu − du|). (3)

It is possible to verify that dH defines a metric on D and that (D, dH) is a complete metric
space (see [18]). Now, if η̃ ∈ F(R), then η̃α is a compact set because its membership
function is upper semicontinuous and has a compact support. Therefore, it is defined as
d̂ : F(R)× F(R) −→ R by

d̂(η̃, µ̃) = sup
α∈[0,1]

dH(η̃α, µ̃α), (4)

η̃, µ̃ ∈ F(R). It is straightforward to see that d̂ is a metric in F(R) (see [18]).
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Definition 2.6. A sequence {η̃t}∞t=0 of fuzzy numbers is said to be convergent to the

fuzzy number µ̃, written as lim∗
t−→∞ η̃t = µ̃ if and only if d̂(η̃t, µ̃) −→ 0 as t −→ ∞.

Lemma 2.7. (Puri and Ralescu [18]) The metric space (F(R), d̂) is complete.

Definition 2.8. Given a sequence of subsets {Wn}∞n=0 in R, the Kuratowski limits are
defined as follows:

1. Kuratowski lower limit, lim infK Wn :=
{
x ∈ R : lim sup

n→∞
inf

w∈Wn

{|x− w|} = 0
}
.

2. Kuratowski upper limit, lim supK Wn :=
{
x ∈ R : lim inf

n→∞
inf

w∈Wn

{|x− w|} = 0
}
.

A sequence of sets {Wn}∞n=0 is said to converge in the sense of Kuratowski to a set W
if lim infK Wn = lim supK Wn = W.

Remark 2.9. It is important to mention that in D, Kuratowski convergence and con-
vergence with the metric d̂ are equivalent ([1]). As a consequence, if a sequence of fuzzy

numbers {η̃(n)}∞n=0 converges in the d̂ metric to a fuzzy number η̃, then the sequences

of α-cuts {η̃(n)α }∞n=0 converge in the sense of Kuratowski to η̃α for all α ∈ [0, 1].

Orders. Now, for η̃, µ̃ ∈ F(R), with α-cuts η̃α = [bα, dα] and µ̃α = [fα, gα], α ∈ [0, 1],
respectively, define η̃ ⩽∗ µ̃ if and only if bα ≤ fα and dα ≤ gα for all α ∈ [0, 1] (see [11]).
It is not difficult to verify that the order “≤∗ ” is, in fact, a partial order on F(R).

Remark 2.10. Take w, z ∈ R, and let w̃ and z̃ be fuzzy numbers with membership
functions given by (w̃)′(x)=1, x = w and (w̃)′(x) = 0, x ̸= w, and (z̃)′(x)=1, x = z and
(z̃)′(x) = 0, x ̸= z. Then, it is easy to see that w̃ ⩽∗ z̃ is equivalent to w ≤ z.

Moreover, the following comparison between the trapezoidal fuzzy numbers (see [19]
and [20]) is also introduced. Let H = (bl, bm, bn, bp) be a trapezoidal fuzzy number.
Then its average ranking ℜ(H) is defined as

ℜ(H) =
bl + bm + bn + bp

4
.

Now, let H = (bl, bm, bn, bp) and I = (dl, dm, dn, dp) be trapezoidal fuzzy numbers.
Hence, it is defined that H ⩽∗∗ I if and only if

ℜ(H) ≤ ℜ(I). (5)

Remark 2.11. In relation to the last comparison between trapezoidal fuzzy numbers,
note that in the degenerate case for which in H: bl = bm = bn = bp = b and in I:
dl = dm = dn = dp = d, it results that H ⩽∗∗ I if and only if b ≤ d.
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3. FUZZY RANDOM VARIABLES

Definitions. Following [17] and [18], the next definitions on fuzzy random variables
and their expectations are established. For this, C(R) denotes the class of nonempty
compact subsets of R, and if (Ω1,A1) and (Ω2,A2) are measurable spaces, then A1⊗A2

denotes the corresponding product σ-algebra associated to the product space Ω1 × Ω2.
Also, B(R) denotes the Borel σ-algebra of R.

Definition 3.1. Let (Ω,A) be a measurable space and (R,B(R)) be the measurable

space of the set of real numbers. A function Ỹ : Ω −→ F(R) is said to be a fuzzy

random variable associated with (Ω,A), if the section Ỹα : Ω −→ C(R) which is the

α-level function defined by Ỹα(ω) = (Ỹ (ω))α for all ω ∈ Ω and α ∈ [0, 1] satisfies that

Gr(Ỹα) = {(ω, x) ∈ Ω× R | x ∈ (Ỹ (ω))α} ∈ A ⊗ B(R), for all α ∈ [0, 1].

Definition 3.2. Given a probability space (Ω,A,P), a fuzzy random variable Ỹ asso-
ciated to (Ω,A) is said to be an integrably bounded fuzzy random variable with respect
to (Ω,A,P) if there is a function h : Ω −→ R, h ∈ L1(Ω,A,P) such that |x| ≤ h(ω), for

all (ω, x) ∈ Ω × R with x ∈ (Ỹ (ω))0 := Ỹ0(ω).

Definition 3.3. Given an integrably bounded fuzzy random variable Ỹ associated with
respect to the probability space (Ω,A,P), then the fuzzy expected value of Ỹ in Aumann’s

sense is the unique fuzzy set of R, E∗[Ỹ ] such that for each α ∈ [0, 1]:(
E∗[Ỹ ]

)
α
=

{∫
Ω

f(ω) dP(ω) | f : Ω −→ R, f ∈ L1(Ω,A,P), f(ω) ∈ (Ỹ (ω))α a.s. [P]
}
.

Lemma 3.4. (Puri and Ralescu [18]) Let {X̃k}∞k=0 be a sequence of fuzzy random

variables and X̃ an integrably bounded fuzzy random variable, such that X̃k → X̃ a.s.
on Ω. If there exists h ≥ 0, h ∈ L1(Ω,A,P) such that for all k ≥ 0 and α ∈ [0, 1], it
holds that

sup
x∈(X̃k(ω))α

|x| ≤ h(ω) for all k ∈ N, ω ∈ Ω, and 0 < α ≤ 1, then E∗[X̃k] → E∗[X̃].

The last convergence is in the Kuratowski sense.

Lemma 3.5. Let (Ω,A,P) be a probability space, Y : Ω −→ R+ a non-negative random
variable with E[Y ] :=

∫
Ω
Y (ω) dP(ω) < ∞, and ∆ = (b1, b2, b3, b4) a trapezoidal fuzzy

number, where 0 < b1 ≤ b2 ≤ b3 ≤ b4. Then Ỹ = Y∆ is a fuzzy random variable and
E∗[Ỹ ] = E[Y ]∆.

P r o o f . For each n ∈ N let’s take the next partition of the image set of Y

J0
n =

[
0,

1

2n

]
, Jk

n =

(
k

2n
,
k + 1

2n

]
, k = 1, . . . , 22n − 1.
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Observe that

22n−1⋃
k=0

Jk
n =

[
0, 2n

]
.

If J22n

n =
(
2n,∞

)
is taken, then the collection

{
Jk
n

}22n
k=0

is a partition of the interval
[0,∞]. It is defined that

Hk
n = Y −1

(
Jk
n

)
∈ A, k = 1, . . . , 22n.

The measurability of the random variable Y implies that the collection
{
Hk

n

}22n
k=0

is
a partition of Ω and the following is true

0 ≤Y (ω) <
1

2n
, ω ∈ H0

n

k

2n
<Y
(
ω
)
≤ k + 1

2n
, ω ∈ Hk

n, k = 1, . . . , 22n − 1

Y
(
ω
)
> 2n, ω ∈ H22n

n .

Consider the following sequence of random variables

sn(ω) =

22n∑
k=0

k

2n
IHk

n
(ω), ω ∈ Ω.

Here, IHk
n
denotes the indicator function of the set Hk

n.

From the construction of the sequence {sn}∞n=0 it is obtained that

0 ≤ sn ≤ sn+1 ≤ Y, n ∈ N,

0 ≤ Y (ω)− sn(ω) ≤
1

2n
, ω ∈

22n−1⋃
k=0

Hk
n.

This means that the sequence of random variables {sn}∞n=0 converges pointwise to Y
and if the random variable Y is bounded, then it also converges uniformly.

Consider the functions s̃n = ∆sn. Take ∆α =
[
q(α), r(α)

]
, where q(α) = α(b2−b1)+b1

and r(α) = b4 − α(b4 − b3). Since sn(ω) ≥ 0 for all ω ∈ Ω and for all n ∈ N, then
s̃n(ω) = ∆sn(ω) =

(
sn(ω)b1, sn(ω)b2, sn(ω)b3, sn(ω)b4

)
is a trapezoidal fuzzy number

with membership function µs̃n(ω)(x) ([21]).

µs̃n(ω)(x) =


x−b1Y (ω)

sn(ω)(b2−b1)
if x ∈

[
b1sn(ω), b2sn(ω)

)
1 if x ∈

[
b2sn(ω), b3sn(ω)

)
b4sn(ω)−x

sn(ω)(b4−b3)
if x ∈

[
b3sn(ω), b4sn(ω)

)
0 otherwise.
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Let’s prove that s̃n is a fuzzy random variable:{
(ω, x) ∈ Ω× R : x ∈

(
s̃n
)
α
(ω)
}

=
{
(ω, x) ∈ Ω× R : x ∈ sn(ω)

[
q(α), r(α)

]}
=

22n⋃
k=0

({
sn =

k

2n

}
× k

2n
[
q(α), r(α)

])
∈ A⊗ B(R).

Now let’s verify that the random variables s̃n are integrably bounded. Note that(
s̃n
)
0
(ω) = sn(ω)

[
b1, b4

]
. The authors define the function h : Ω −→ R, as h(ω) =

Y (ω)b4. From the construction of the random variables sn it is obtained that sn(ω) ≤
Y (ω) for all ω ∈ Ω and with this it is easy to see that |x| ≤ h(ω) for all ω ∈ Ω and
x ∈ sn(ω)[b1, b4]. It is also known that E

[
h
]
= b4E

[
Y
]
< ∞, then it can be concluded

that the random variable s̃n is integrably bounded. It is almost immediate to see that
E∗[s̃n] = E

[
sn
](
b1, b2, b3, b4

)
.

Now consider the fuzzy number Ỹ (ω) = Y (ω)∆, ω ∈ Ω. Since Y (ω) ≥ 0 for all ω ∈ Ω,

it holds that Ỹ (ω) =
(
Y (ω)b1, Y (ω)b2, Y (ω)b3, Y (ω)b4

)
. It is also known that Ỹ (ω) is a

trapezoidal number, whose membership function µỸ (ω) is given by

µỸ (ω)(x) =


x−b1Y (ω)

Y (ω)(b2−b1)
if x ∈

[
b1Y (ω), b2Y (ω)

)
1 if x ∈

[
b2Y (ω), b3Y (ω)

)
b4Y (ω)−x

Y (ω)(b4−b3)
if x ∈

[
b3Y (ω), b4Y (ω)

)
0 otherwise.

From this it is easy to see that its α-cuts have the following form(
Ỹ
)
α
(ω) =

[
αY (ω)(b2 − b1) + b1Y (ω), b4Y (ω)− αY (ω)(b4 − b3)

]
= Y (ω)

[
α(b2 − b1) + b1, b4 − α(b4 − b3)

]
= Y (ω)

(
∆
)
α
.

If the function g is defined as g : Ω −→ R, g(ω) = b4Y (ω), then |x| ≤ g(ω) for all

(ω, x) ∈ Ω×R, x ∈ Y (ω)[b1, b4]. Since E
[
g
]
< ∞ it yields that Ỹ is integrably bounded.

Let’s see that the sequence of fuzzy random variables {s̃n}∞n=0 = {sn(b1, b2, b3, b4)}∞n=0

converges to the fuzzy number Ỹ = Y (b1, b2, b3, b4) with the metric d̂.

lim
n→∞

d̂
(
s̃n, Ỹ

)
= lim

n→∞
sup

α∈[0,1]

(
dH
(
(s̃n)α, (Ỹ )α

))
= lim

n→∞
sup

α∈[0,1]

(
dH

(
sn(ω)

[
q(α), r(α)

]
, Y (ω)

[
q(α), r(α

]))

= lim
n→∞

sup
α∈[0,1]

(
max

{
q(α)

∣∣sn(ω)− Y (ω)
∣∣, r(α)∣∣sn(ω)− Y (ω)

∣∣})
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= lim
n→∞

sup
α∈[0,1]

(
r(α)

∣∣sn(ω)− Y (ω)
∣∣)

= lim
n→∞

b4
∣∣sn(ω)− Y (ω)

∣∣
= 0.

Next, it will be proved that Ỹ is a fuzzy random variable. Let α ∈ [0, 1] and consider
the function φα : Ω × R −→ R, defined as φα(ω, x) = infy∈Ỹα(ω) |x − y|. This function

represents the distance from the closed set Ỹα(ω) to the point x ∈ R. If ω is fixed, then
the map x 7→ φα(ω, x) is continuous: let y0 ∈ R and ε > 0 be an arbitrary number.

By the definition of infimum, there exists z ∈ Ỹα(ω) such that |y0 − z| < φα(ω, y0) +
ε
2 .

For any x ∈ R, it is obtained that φα(ω, x) ≤ |x − z|, then φα(ω, x) − φα(ω, y0) ≤
|x− z|−φα(ω, y0). By the triangle inequality, |x− z| ≤ |x−y0|+ |y0− z|. Using the last
two inequalities it is gotten that φα(ω, x)−φα(ω, y0) ≤ (|x− y0|+ |y0 − z|)−φα(ω, y0).
Since |y0−z| < φα(ω, y0)+

ε
2 , it follows that φα(ω, x)−φα(ω, y0) ≤ |x−y0|+ ε

2 . Similarly,
it is possible to find that φα(ω, y0)−φα(ω, x) ≤ |x−y0|+ ε

2 . Thus, |φα(ω, x)−φα(ω, y0)| ≤
|x−y0|+ ε

2 . To prove continuity, let’s choose δ = ε
2 . On the other hand, if x ∈ R is fixed,

the map ω 7→ φα(ω, x) is A-measurable: three cases are considered based on the value
of x relative to the set Y (ω)[q(α), r(α)]. If x ≤ Y (ω)q(α), φα(ω, x) = Y (ω)q(α) − x
is clearly a measurable function. If Y (ω)q(α) ≤ x ≤ Y (ω)r(α), it is obtained that
φα(ω, x) = 0. Thus, {ω ∈ Ω | φα(ω, x) = 0} = {ω ∈ Ω | Y (ω)q(α) ≤ x ≤ Y (ω)r(α)} =
{ω ∈ Ω | x

r(α) ≤ Y (ω) ≤ x
q(α)} ∈ A. If x > Y (ω)r(α), φα(ω, x) = x − Y (ω)r(α) which

is a measurable function. Such functions are known as Carathéodory functions (see [1],
p. 311), and Lemma 8.2.6 in [1] guarantees that the function φα is A⊗B(R)-measurable.
This implies that{

(ω, x) ∈ Ω× R : φα(ω, x) = 0
}

=
{
(ω, x) ∈ Ω×X : x ∈

(
Ỹ
)
α
(ω)
}

=
{
(ω, x) ∈ Ω×X : x ∈ Y (ω)

[
q(α), r(α)

]}
∈ A⊗ B(R).

This proves that Ỹ is a fuzzy random variable. Consider the fuzzy number Ũ =
E
[
Y
]
∆ whose α-cuts are given by

E
(
Y
)[
q(α), r(α)

]
, for all α ∈ [0, 1].

To guarantee that E∗[s̃n] −−−−→
n→∞

Ũ , the monotone convergence theorem is used:

lim
n→∞

d̂
(
E∗[s̃n], Ũ) = lim

n→∞
sup

α∈[0,1]

(
dH

((
E∗[s̃n]

)
α
, (Ũ)α

))

= lim
n→∞

sup
α∈[0,1]

(
dH

(
E
[
sn
][
q(α), r(α)

]
,E[Y ]

[
q(α), r(α

]))
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= lim
n→∞

sup
α∈[0,1]

(
max

{
q(α)

∣∣∣E[sn]− E[Y ]
∣∣∣, r(α)∣∣∣E[sn]− E[Y ]

∣∣∣})

= lim
n→∞

sup
α∈[0,1]

(
r(α)

∣∣E[sn]− E[Y ]
∣∣)

= lim
n→∞

b4
∣∣E[sn]− E[Y ]

∣∣
=0.

From Lemma 3.4 and Remark 2.9 the following implication yields:

E∗[Ỹ ] = lim
n→∞

E∗[s̃n] = E[Y ]∆.

□

4. MEASURABILITY OF A FUZZY AFFINE TRANSFORMATION

The goal of this section is to prove measurability for the case when Ỹ = ∆1Y +∆2, where

∆j =
(
b
(j)
1 , b

(j)
2 , b

(j)
3 , b

(j)
4

)
, 0 < b

(j)
1 ≤ b

(j)
2 ≤ b

(j)
3 ≤ b

(j)
4 , j = 1, 2, are two trapezoidal fuzzy

numbers with α-cuts given by
(
∆j

)
α
=
[
qj(α), rj(α)

]
, qj(α) = α(b

(j)
2 − b

(j)
1 ) + b

(j)
1 and

rj(α) = b
(j)
4 −α(b

(j)
4 − b

(j)
3 ). In the same way as in the previous section Y : Ω −→ [0,∞]

will represent a random variable with E
[
Y
]
< ∞,

{
sn
}∞
n=0

will represent a sequence
of simple, non-negative non-decreasing random variables that converges pointwise to Y
and

{
s̃n
}∞
n=0

, where s̃n = ∆1sn, will represent the sequence of fuzzy random variables

that converges with the metric d̂ to the fuzzy random variable ∆1Y, which satisfy that
E∗[s̃n] = ∆1E

[
sn
]
.

Lemma 4.1. Let (Ω,A,P) be a probability space, Y : Ω −→ R+ a non-negative random

variable with E[Y ] < ∞, and ∆j =
(
b
(j)
1 , b

(j)
2 , b

(j)
3 , b

(j)
4

)
where 0 < b

(j)
1 ≤ b

(j)
2 ≤ b

(j)
3 ≤

b
(j)
4 , j = 1, 2, two trapezoidal fuzzy numbers. Then Ỹ = Y∆1 +∆2 is a fuzzy random

variable and E∗[Ỹ ] = E[Y ]∆1 +∆2.

P r o o f . Consider the sequence of fuzzy numbers ũn = ∆1sn +∆2. If a number is the
sum of two fuzzy numbers, then their α-cuts are the sum of the respective α-cuts ([21]),
so that (

ũn(ω)
)
α
=
[
q1(α)sn(ω) + q2(α), r1(α)sn(ω) + r2(α)

]
.

Observe that{
(ω, x) ∈ Ω×X : x ∈

(
ũn(ω)

)
α

}
=

{
(ω, x) ∈ Ω×X : x ∈

[
q1(α)sn(ω) + q2(α), r1(α)sn(ω) + r2(α)

]}
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=

22n⋃
k=0

({
sn =

k

2n

}
×
[
q1(α)

k

2n
+ q2(α), r1(α)

k

2n
+ r2(α)

])
∈ A⊗ B(R).

The latter proves that ũn is a fuzzy random variable. Consider the function h(ω) =

b
(1)
4 Y (ω) + b

(2)
4 with E

[
h
]
< ∞. Since sn(ω) ≤ Y (ω) for all ω ∈ Ω and n ∈ N, then

x ≤ h(ω) for all ω ∈ Ω, x ∈
(
ũn(ω)

)
α
, and α ∈ [0, 1]. This implies that the ran-

dom variables ũn are integrably bounded. It is almost immediate to obtain that
E∗[ũn

]
= ∆1E

[
Y
]
+∆2.

Observe that (
Ỹ (ω)

)
α
=
[
Y (ω)q1(α) + q2(α), Y (ω)r1(α) + r2(α)

]
.

The authors want to prove that ∆1Y + ∆2 is a fuzzy random variable. For this
purpose the same procedure will be followed as in the proof of the Lemma 3.5. Let α ∈
[0, 1] and consider the function φα : Ω×R −→ R, defined by φα(ω, x) = infy∈Ỹα(ω) |x−y|.
This function measures the distance from the closed set Ỹα(ω) to the point x ∈ R. It is a
Carathéodory function, meaning that if ω is fixed, the map x 7→ φα(ω, x) is continuous

because Ỹα(ω) is closed; and if x ∈ R is fixed, the map ω 7→ φα(ω, x) is A-measurable.
Applying Lemma 8.2.6 from [1], it is ensured that φα is A ⊗ B(R)-measurable. This
implies that{

(ω, x) ∈ Ω× R : φα(ω, x) = 0
}
=
{
(ω, x) ∈ Ω×X : x ∈

(
Ỹ
)
α
(ω)
}

=
{
(ω, x) ∈ Ω×X : x ∈

[
Y (ω)q1(α) + q2(α), Y (ω)r1(α) + r2(α)

]}
∈ A⊗ B(R).

The latter establishes that Ỹ is a fuzzy random variable. Next, it will be proved that
the sequence of fuzzy random variables ũn = sn∆1 +∆2 converges to Ỹ = Y∆1 +∆2

with the metric d̂.

lim
n→∞

d̂
(
ũn, Ỹ

)
= lim

n→∞
sup

α∈[0,1]

(
dH
(
(ũn)α, (Ỹ )α

))
= lim

n→∞
sup

α∈[0,1]

(
max

{
q1(α)

∣∣sn(ω)− Y (ω)
∣∣, r1(α)∣∣sn(ω)− Y (ω)

∣∣})

= lim
n→∞

sup
α∈[0,1]

(
r1(α)

∣∣sn(ω)− Y (ω)
∣∣)

= lim
n→∞

b
(1)
4

∣∣sn(ω)− Y (ω)
∣∣

= 0.

Again using the function h : Ω −→ R, h(ω) = b
(1)
4 Y (ω) + b

(2)
4 it can be verified that

Ỹ is integrably bounded. Consider the fuzzy number W̃ = E
[
Y
]
∆1 + ∆2 with α-cuts

given by [
E
[
Y
]
q1(α) + q2(α) , E

[
Y
]
r1(α) + r2(α)

]
.



Discounted MDPs on Borel spaces with fuzzy costs 69

From the monotone convergence theorem it can be guaranteed that E∗[ũn

]
−−−−→
n→∞

W̃ .

Now,

lim
n→∞

d̂
(
E∗[ũn

]
, W̃
)

= lim
n→∞

sup
α∈[0,1]

(
dH

((
E∗[ũn]

)
α
, (W̃ )α

))

= lim
n→∞

sup
α∈[0,1]

(
max

{
q1(α)

∣∣∣E[sn]− E[Y ]
∣∣∣, s1(α)∣∣∣E[sn]− E[Y ]

∣∣∣})

= lim
n→∞

sup
α∈[0,1]

(
s1(α)

∣∣E[sn]− E[Y ]
∣∣)

= lim
n→∞

b
(1)
4

∣∣E[sn]− E[Y ]
∣∣

=0.

By Lemma 3.5 and the Remark 2.9, it can be obtained that

E∗[Ỹ ] = lim
n→∞

E∗[s̃n] = E
[
Y
]
∆1 +∆2. (6)

□

5. DISCOUNTED MARKOV DECISION PROCESSES

5.1. Markov decision processes (MDPs)

In this subsection, the terminology on MDPs presented in [12] is followed. Consider
the crisp Markov decision model denoted by C := (X,A, {A(x) : x ∈ X}, Q,C). Here,
X represents the state space, and A denotes the action space, both considered as Borel
spaces. The family {A(x) : x ∈ X} comprises nonempty measurable subsets A(x) of A,
representing the feasible actions when the system is in state x ∈ X. Furthermore, let
K := {(x, a)|x ∈ X, a ∈ A(x)} denote the set of feasible state-action pairs, assumed to
be a measurable subset of X ×A. The transition law Q is characterized as a stochastic
kernel on X given K, i. e. Q satisfies the following conditions: Q(·|x, a) is a probability
measure on X for each fixed (x, a) ∈ K, and Q(W |·) is a measurable function on K for
each fixed W ∈ B(X), where B(X) is the Borel σ-algebra of X. Finally, C : K → R is
a measurable function called the cost-per-stage function. The dynamics of the system
unfold as follows: at time t, t ∈ 0, 1, 2, . . ., let the system occupy state xt = x ∈ X. At
this point, a decision maker or controller selects an action at = a ∈ A(x). Subsequently, a
cost C(x, a) is accrued, and the system transitions to a new state xt+1 ∈ X in accordance
with the transition law Q(·|x, a). Following this transition, a new decision is made,
initiating a recursive process. The following structural assumption will be enforced (see
Assumption 4.2.1, p. 46 in [12]).

Assumption 5.1. a) The one-stage cost C is lower semicontinuous, nonnegative and
inf-compact on K, i. e. the set {a ∈ A(x) : C(x, a) ≤ λ} is compact for every x ∈ X
and λ ∈ R.
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b) The transition law Q is strongly continuous.

In the model C outlined previously, the admissible history of a Markov Decision
Process (MDP) up to the nth transition, denoted as hn, is defined for each n = 0, 1, . . . .
This history is constructed as hn = (x0, a0, . . . , xn−1, an−1, xn), where (xk, ak) ∈ K for
k = 0, 1, . . . , n − 1, and xn ∈ X. A control policy π = πn is delineated as a sequence
of stochastic kernels on A given Hn, adhering to the constraint πn(A(xn)|hn) = 1 for
every hn ∈ Hn, n = 0, 1, . . . . The collection of all policies is denoted by Π. Let F denote
the collection of all measurable functions f : X → A, ensuring that f(x) ∈ A(x) holds
for every x ∈ X. Consequently, a Markov policy is a sequence {ft} such that ft ∈ F,
for t = 0, 1, . . . . In particular, a Markov policy π = {ft} is said to be stationary if ft
is independent of t, i. e. ft = f ∈ F, for all t = 0, 1, . . . . In such instances, ft is simply
denoted as f , and F is naturally identified as the set of stationary policies.

Consider the measurable space (Ω,A), comprising the canonical sample space Ω :=
(X×A)∞ and its corresponding product σ-algebra A. Here, elements of Ω take the form
of sequences ω = (x0, a0, x1, a1, . . . ), where xt ∈ X and at ∈ A for all t = 0, 1, 2, . . . .
Given that the initial state x0 = x ∈ X and the policy π ∈ Π used to drive the system,
via the theorem of Ionescu-Tulcea (see C.10 Proposition in [12]), there is a unique
probability measure Pπ

x on (Ω,A) which is supported on H∞, i. e., Pπ
x(H∞) = 1. The

stochastic process (Ω,A,Pπ
x , {xt}) is called a discrete-time Markov decision process. The

expectation operator concerning Pπ
x is denoted by Ex,π.

Now, the optimal control problem associated with the crisp Markov Decision model
C will be introduced. For this purpose, consider π ∈ Π and x ∈ X, and define the total
expected discounted cost as follows

v(x, π) := Ex,π

[ ∞∑
t=0

βtC(xt, at)

]
, (7)

where β ∈ (0, 1) represents a predetermined discount factor.
Consider the performance criterion (7), then the optimal control problem consists of

determining a policy πo, such that

v (x, πo) = inf
π∈Π

v(x, π), (8)

x ∈ X, and πo will be called an optimal policy. The function Vo defined by

Vo(x) := inf
π∈Π

v(x, π),

x ∈ X, will be called the optimal value function.
The following assumption is necessary to guarantee the finiteness property of the

optimal value function (see Assumption 4.2.2, p. 46 in [12]).

Assumption 5.2. There exists a policy π ∈ Π such that v(x, π) < ∞ for each x ∈ X.

Now, the authors are poised to introduce the following result, which ensures the
existence of stationary optimal policies. Moreover, it outlines a dynamic programming
procedure for determining such a policy and its corresponding optimal value function
(see Theorem 4.2.3 in [12]).
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Theorem 5.3. Under Assumptions 5.1 and 5.2, the following statements hold.

a) The optimal value function Vo satisfies the next dynamic programming equation
for each x ∈ X

Vo(x) = min
a∈A(x)

[
C(x, a) + β

∫
X

Vo(y)Q(dy|x, a)
]
. (9)

b) There exists fo ∈ F such that fo(x) ∈ A(x) attains the minimum in (9), i. e. for
each x ∈ X

Vo(x) = C(x, fo(x)) + β

∫
X

Vo(y)Q(dy|x, fo(x)), (10)

and fo is optimal.

In the following section, this result will be applied to characterize the optimal policy
for the fuzzy control problem.

5.2. Fuzzy MDPs

Let C := (X,A, {A(x) : x ∈ X}, Q,C) denote the model introduced in the previous
subsection. In this subsection, the fuzzy version of this model will be defined. To
accomplish this, the following conditions on the fuzzy cost function will be considered.

Assumption 5.4. Let B,D,F,G,B1, D1, F1, and G1 be nonnegative real numbers such
that B < D ≤ F < G and B1 < D1 ≤ F1 < G1. It will be assumed that

C̃(x, a) = (B,D,F,G)C(x, a) + ∗ (B1, D1, F1, G1)

= (BC(x, a) +B1, DC(x, a) +D1, FC(x, a) + F1, GC(x, a) +G1) ,

x ∈ X, a ∈ A(x).

Thus, the fuzzy Markov decision model is given by M := (X,A, {A(x) : x ∈ X} , Q, C̃).
As a consequence of Lemma 4.1, the following result holds.

Lemma 5.5. Suppose that Assumption 5.4 is valid. Take x ∈ X, π ∈ Π, t ≥ 0, and
suppose that Ex,π [C(xt, at)] < ∞. Then, C̃(xt, at) is a fuzzy random variable and

E∗
x,π

[
C̃(xt, at)

]
= Ex,π [C(xt, at)] (B,D,F,G) +∗ (B1, D1, F1, G1).

Definition 5.6. Let M := (X,A, {A(x) : x ∈ X} , Q, C̃) be the fuzzy Markov decision
model. For each policy π ∈ Π and state x ∈ X, it is defined that

ṽT (x, π) :=

T−1∑∗

t=0

βtE∗
x,π

[
C̃(xt, at)

]
, (11)

where T is a positive integer and β ∈ (0, 1) is a predetermined discount factor, and it is

assumed that Ex,π [C(xt, at)] < ∞, t = 0, 1, . . . , T . ṼT is called the fuzzy total expected
discounted cost with finite horizon T .
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Remark 5.7. Observe that ṽT in (11) is well-defined due to the arguments exposed in
Section 4 and Lemma 2.5. Moreover, the following equality holds for each x ∈ X and
π ∈ Π:

ṽT (x, π) = (BvT (x, π) +B1
1− βT

1− β
,DvT (x, π) +D1

1− βT

1− β
,

FvT (x, π) + F1
1− βT

1− β
,GvT (x, π) +G1

1− βT

1− β
),

as a consequence of (6), where vT (x, π) is the crisp total expected discounted cost with
finite horizon T , i. e.

vT (x, π) := Ex,π

[
T−1∑
t=0

βtC(xt, at)

]
. (12)

Notice that for each x ∈ X and π ∈ Π,

v(x, π) = lim
T→∞

VT (x, π). (13)

Lemma 5.8. Suppose that Assumption 5.4 holds. Then, for each x ∈ X and π ∈ Π
such that v(x, π) < ∞, the fuzzy sequence {ṽT (x, π) : T ∈ {0, 1, . . . }} converges (see
Definition 2.6) to

ṽ(x, π) := (Bv(x, π), Dv(x, π), Fv(x, π), Gv(x, π)) +∗ 1

1− β
(B1, D1, F1, G1)

=

(
Bv(x, π) +

B1

1− β
,Dv(x, π) +

D1

1− β
, Fv(x, π) +

F1

1− β
,Gv(x, π) +

G1

1− β

)
.

P r o o f . Let π ∈ Π, x ∈ X and α ∈ [0, 1] be fixed. To simplify the notation in this
proof, write v = v(x, π) and vT = vT (x, π). Then, the α-cut of ṽT (x, π) (see Remark
5.7) is given by

∆T
α = [qT (α), rT (α)], (14)

where

qT (α) = B(1− α)vT +B1(1− α)
1− βT

1− β
+ αDvT + αD1

1− βT

1− β

and

rT (α) = G(1− α)vT +G1(1− α)
1− βT

1− β
+ αFvT + αF1

1− βT

1− β
.

In a similar way, the α-cut of ṽ(x, π) is

∆α = [B(1− α)v +
B1(1− α) + αD1

1− β
+ αDv,G(1− α)v +

G1(1− α) + αF1

1− β
+ αFv].
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Then, applying (3) and due to the identity max(c, b) = (c+ b+ |b− c|)/2 with b, c ∈ R,
it yields that

dH(∆T
α ,∆α) = H(1− α)(v − vT ) +H1(1− α)

βT

1− β
+ αF (v − vT ) + F1α

βT

1− β
.

Consequently, through (4),

d̂(ṽT , ṽ) = sup
α∈[0,1]

dH(∆T
α ,∆α)

= H(V − VT ) +H1
βT

1− β
+ F (V − VT ) + F1

βT

1− β
.

(15)

Then, when T −→ ∞ in (15), using (13) and the fact that βT −→ 0 when T −→ ∞, it
concludes that

lim
T−→∞

d̂(ṽT , ṽ) = 0.

Therefore, since π and x are arbitrary, the result follows. □

Let M = (X,A, {A(x) : x ∈ X}, Q, C̃) be the fuzzy Markov model. For each policy
π ∈ Π and state x ∈ X such that v(x, π) < ∞, the fuzzy total expected discounted cost
is defined as follows:

ṽ(π, x) =

∞∑∗

t=0

βtE∗
x,π

[
C̃(xt, at)

]
.

Now, the corresponding fuzzy optimal control problem with respect to the max-order is
as follows: determine πo ∈ Π (if it exists) such that:

ṽ(x, π) ≤∗ ṽ(x, πo) (16)

for all x ∈ X and π ∈ Π. In this case, it is possible to write

ṽ(x, πo) = inf
π∈Π

∗ṽ(x, π),

x ∈ X, and it is said that πo is optimal with respect to the max-order. Moreover, the
function Ṽo(x) = ṽ(x, πo), x ∈ X, will be called the optimal fuzzy cost function.

Remark 5.9. Observe that when in the decision model C̃(x, a) has a membership func-
tion given by:

(C̃(x, a))′(x) =

{
1 if z = C(x, a)

0 if z ̸= C(x, a),
(17)

for all x ∈ X and a ∈ A(x), and considering Remark 2.10, it follows that the fuzzy
optimal control problem given in (16) is reduced to the optimal control problem described
in (8).
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Theorem 5.10. Suppose that Assumptions 5.1, 5.2, and 5.4 hold. Then, the following
statements hold.

a) The optimal policy of the fuzzy decision problem coincides with the optimal policy
of the crisp control problem fo (see Theorem 5.3).

b) The optimal fuzzy cost function is given by

Ṽo(x) = (B,D,F,G) v(x, fo) +
∗ 1

1− β
(B1, D1, F1, G1) (18)

x ∈ X.

P r o o f . Set fixed π ∈ Π, x ∈ X, and α ∈ [0, 1]. In order to simplify the exposition of
the demonstration, consider the following notation:

θ1 =
B1

1− β
, θ2 =

D1

1− β
, θ3 =

F1

1− β
, θ4 =

G1

1− β
,

and
v = v(π, x).

Then the α-cut ∆α of ṽ(π, x) is given by

∆α = [(1− α)(Dv + θ1) + α(Dv + θ2), (1− α)(Gv + θ4) + α(Fv + θ3)].

Now, since v ≥ v(x, fo), the left side of the interval ∆α satisfies

(1− α)(Bv + θ1) + α(Dv + θ2) ≥ (1− α)(Bv(x, fo) + θ1) + α(Dv(x, fo) + θ2),

and, similarly, the right side of the interval ∆α fulfill

(1− α)(Gv + θ4) + α(Fv + θ3) ≥ (1− α)(Gv(x, fo) + θ4) + α(Fv(x, fo) + θ3).

Since

[(1−α)(Bv(x, fo)+ θ1)+α(Dv(x, fo)+ θ2), (1−α)(Gv(x, fo)+ θ4)+α(Fv(x, fo)+ θ3)],

is the α-cut of ṽ(x, fo) and as π, x and α are arbitrary, it results that

ṽ(x, fo) ≤∗ ṽ(x, π).

Then, fo is an optimal policy for the fuzzy control problem, see (16). Finally, (21) is a
direct consequence of Lemma 5.8. Therefore, Theorem 5.10 follows. □

Similarly, fuzzy optimal policies can be defined with respect to ranking comparisons.
Thus, the fuzzy optimal problem with respect to the ranking order ranking is as follows:
Determine πr

o ∈ Π (if it exists) such that:

ṽ(x, πr
o) ≤∗∗ ṽ(x, π) (19)

for all x ∈ X, and π ∈ Π. In this case, it is possible to write

ṽ(x, πr
o) = inf

π∈Π

∗∗ṽ(x, π), (20)

x ∈ X, and it is said that πr
o is optimal. Moreover, the function Ṽ r

o (x) = ṽ(x, πr
o),

x ∈ X, will be called the optimal fuzzy cost function with respect to the ranking.
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Remark 5.11. If in Assumption 5.4 the degenerated case is considered in which B =
D = F = G = 1 and B1 = D1 = F1 = G1 = 0, it results that

C̃(x, a) = C(x, a)1̃

for all x ∈ X and a ∈ A(x), then

ṽ(x, π) = v(x, π)1̃

and that
ℜ(ṽ(x, π)) = v(x, π)

for all π ∈ Π and x ∈ X. It follows that the optimal control problem described in (19)
is reduced to the standard optimal control problem given in (8).

Theorem 5.12. Under assumptions 5.1, 5.2, and 5.4, the following statements hold.

a) The optimal policy of the fuzzy decision problem is fo (see Theorem 5.3).

b) The optimal fuzzy cost function is given by

Ṽo(x) = (B,D,F,G) v(x, fo) +
∗ 1

1− β
(B1, D1, F1, G1) , x ∈ X. (21)

P r o o f . Fix π ∈ Π and x ∈ X. Then, it is obtained that

ℜ(ṽ(x, π)) = v(x, π)ℜ((B,D,E, F )) + ℜ((B1, D1, E1, F1)).

Now, since v(x, π) ≥ v(x, fo) ≥ 0, it follows that

ℜ(ṽ(x, π)) ≥ v(x, fo)ℜ((B,D,E, F )) + ℜ((B1, D1, E1, F1)),

thus,
ℜ(ṽ(x, π)) ≥ ℜ((ṽ(x, fo)).

Since π and x are arbitrary, fo is optimal with respect to the ranking comparison
(see (19), (20)). Therefore, Theorem 5.12 follows from Lemma 5.8. □

6. A FUZZY VERSION OF THE LINEAR-QUADRATIC MODEL

In this section, the results presented using a linear system with quadratic one-stage cost
will be illustrated. This example is a variation of the standard linear-quadratic (LQ)
problem (see [2]). Of course, the standard LQ problem could also be solved using the
same technique.

Let X = A = A(x) = R, x ∈ X. The cost function and the dynamic of the system
are given by

C(x, a) = x2 + a2 + ax,

xt+1 = xt + at + ξt,

t = 0, 1, 2, . . . , (x, a) ∈ K.
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The random variables ξt, t = 0, 1, . . ., are assumed to be i.i.d. with common continu-
ous density Θ, with zero mean and finite variance σ2. In this case, the transition law is
induced as follows

Q(W |x, a) =
∫
W

Θ(s− x− a) ds,

for W ∈ B(X) and (x, a) ∈ K.

Assumptions 5.1 and 5.2 are thoroughly demonstrated in [5]. Additionally, the proof
of the following result can also be found in [5].

Lemma 6.1. The optimal value function and the optimal policy for the crisp optimal
control problem are given by

Vo(x) = Kx2 + L,

fLQ
o (x) = −1 + 2βK

2 + 2βK
x,

respectively, where x ∈ X, L = [βK/(1 − β)]σ2 and K is the positive solution of the
Ricatti’s equation:

4βK2 + (4− 4β)K − 3 = 0.

Suppose that the authors aim to model the cost to be approximately within the
interval [C(x, a)+ 2ϵ, C(x, a)+ 3ϵ], for a given positive number ϵ and (x, a) ∈ K. In this
scenario, it is possible to consider the following cost function:

C̃(x, a) = (1/2, 1, 1, 2)C(x, a) +∗ (ε, 2ε, 3ε, 4ε)

=

(
1

2
C(x, a) + ε, C(x, a) + 2ε, C(x, a) + 3ε, 2C(x, a) + 4ε

)
.

(22)

The fuzzy cost function in (22) satisfies Assumption 5.4, then the following statements
hold:

a) fLQ
o represents the fuzzy optimal policy in terms of the max-order, see Theorem
5.10.

b) fLQ
o is the fuzzy optimal policy for ranking order, see Theorem 5.12.

c) The optimal fuzzy cost function is given by:

Ṽo(x) =

(
1

2
Vo(x) + ε, Vo(x) + 2ε, Vo(x) + 3ε, Vo(x) + 4ε

)
.

x ∈ X.
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7. CONCLUSIONS

MDPs on Borel spaces with trapezoidal fuzzy costs and discounted objective functions
were analyzed. These trapezoidal costs model the fact that the cost of a standard
MDP is approximately in a certain interval. The optimal solutions for the discounted
MDPs studied have been obtained, and these optimal solutions have been related to
optimal solutions of suitable classical MDPs. The results presented extend the classical
discounted MDPs theory in two cases which allows to consider, under general state and
action spaces: (i) fuzzy discounted MDPs with respect to the max-order, and (ii) fuzzy
discounted MDPs with respect to the average ranking order.
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