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Abstract. We investigate the relationship between the space Z(R, T ), defined as the
largest closed subset of a ring T with respect to a countable topology, and the classical
prime spectrum Spect(R) of a subring R. We explore the topological properties of Z(R, T )
and establish connections with Spect(R) under certain conditions.
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1. Introduction

The motivation for studying the space of collection of zero-dimensional subrings

of a given ring has historical roots in the influential work of Gilmer (see [7], [6], [8]).

Additionally, Hochster’s research finds its origins in the topological study of the

spectrum of a commutative ring (see [9]), which is a fundamental aspect of ring

theory.

Given R as a subring of a ring T , we define Z(R, T ) as the collection of zero-

dimensional overrings of R that are contained in T . In the special scenario where R

is the prime subring of T , we will refer to Z(R, T ) as Z(T ). The initial topological

approach to the space Z(R, T ) was established by Mouadi et al. (see [11]).

The objective of this research paper is to investigate the interaction between the

prime spectrum of commutative rings and the set of zero-dimensional overrings within

a given ring using a countable topology known as the F -topology. To accomplish

this, we introduce the F -topology on Z(R, T ). Additionally, we utilize the framework

of prime spectrum spaces to gain a contemporary understanding of the entire class

of zero-dimensional rings. Theorem 3.12 establishes a continuous surjection that

connects the F -topology on Z(R, T ) with the F -topology on Spect(R).
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The paper’s structure is as follows: Section 2 provides background information and

notation. After that, we introduce the set Z(R, T ), which comprises zero-dimensional

overrings of R contained in T , and outline its fundamental properties. We also define

the properties of the F -topology on the spectrum of a commutative ring. Section 3

presents the definition of the F -topology on Z(R, T ) and investigates its relationship

with Spect(R). Finally, using the language of spectral spaces, we offer a contempo-

rary perspective on the collection of all zero-dimensional rings, demonstrating the

connection between the introduced topological tools through a continuous surjection.

2. Preliminaries

In this research paper, our focus lies in exploring the correlation between the prime

spectrum of a commutative ring and the collection of zero-dimensional overrings

present within a fixed ring. To facilitate our analysis, we introduce the required

notation and preliminary outcomes.

Consider R as a subring of a ring T , Z(R, T ) represents the set encompassing all

zero-dimensional subrings of T that contain R. It is worth noting, as demonstrated

in [8], Proposition 2.2, that the set Z(R, T ) may potentially be empty. However,

under specific conditions, we can establish the nonemptiness of Z(R, T ).

The subsequent theorem establishes the conditions under which the set Z(R, T )

is nonempty:

Theorem 2.1 ([10], Proposition 1 and [7], Theorem 1.6). Let R be a subring of

a ring T . The following conditions are equivalent:

(1) Z(R, T ) 6= ∅.

(2) The power of the ideal xT is idempotent for each x in R.

(3) For each finitely generated ideal I, the set {AnnR(Ij)∞j=1} stabilizes for some

m ∈ N.

In the subsequent theorem, Gilmer addresses the question of whether the set

Z(R, T ) is closed under arbitrary intersection:

Theorem 2.2 ([7], Theorem 2.1). Let R be a subring of a ring T . If Z(R, T ) 6= ∅,

then the collection Z(R, T ) is closed under arbitrary intersection.

R em a r k 2.3. Let R be a subring of the ring T . If Z(R, T ) 6= ∅, then Theo-

rem 2.2 demonstrates that Z(R, T ) possesses a unique minimal element. This min-

imal element is denoted as R0 and is referred to as the minimal zero-dimensional

extension of R in T .
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For each x ∈ R, let m(x) be such that xm(x)T is idempotent, and let sx denote

the pointwise inverse of xm(x) in T . As stated in [7], Theorem 2.5, we can establish

that R0 = R[sx : x ∈ R].

Consider a commutative ring R, and let Spect(R) denote the set of all prime ideals

of R. On Spect(R), the Zariski topology can be defined by taking the open sets as

the collection of sets D(a) := {P ∈ Spect(R) : a /∈ P} for all a ∈ R. In this topology,

the family {Da : a ∈ R} forms a basis for the open sets of Spect(R)zar. The Zariski

topology possesses various appealing properties such as being quasi-compact and

Kolmogorov, although it is rarely compact. Specifically, Spect(R)zar is Hausdorff

if and only if it is compact if and only if dim(R) = 0; for more details see [6],

Theorem 3.6.

Now, our focus turns to the topological structure of the set (R, T ), which comprises

all subrings of T containing a given subring R of T . We define a topological structure

on (R, T ) by considering the subsets listed below as the basis for the open sets:

BS := {F ∈ (R, T ) : S ⊆ F}.

For S varying in Bfin(T ), the set of all finite subsets of T , this topology is called

the Zariski topology on (R, T ).

If S := {x1, x2, . . . , xn} with xj ∈ T for each j ∈ {1, . . . , n}, then

BS := (R[x1, x2, . . . , xn], T ).

Hence, the collection of subsets B := {(R[x], T ) : x ∈ T } forms a basis for the Zariski

topology on (R, T ). It can be observed that (R, T ) is a Kolmogorov topological space

(also known as a T0-space).

In other words, (R, T ) is a Kolmogorov topological space because for any two

distinct points R1, R2 ∈ (R, T ) there exists an open set that contains one of the

points but not the other. This property is the defining characteristic of a Kolmogorov

space.

Proposition 2.4. Let R be a subring of a ring T such that Z(R, T ) 6= ∅. Then

γ : Z(R, T )τzar → Spect(R)τzar

is a continuous map.

P r o o f. The map γ is actually defined as γ(S) = {P ∈ Spect(R) : P ⊆ S},

which sends a zero-dimensional ring S ∈ Z(R, T ) to the set of prime ideals of R

contained in S. In particular, if S has a unique prime ideal Q, then γ(S) = Q.
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If R is zero-dimensional, then any prime ideal of R is maximal and corresponds

to a point in Spect(R), so γ is a surjective map from Z(R, T ) to Spect(R).

Next, to show that γ is continuous, it is enough to show that γ−1(Dx) is open,

where Dx = {P ∈ Spect(R) : x ∈ P} is a basic Zariski open subset of Spect(R).

According to [7], Theorem 2.5, for each x ∈ R there exists sx, which is the pointwise

inverse of xm(x) in T such that R[sx, x ∈ R] is the minimal zero-dimensional extension

of R in T . Then we have γ−1(Dx) = Z(R,R[sx]), from which it follows that γ is

a continuous map. �

Corollary 2.5. The map γ : Z(R, T )τzar → Spect(R)τzar is a homeomorphism if

and only if γ is injective.

We will work in at least ZFC, which stands for Zermelo-Fraenkel set theory with

the axiom of choice. If I is a set, we recall that a subset F of the power set of I is

called a filter on I if it satisfies the following conditions:

(1) ∅ /∈ F and I ∈ F .

(2) If A,B ∈ F , then A ∩B ∈ F .

(3) If A ∈ F and A ⊂ A′ ⊂ I, then A′ ∈ F .

To further clarify, a filter F on a set I is considered maximal if there is no other

filter G on I that strictly contains F . An ultrafilter F on I is a type of maximal

filter, implying that there exists no other filter G on I such that F is a proper subset

of G, and G itself is also maximal.

A principal ultrafilter on a set I is an ultrafilter represented by Fi0 , where i0
belongs to I, and it encompasses all subsets of I that include i0. In simpler terms, Fi0

is defined as the collection of all subsets A of I such that i0 is an element of A.

The symbol β(I) is commonly used to denote the collection of all ultrafilters on

a set I.

It is important to note that while the notation β(I) can also be used to refer

to the Stone-Čech compactification of I, within the realm of ultrafilters, it is com-

monly employed to represent the collection of all ultrafilters on I. This convention

arises due to the inherent connection between ultrafilters on I and points in the

Stone-Čech compactification of I. Specifically, each ultrafilter on I corresponds to

a unique point in the Stone-Čech compactification, and conversely, every point in

the Stone-Čech compactification corresponds to an ultrafilter on I (for more infor-

mation about the theory of ultrafilter see the very interesting book of Comfort and

Negrepontis [1]).

In their recent paper [5], García-Ferreira and Ruza-Montilla introduced an alterna-

tive topology on Spect(R). For this topology, consider a sequence (Pn)n∈N of prime
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ideals in Spect(R), and let F be an ultrafilter on N. Then the set

F - lim
n∈N

Pn := {a ∈ R : {n ∈ N : a ∈ Pn} ∈ F}

plays a significant role.

It can be easily demonstrated that F - lim
n∈N

Pn is a prime ideal. Suppose ab ∈

F - lim
n∈N

Pn. Then A = {n ∈ N : ab ∈ Pn} ∈ F . We have A = {n ∈ N : a ∈ Pn} ∪

{n ∈ N : b ∈ Pn}. Since F is an ultrafilter, it follows that either a ∈ F - lim
n∈N

Pn or

b ∈ F - lim
n∈N

Pn. Hence, F - lim
n∈N

Pn is a prime ideal. This notion of F -limit of collections

of prime ideals has been crucial in constructing the F -topology on Spect(R). In the

case where {Pn}n∈N is a sequence from C ⊂ Spect(R) and F is a principal ultrafilter

on N, it is observed that F - lim
n∈N

Pn = Pk for some Pk ∈ C [5], Section 2. However,

if F is a nonprincipal ultrafilter, it is not evident that the prime ideal F - lim
n∈N

Pn

should belong to C. This motivates the following definition.

Definition 2.6. Consider a collection {Pi}i∈I of prime ideals in Spect(R), and

let F be an ultrafilter on I. A set C is said to be F -closed in Spect(R) if for each

collection {Pi}i∈I in C we have that F - lim
i∈I

Pi ∈ C.

According to [5], Theorem 4.2, the F -closed subsets of Spect(R) form a topology

on the set Spect(R), known as the F -topology on Spect(R). We denote the set

Spect(R) equipped with the F -topology as Spect(R)τF .

One of the key outcomes presented in the recent article by García-Ferreira and

Ruza-Montilla in [5] is the following result.

Theorem 2.7 ([5], Theorem 4.4). Consider a commutative ring R. If F is a non-

principal ultrafilter on N, then the F -topology τF on Spect(R) is countably compact.

3. The F-topology

Let us start by revisiting an important and pertinent definition.

Definition 3.1. Consider a ring T , an infinite set I, an ultrafilter F on I, and

a collection of subrings {Ri}i∈I of T . We can define the F -limit of this collection of

subrings as follows:

F - lim
i∈I

Ri := {a ∈ T : {i ∈ I : a ∈ Ri} ∈ F}.
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We observe that F - lim
i∈I

Ri is also a subring of T , and the following properties hold:

F - lim
i∈I

Ri =
⋃

X∈F

⋂

i∈X

Ri.

Now, we state, without providing the proofs here, some straightforward and well-

known properties. For detailed proofs see [5].

Proposition 3.2. Let T be a ring, I an infinite set, F an ultrafilter on I, and

{Ri}i∈I a collection of subrings of T . In this context, the following properties hold:

(1) F{k}- lim
i∈I

Ri = Rk for each k ∈ I, and each principal ultrafilter F{k} on I.

(2) If J ∈ F , then

F - lim
i∈I

Ri = F |J - lim
i∈J

Ri,

where F |J= {A ⊆ J : A ∈ F}.

(3) Let Γ be an infinite set, and let σ : ∆ → Γ be a surjective function. For each

j ∈ Γ, let Tj = Ri if σ(i) = j. Then we have the equality

F - lim
i∈∆

Ri = C- lim
j∈Γ

Tj,

where σ(F) = {σ[F ] : F ∈ F} = C.

Proposition 3.3. Let R be a subring of a ring T . Suppose X ⊆ Z(R, T ), I is an

infinite set, F is an ultrafilter on I, and {Ri : i ∈ I} ⊆ X . Consider the map

π : β(I) → X,

F → F - lim
i∈I

Ri.

Then the following holds:

(1) {Ri : i ∈ I} ⊆ Im(π).

(2) The map π : β(I) → X is a surjection if and only if for every F ∈ β(I), the

set X is stable under F -limits.

P r o o f. (1) For each Rk, if we consider the principal ultrafilter Fk and by

Proposition 3.2, we have Fk- lim
i∈I

Ri = Rk.

(2) To generalize the result, let X be a set that is stable under F -limit for every

collection {Ri}i∈I in X , where F is an ultrafilter on I. According to Proposition 3.3,

there exists a surjective map π : X → Y , where Y is the set of F -limits of collections

in X . This surjection arises from the fact that X is stable under F -limit. �
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E x am p l e 3.4. With the notation of the previous Proposition 3.3 and by The-

orem 3.5, if we consider X = Z(R, T ), the set of zero-dimensional subrings of T

containing R, then π : Z(R, T ) → Y is a continuous surjection. The continuity of π

follows from the fact that the F -limit operation is a continuous operation on Z(R, T ),

as established in Theorem 3.5.

The motivation behind investigating the topology on Z(R, T ) arises from the fol-

lowing theorem.

Theorem 3.5. Let R be a subring of a ring T , and assume that Z(R, T ) 6= ∅. If

Ri ∈ Z(R, T ) for every i ∈ I, and F is an ultrafilter on I, then the ring F - lim
i∈I

Ri is

also a zero-dimensional ring.

P r o o f. According to [11], Proposition 4.2, it can be shown that F - lim
i∈I

Ri

is a direct limit of zero-dimensional rings. Consequently, the conclusion follows

immediately from [10], Introduction. �

Definition 3.6. Let R be a subring of a ring T , and let F be an ultrafilter on

an infinite set I. We define an F -closed set C ⊆ (R, T ) as a set that satisfies the

following property:

For every collection {Ri}i∈I in C, we have that F - lim
i∈I

Ri ∈ C.

We shall introduce a novel topology on the collection of subrings of a given com-

mutative ring T .

Theorem 3.7. Consider a subring R of a ring T , and let F be an ultrafilter on N.

We define the F -topology on (R, T ) as the collection of all F -closed subsets, which

forms the family of closed sets for this topology. We denote this topology as τF .

P r o o f. It can be observed that the empty set and the entire set (R, T ) are

trivially F -closed subsets. Now, let C1 and C2 be two F -closed subsets of (R, T ),

and consider their intersection C = C1 ∩ C2.

For any sequence {Rn}n∈N in C, it also lies in both C1 and C2 since C ⊆ C1 and

C ⊆ C2. Since C1 and C2 are F -closed, we have F -lim
n∈N

Rn ∈ C1 and F -lim
n∈N

Rn ∈ C2.

Therefore, F -lim
n∈N

Rn ∈ C1 ∩ C2 = C. Hence, C is also an F -closed subset of (R, T ).

Indeed, we have shown that the collection of F -closed subsets of (R, T ) possesses

the properties required for a family of closed sets in a topology. Therefore, it de-

fines a topology on (R, T ), which we denote by τF . This topology, known as the

F -topology, is characterized by having the F -closed sets as its closed sets. �
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Lemma 3.8. Consider a subring R of a ring T and a nonprincipal ultrafilter F

on N. If we have an infinite set {Rn}n∈N contained in (R, T ), then the F -lim
n∈N

Rn

serves as an accumulation point for the sequence {Rn}n∈N within the F -topology τF .

P r o o f. The proof is similar to the proof of [4], Lemma 4.3. �

Consider R as a subring of a ring T . Denote by A(R, T ) and DU(R, T ), re-

spectively, the sets of Artinian subrings of T that contain R and directed unions

of Artinian subrings of T that contain R. In general, the intersection of two Ar-

tinian rings need not be Artinian (see [7]). Our focus will be on Z(R, T ), which

is a significant space of interest. It is the largest closed subset of (R, T ) under the

F -topology τF that contains both A(R, T ) and DU(R, T ), as stated in Theorem 3.5.

Naturally, we begin by comparing the F -topology τF on Z(R, T ) with the usual

topology.

Theorem 3.9. Let R be a subring of a ring T such that Z(R, T ) 6= ∅. Then:

(1) The F -topology τF is finer than the Zariski topology on Z(R, T ).

(2) The F -topology τF is a Hausdorff topology on Z(R, T ).

(3) The F -topology τF is countably compact.

P r o o f. (1) Since B := {Z(R[x], T ) : x ∈ T } is a base of Z(R, T ) endowed with

the Zariski topology, it is enough to prove that C := Z(R, T )\Z(R[x], T ) is F -closed

for every x ∈ T . Assume, by contradiction, that there exists an ultrafilter F on N

such that F - lim
n∈N

Rn /∈ C for each sequence {Rn}n∈N in C. Let x ∈ F - lim
n∈N

Rn. Then

{n ∈ N : x ∈ Rn} ∈ F , by the definition of C, and from the fact that ∅ /∈ F , we have

a contradiction.

(2) According to statement (1), the basic open sets of the Zariski topology

on Z(R, T ) are both open and closed in the F -topology. This implies that the

F -topology is finer than a certain topology, which can be defined as the coarsest

topology for which the sets Z(R[x], T ) are both open and closed for every x ∈ T .

Moreover, this topology is Hausdorff. To see this, consider two distinct elements V1

and V2 of Z(R, T ). Without loss of generality, assume that there exists y ∈ V1 \ V2.

By the definition of the topology mentioned above, the sets Z(R, T )\Z(R[y], T ) and

Z(R[y], T ) are disjoint open neighborhoods of V1 and V2, respectively. This confirms

that the F -topology is finer than the mentioned topology.

(3) Indeed, by statement (2) of Theorem 3.9, we know that the F -topology on

Z(R, T ) is a Hausdorff topology. Now, consider any infinite subset A of Z(R, T ). We

want to show that A has an accumulation point in the F -topology. By Lemma 3.8, we

know that every infinite subset of Z(R, T ) has a limit point in the Zariski topology.

Since the F -topology is finer than the Zariski topology, every limit point of A in the
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Zariski topology is also a limit point of A in the F -topology. Therefore, A has an

accumulation point in the F -topology, which shows that the F -topology on Z(R, T )

is countably compact. �

R em a r k 3.10. The space Z(R, T )τF is countably compact since every count-

able open cover has a finite subcover, which follows from the fact that Z(R, T )τF is

a subspace of the Stone-Cech compactification of the discrete space Z(R, T ). This

compactness property ensures that any countable sequence in Z(R, T ) has an accu-

mulation point in Z(R, T )τF .

However, in general, Z(R, T )τF is not compact because not every open cover has

a finite subcover. The reason for this is that the F -topology can be quite fine, allow-

ing for infinite families of sets that intersect only at a single point. Consequently, an

open cover that includes all of these sets cannot be reduced to a finite subcover. This

lack of compactness highlights the subtle difference between countable compactness

and compactness in the context of the F -topology on Z(R, T ).

In other words, Theorem 3.11 states that the countability, spectral property, and

existence of Frechet limits in Z(R, T ) are equivalent. This result provides a character-

ization of when Z(R, T ) possesses these properties, allowing us to study the interplay

between countability, spectralness, and convergence behavior in the F -topology.

Theorem 3.11. Let R be a subring of a ring T such that Z(R, T ) 6= ∅, and let Fr

be the Frechet ultrafilter on N. Then the following conditions are equivalent:

(1) The set Z(R, T ) is countable.

(2) The set Z(R, T ) is a spectral space.

(3) The limit Fr- lim
n∈N

Rn exists for any sequence {Rn : n ∈ N} ⊆ Z(R, T ).

P r o o f. (1) ⇒ (2). According to [2], Theorem 3.10.3, every countably com-

pact, countable Hausdorff space is compact. Therefore since Z(R, T )τF is countably

compact and Hausdorff, it is compact. Inspired by the idea given in [5], by [11],

Lemma 4.4, the F -topology and ultrafilter topology are the same. Therefore by [3],

Corollary 3.3, Z(R, T ) is a spectral space.

(2) ⇒ (3). Let Z(R, T ) ≃ Spect(S) for a ring S and let ϕ : Z(R, T ) → Spect(S).

If {Pn : n ∈ N} ⊆ Spect(S), then according to [2], Theorem 3.10.3 (v), F - lim
n∈N

Pn

exists for each nonprincipal ultrafilter on N. On the other hand, ϕ−1(F - lim
n∈N

Pn) =

F - lim
n∈N

ϕ−1(Pn). Thus, it suffices to choose Rn := ϕ−1(Pn), since F - lim
n∈N

Rn exists

for every nonprincipal ultrafilter F on N. Then Fr- lim
n∈N

Rn exists by applying [4],

Definition 1.1.
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(3) ⇒ (1) Let Fr be a nonprincipal ultrafilter on N and assume that Fr- lim
n∈N

Rn

exists. Then by [11], Lemma 4.4, the F -topology and the ultrafilter topology are the

same, where F is any nonprincipal ultrafilter on N. Therefore F - lim
n∈N

Rn also exists

for every nonprincipal ultrafilter F on N.

Moreover, since Z(R, T )τF is F -compact for each nonprincipal ultrafilter F ,

according to [12], Theorem 2.9, Z(R, T )τF is a compact space. Then by [2], Theo-

rem 3.10.3, Z(R, T )τF is a countably compact, countable Hausdorff space and hence

is compact. Therefore F - lim
n∈N

Rn exists for every nonprincipal ultrafilter F on N. �

Our focus now shifts to the study of the map γ when the spaces Z(R, T ) and

Spect(R) are equipped with the F -topology.

Theorem 3.12. Let T be a ring and R a subring of T such that Z(R, T ) 6= ∅.

Then the surjective map γ : Z(R, T )τF → Spect(R)τF is continuous and closed.

P r o o f. According to Theorem 3.9, Z(R, T ) is a Hausdorff space. By straight-

forward topological arguments, it is enough to show that γ is continuous. Let C be

an F -closed subset of Spect(R)τF , and let {Sn : n ∈ N} ⊆ γ−1(C) be a sequence,

where F is an ultrafilter on N. Then it suffices to show that F -limit of Sn be-

longs to γ−1(C). According to Theorem 3.5, we have F - lim
n∈N

Sn ∈ Z(R, T ), then

R ⊆ F - lim
n∈N

Sn. On the other hand, for each (Pn) ∈ C we can also consider the ideal

F - lim
n∈N

Pn = {a ∈ R : {n ∈ N : a ∈ Pn} ∈ F},

which is a prime ideal of R. By [8], there exists a prime ideal Q of F - lim
n∈N

Sn

such that Q ∩ R = F - lim
n∈N

Pn. Since by [5], C is an F -closed subset, we have

γ(F - lim
n∈N

Sn) = F - lim
n∈N

Pn ∈ C, and so F - lim
n∈N

Sn ∈ γ−1(C). Therefore, we deduce

that γ−1(C) is a closed subset of Z(R, T )τF , hence the conclusion. �
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