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AN EXAMPLE GINSBURG SAID IN 1984

HE WAS “UNABLE TO FIND” AND A FORBIDDEN SUBPOSET

CHARACTERIZATION OF SUBSETS OF REGULAR POSETS
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Abstract. In 1984, Ginsburg wrote, “We have been unable to find an example of an
ordered set P having the properties of [being complete, densely ordered, with no antichain
other than {0} and {1} that is a cutset] and in which all antichains are countable.” In
this very brief note, such an example is shown. Posets that can be embedded in regular
posets are characterized as posets that do not contain ω × {0, 1} or its dual as a subposet.
Any such poset P can be embedded in a regular poset that can be embedded in any other
regular poset containing P .

Keywords: regular poset; (minimal) cutset; (maximal) chain; (maximal) antichain; lexi-
cographic sum; complete lattice
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1. Definitions and motivation

Our notation and terminology largely come from [1], [2], and [13]. We use sub-

scripts to indicate which poset we are referring to—for instance,
∨
R

S is the supremum

of the set S with respect to the poset R.

A subset D of a poset is directed if D 6= ∅ and, for all d, d′ ∈ D, there exists e ∈ D

such that d, d′ 6 e. Let I(P ) denote the family of directed down-sets of a poset P ,

ordered by set-inclusion. For an element p of a poset P ,
◦

↓ p := {q ∈ P : q < p}. Let

∂P : P → P ∂ be the canonical anti-isomorphism from a poset P to its dual.

A poset P is sup-pre-regular if for every directed subset D ⊆ P such that
∨
D

exists and for all p ∈ P such that p <
∨
D, there exists d ∈ D such that p < d.
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A poset is sup-regular if every nonempty chain has a supremum and for every

nonempty chain C and every element p such that p <
∨
C, there exists c ∈ C such

that p < c.

Dually, we define inf-pre-regular and inf-regular. A poset is regular if it is sup-

and inf-regular.

One finds the definitions of “sup-regular,” and “regular” posets in Grillet’s article

(see [7]). Other articles discussing regular posets include [3], [8], [9], [10] and [12].

Proposition 1.1. A poset is sup-regular if and only if it is sup-pre-regular and

every directed subset has a supremum.

P r o o f. For the nontrivial direction, assume P is sup-regular. By [11], Corol-

lary 2, every directed subset has a supremum.

We now prove by transfinite induction on |D| that if D is a directed set and p ∈ P

such that p <
∨
D, then there exists d ∈ D with p < d. This is clear if D is finite

(so D has a greatest element
∨
D ∈ D). If D is infinite, [11], Theorem 1, implies

there is a sequence (Dα)α<|D| of directed subsets of D such that, for all α < |D|,

Dα is either finite or |Dα| = |α|; if α, β < |D| and α < β, then Dα ⊆ Dβ ; and

D =
⋃

α<|D|

Dα.

Let cα =
∨
Dα (α < |D|). Then {cα : α < |D|} is a nonempty chain, and∨

{cα : α < |D|} =
∨
D. By sup-regularity, there exists α < |D| such that p < cα.

By induction, there exists dα ∈ Dα ⊆ D such that p < dα. �

A cutset of a poset is a subset that intersects every maximal chain. A poset is

CAC if every maximal antichain is a cutset. Grillet showed that every regular poset

E can be embedded in a regular CAC poset E in a “minimal” way: no subposet

F ( E containing E is CAC and, if G is CAC, every order-preserving map from E

to G can be extended to E. He conjectured that any poset had such a “completion.”

Maltby observed that no regular poset can contain ω × 2 (where 2 is the chain

{0, 1}) or its dual (ω × 2)∂ ∼= ω∂ × 2 (see Figure 1).

We repeat (the dual of) Maltby’s argument:

Observation 1.2 (Maltby [10], page 394). Let P be a poset containing ω × 2.

Then P cannot be embedded in a sup-regular poset.

P r o o f. Assume ω × 2 is contained in a sup-regular poset R. Let ri =
∨
R

{(n, i) :

n < ω} for i ∈ {0, 1}. Then r0 6 r1.

Case 1. r0 < r1. Then, by sup-regularity, there exists n < ω such that r0 < (n, 1).

But (n+ 1, 0) 6 r0 < (n, 1) gives a contradiction.

Case 2. r0 = r1. Then (42, 1) < r0, so, by sup-regularity, there exists n < ω such

that (42, 1) < (n, 0), a contradiction. �
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Figure 1.

Observation 1.3. Let P be a poset. Let a0, a1, a2, . . . , b0, b1, b2, . . . ∈ P be such

that a0 < a1 < a2 < . . . and b0 < b1 < b2 < . . . and ai < bi and ai+1 � bi

(i = 0, 1, 2, . . .) and bi � aj (i, j = 0, 1, 2, . . .). Then {a0, a1, . . . , b0, b1, . . .} is order-

isomorphic to ω × 2.

The poset ω×2∪{(ω, 0)} (Figure 7 (a)) appears in [6], Theorem 1.4 as a forbidden

subposet for a certain class of posets we will not describe (the “chain-complete”

posets whose space of maximal chains is compact).

We prove the converse of Maltby’s observation: a poset can be embedded in a

regular poset if it does not contain ω × 2 or its dual. Indeed, there is a “least” such

“regular completion.” We prove an analogous result for sup-regular posets and posets

excluding ω × 2 (Theorem 6.8 and Corollary 6.9). Lemma 4.1 makes it all work.

While Ginsburg does not define the term, a poset P is densely ordered if, for all

x, y ∈ P such that x < y, there exists z ∈ P such that x < z < y, and P is a complete

ordered set if it is a complete lattice. He calls an antichain {0} or {1} of a bounded

poset trivial.

In his 1984 article [6], Example 2.1, Ginsburg exhibits a “complete ordered set P

which is densely ordered. . . and in which no nontrivial antichain is a cutset.” He

adds, “We have been unable to find an example of an ordered set P having the

properties of Example 2.1 and in which all antichains are countable.”

We provide such an example in Section 7 (Theorem 7.24), by modestly altering

a poset Higgs created for another purpose. Additional terminology related to the

example will be in Section 7, which with Section 1 is self-contained.
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2. More terminology: Filtered limits of posets

Let Poset be the category of posets + order-preserving maps. Let (Ci)i<ω be

a family of posets and

(fij : Cj → Ci)i,j<ω; j6i

a family of order-preserving maps with the following properties:

(1) fii = idCi
for all i < ω;

(2) fij ◦ fjk = fik for all i, j, k < ω such that k 6 j 6 i.

Then

S = ((Ci)i<ω , (fij : Cj → Ci)i,j<ω; j6i)

is a filtered system in Poset.

Assume C is a poset and (fi : Ci → C)i<ω is a family of order-preserving maps

such that, for i, j < ω, j 6 i implies fi ◦ fij = fj . Then

(C, (fi : Ci → C)i<ω)

is compatible with S. It is a filtered limit of S if we assume further that whenever

(C′, (f ′
i : Ci → C′)i<ω) is compatible with S, there is a unique order-preserving map

f : C → C′ such that f ◦ fi = f ′
i for all i < ω.

A construction of a filtered limit is given in [5], Proposition 4.1. The reader can

find proofs of the following in [5], Proposition 4.2, Lemma 4.4, and Lemma 4.5.

Proposition 2.1. Let

(C, (fi : Ci → C)i<ω)

be the filtered limit of the filtered system

S = ((Ci)i<ω , (fij : Cj → Ci)i,j<ω; j6i).

Then for all c ∈ C there exist i < ω and ci ∈ Ci such that fi(ci) = c. For c, d ∈ C,

c 6 d is equivalent to each of the following:

(1) if i, j < ω, ci ∈ Ci, cj ∈ Cj , and fi(ci) = c and fj(cj) = d, then there exists

h < ω such that i, j 6 h and fhi(ci) 6 fhj(cj);

(2) there exist h, i, j < ω, ci ∈ Ci, cj ∈ Cj such that i, j 6 h, fi(ci) = c, fj(cj) = d,

and fhi(ci) 6 fhj(cj).

For (1) or (2), any h′ < ω such that h 6 h′ also works.
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Lemma 2.2. Let

(C, (fi : Ci → C)i<ω)

be a filtered limit of the filtered system

S = ((Ci)i<ω , (fij : Cj → Ci)i,j<ω; j6i).

(1) Let

(C′, (f ′
i : Ci → C′)i<ω)

be compatible with S. Let f : C → C′ be the order-preserving map such that

f ◦ fi = f ′
i for all i < ω. If f ′

i is an order-embedding for all i < ω, then f is an

order-embedding.

(2) If fi+1,i is an order-embedding for all i < ω, then fi is an order-embedding for

all i < ω.

Lemma 2.3. Let Ci be a poset for all i < ω. Let fi+1,i : Ci → Ci+1 be an order-

preserving map for all i < ω. For all i, j < ω such that j < i, define fij : Cj → Ci as

fi,i−1 ◦ fi−1,i−2 ◦ . . . ◦ fj+2,j+1 ◦ fj+1,j and let fjj : Cj → Cj be idCj
. Then

S = ((Ci)i<ω , (fij : Cj → Ci)i,j<ω; j6i)

is a filtered system in Poset.

Let C be a poset. Let fi : Ci → C be an order-preserving map for all i < ω. Then

(C, (fi : Ci → C)i<ω)

is compatible with S if and only if fi+1 ◦ fi+1,i = fi for all i < ω.

Lemma 2.4. Let

S = ((Ci)i<ω , (fij : Cj → Ci)i,j<ω; j6i)

be a filtered system in Poset with filtered limit

T = (C, (fi : Ci → C)i<ω).

Fix k < ω. Then

kS := ((Ci)k6i<ω , (fij : Cj → Ci)i,j<ω; k6j6i)

is a filtered system in Poset with filtered limit

kT = (C, (fi : Ci → C)k6i<ω).
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P r o o f. Let kT ′ = (C′, (f ′
i : Ci → C′)k6i<ω) be compatible with kS. For i < k,

let f ′
i := f ′

k ◦ fki : Ci → C′. Let T ′ := (C′, (f ′
i : Ci → C′)i<ω). We show T ′ is

compatible with S. Let i, j < ω be such that j 6 i. If i < k, then f ′
i ◦ fij = f ′

k ◦ fki ◦

fij = f ′
k◦fkj = f ′

j since j < k. If j < k 6 i, then f ′
i ◦fij = f ′

i ◦fik◦fkj = f ′
k◦fkj = f ′

j

since j < k. If k 6 j, then f ′
i ◦ fij = f ′

j . Thus, there exists a unique order-preserving

map f : C → C′ such that, for all i < ω, f ′
i = f ◦ fi.

Now assume g : C → C′ is an order-preserving map such that k 6 i < ω implies

f ′
i = g ◦ fi. Let i < k. We have g ◦ fi = g ◦ fk ◦ fki = f ′

k ◦ fki = f ′
i . Thus g = f . �

3. One step of the process of making posets sup-pre-regular

What makes a poset P not be sup-pre-regular is the existence of a directed sub-

set D with a join
∨
D and an element p <

∨
D such that p ≮ d for all d ∈ D. We

fix the problem by making the “join” of D be less than
∨
D in a new poset P+.

We start with results that have trivial proofs.

Definition 3.1. Let P be a poset. Let

D :=
{
D ∈ I(P ) :

∨
D exists and there exists p ∈ P

with p <
∨

D but for all d ∈ D, p ≮ d
}
.

Let P+ := {↓ p : p ∈ P} ∪ D be ordered by set-inclusion.

Let ι+P : P → P+ be the order-embedding p 7→↓ p (p ∈ P ).

Let η− : P(P+) → P(P ) be given as follows: for all B ⊆ P+,

η−(B) =
⋃

B = {p ∈ P : p ∈ b for some b ∈ B}.

(Remember every element of P+ is a subset of P .)

x0

x1

x2

x3

y0

y1

y2

y3

..
.

..
.

b

a

P

(a) The poset P .

↓ x0

↓ x1

↓ x2

↓ x3

↓ y0

↓ y1

↓ y2

↓ y3

..
.

..
.

↓ b

{a}

P+

{x0, x1, . . .}

(b) The poset P+.

Figure 2. The poset P .
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R em a r k 3.2.

(1) For all p ∈ P , ↓ p /∈ D, since no D ∈ D has a maximal element.

(2) The map η− is ⊆-preserving.

Lemma 3.3. Let P be a poset. Let D be a set. For each d ∈ D, let Bd ∈ P(P+).

Then η−
( ⋃
d∈D

Bd

)
=

⋃
d∈D

η−(Bd).

P r o o f. By Remark 3.2 (2),
⋃

d∈D

η−(Bd) ⊆ η−
( ⋃
d∈D

Bd

)
.

Now let p ∈ η−
( ⋃
d∈D

Bd

)
, so there exists b ∈

⋃
d∈D

Bd such that p ∈ b. Hence, there

exists d ∈ D such that b ∈ Bd, so p ∈ η−(Bd). �

Lemma 3.4. Let P be a poset. For all x ∈ P+, η−({x}) = η−(↓P+ x).

P r o o f. By Remark 3.2 (2), η−({x}) ⊆ η−(↓P+ x).

Now let z ∈ η−(↓P+ x) =
⋃

↓P+ x =
⋃
{y ∈ P+ : y 6P+ x}. Thus, there exists

y ∈ P+ such that y ⊆ x and z ∈ y, so z ∈ x. Hence z ∈
⋃
{x} = η−({x}). �

Lemma 3.5. Let P be a poset. If B ⊆ P+ is a directed subset of P+, then η−(B)

is a directed subset of P .

P r o o f. Since B 6= ∅, there exists b ∈ B, and every element of B is nonempty.

Thus, there exists c ∈ b, and c ∈
⋃
B = η−(B), so η−(B) 6= ∅.

Now let p, p′ ∈ η−(B) =
⋃
B. Then there exist b, b′ ∈ B such that p ∈ b and

p′ ∈ b′. Since B is directed, there exists b′′ ∈ B such that b, b′ ⊆ b′′, so p, p′ ∈ b′′.

As every element of P+ is a directed subset of P , there exists p′′ ∈ b′′ such that

p, p′ 6P p′′. Also p′′ ∈
⋃
B = η−(B). �

Lemma 3.6. Let P be a poset. Let D be a directed set such that, for all d ∈ D,

Bd ∈ I(P ). Assume that for all d, d′ ∈ D, if d 6D d′, then Bd ⊆ Bd′ . Then⋃
d∈D

Bd ∈ I(P ).

P r o o f. Since D is directed, D 6= ∅, so take d̃ ∈ D. Since Bd̃ is directed, then

Bd̃ 6= ∅, so
⋃

d∈D

Bd 6= ∅.

Now let p, p′ ∈
⋃

d∈D

Bd. Then there exist d, d
′ ∈ D such that p ∈ Bd and p′ ∈ Bd′ .

There exists d′′ ∈ D such that d, d′ 6D d′′, so Bd, Bd′ ⊆ Bd′′ and hence p, p′ ∈ Bd′′ .

Since Bd′′ is directed, there exists p′′ ∈ Bd′′ such that p, p′ 6P p′′. Hence
⋃

e∈D

Be is

directed. �

Lemma 3.7. Let B be a subset of P+. Then η−(B) is a down-set of P .
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P r o o f. Let p ∈ η−(B). Let p′ ∈ P be such that p′ 6P p. As p ∈
⋃
B, there

exists b ∈ B such that p ∈ b. Since every element of P+ is a down-set of P , p′ ∈ b,

so p′ ∈
⋃
B = η−(B). �

Lemma 3.8. Let P be a poset.

(1) Let B ⊆ P+ be a down-set of P+. Let p ∈ η−(B). Then ι+P (p) ∈ B.

(2) Let p ∈ P , B ⊆ P+. Assume there is a b ∈ B such that b *↓P p. Then there is

a ∈ η−(B) such that a � p.

P r o o f. (1) Since p ∈ η−(B) =
⋃
B, there exists b ∈ B such that p ∈ b. Every

element of P+ is a down-set of P , so ↓P p ⊆ b. As ↓P p ∈ P+ and B is a down-set

of P+ and b ∈ B, then ↓P p ∈ B.

(2) There is a ∈ b such that a �P p. But a ∈
⋃
B = η−(B). �

Lemma 3.9. Let P be a poset. Let B ⊆ P+. Let c ∈ P be an upper bound of

η−(B) in P . Then ↓P c is an upper bound of B in P+.

P r o o f. For all p ∈ η−(B) =
⋃
B we have p 6P c. Thus, for all b ∈ B and for

all p ∈ b we have p 6P c, i.e., for all b ∈ B and for all p ∈ b we have p ∈↓P c. Hence,

for all b ∈ B we have b ⊆↓P c = ι+P (c). This means that ι
+
P (c) is an upper bound

of B in P+. �

Lemma 3.10. Let P be a poset. Let b ∈ P+. Then

b =
∨

P+

{↓P c : c ∈ b} =
⋃

{↓P c : c ∈ b}.

Lemma 3.11. Let P be a poset. Let R be a sup-regular poset. Let f : P → R

be an order-embedding. Define f : P+ → R by f(D) =
∨
R

{f(d) : d ∈ D} for all

D ∈ P+. The map f is an order-embedding such that f ◦ ι+P = f .

P r o o f. Any D ∈ P+ is directed, so {f(d) : d ∈ D} is directed and hence,∨
R

{f(d) : d ∈ D} exists. If D = ι+P (p) for some p ∈ P , then {f(d) : d ∈ D} has a

greatest element f(p), which is the supremum. Thus, f is well-defined and f ◦ι+P = f .

Now we show f is an order-embedding. Let D,D′ ∈ P+. If D ⊆ D′, then

f(D) 6 f(D′).

Now assume f(D) 6R f(D′).

Case 1. D′ =↓P p′, where p′ ∈ P . Then f(D) 6R f(p′) and hence, for all d ∈ D,

f(d) 6R f(p′), so, for all d ∈ D, d 6P p′. Thus D ⊆↓P p′ = D′.
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Case 2. D′ ∈ I(P ) has no maximal element;
∨
P

D′ exists and there exists a ∈ P

with a <P

∨
P

D′ but a ≮P d′ for all d′ ∈ D′. Assume for a contradiction thatD * D′.

Then there exists d̃ ∈ D \D′. Yet f(d̃) 6R

∨
d′∈D′

f(d′).

Case 2 (a). f(d̃) =
∨

d′∈D′

f(d′). In this case, f(d′) 6R f(d̃) for all d′ ∈ D′,

so, since f is an order-embedding, d′ 6P d̃ for all d′ ∈ D′. As D is a down-set,

D′ ⊆↓ d̃ ⊆ D. Hence a <P

∨
P

D′ 6 d̃, so f(a) <R f(d̃) =
∨

d′∈D′

f(d′). By sup-

regularity, there exists d̃′ ∈ D′ such that f(a) <R f(d̃′) and so a <P d̃′, because f is

an embedding. This is a contradiction.

Case 2 (b). f(d̃) <R

∨
d′∈D′

f(d′). By sup-regularity, there exists d̃′ ∈ D′ such that

f(d̃) <R f(d̃′). Since f is an order-embedding, d̃ <P d̃′, so d̃ ∈ D′, sinceD′ is a down-

set, a contradiction. Hence D ⊆ D′. This proves f is an order-embedding. �

4. Chains of directed down-sets of posets

not containing ω × 2 or ω∂ × 2

Lemma 4.1. Let P be a poset not containing ω × 2. Let D,D′ ∈ I(P ) be such

that D ( D′. Then there exists d′ ∈ D′ such that D ⊆
◦

↓P d′.

P r o o f. Case 1. D′ =↓ d′. Since D ( D′, then d′ /∈ D. Thus, for all d ∈ D,

d < d′, so D ⊆
◦

↓ d′.

Case 2. D′ has no maximal element. This means that for any d′ ∈ D′, there exists

d′′ ∈ D′ such that d′ < d′′. Pick d̄′ ∈ D′ \D. Pick d0 ∈ D. Let d′0 ∈ D′ be such that

d̄′, d0 < d′0.

d0

d1

d2

d3

d̄
′

d
′

0

d
′

1

d
′

2

.
.
.

.
.
.

Figure 3.

Now assume there exist n ∈ N0, d0, d1, . . . , dn ∈ D, d′0, d
′
1, . . . , d

′
n ∈ D′ such that

d0 < d1 < . . . < dn and d̄′ < d′0 < . . . < d′n and di < d′i (i = 0, 1, . . . , n) and

di+1 � d′i (i = 0, 1, . . . , n− 1). If D ⊆↓ d′n, then since there exists d
′′ ∈ D′ such that

d′n < d′′, we have D ⊆
◦

↓ d′′ and we are done.
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Otherwise, there exists d̄ ∈ D such that d̄ � d′n. Then there exists dn+1 ∈ D such

that d̄, dn 6 dn+1. As dn 6 d′n but dn+1 � d′n, we have dn < dn+1. We then have

d′n+1 ∈ D′ such that dn+1, d
′
n < d′n+1. By induction, we have d0, d1, d2, . . . ∈ D and

d̄′, d′0, d
′
1, . . . ∈ D′, where d0 < d1 < d2 < . . . and d̄′ < d′0 < d′1 < . . ., where d̄′ /∈ D

(so d′0, d
′
1, . . . /∈ D) and di < d′i and di+1 � d′i (i = 0, 1, 2, . . .). For i, j ∈ {0, 1, 2, . . .},

d′i � dj . Use Observation 1.3. �

Proposition 4.2. Let P be a poset. Then P contains ω × 2 if and only if I(P )

contains ω × 2.

P r o o f. One direction is trivial. For the other, let D0, D1, D2, . . . , E0, E1,

E2, . . . ∈ I(P ) be such that D0 ( D1 ( D2 ( . . . and E0 ( E1 ( E2 ( . . .

and Di ( Ei and Di+1 * Ei (i = 0, 1, 2, . . .) and Ei * Dj (i, j = 0, 1, 2, . . .).

D0

D1

D2

D3

E0

E1

E2

.
.
.

.
.
.

Figure 4.

Let d0 ∈ D0. There exists e
′
0 ∈ E0 such that D0 ⊆

◦

↓ e′0 by Lemma 4.1, so d0 < e′0.

As E0 * D1, there exists e
′′
0 ∈ E0 \D1. Let e0 ∈ E0 be such that e

′
0, e

′′
0 6 e0. Thus

d0 < e0 and e0 /∈ D1.

Now assume n ∈ N0, di ∈ Di (i = 0, 1, . . . , n) and ei ∈ Ei (i = 0, 1, . . . , n), where

d0 < d1 < d2 < . . . < dn and e0 < e1 < . . . < en and di < ei (i = 0, 1, . . . , n) and

di+1 � ei (i = 0, 1, . . . , n− 1). Further assume that Ei ⊆
◦

↓ ei+1 (i = 0, 1, . . . , n− 1)

and Di ⊆
◦

↓ ei (i = 0, 1, . . . , n). Finally, assume en /∈ Dn+1. Since Dn+1 * En, there

exists d′n+1 ∈ Dn+1 \En. Thus, there exists dn+1 ∈ Dn+1 such that dn, d
′
n+1 6 dn+1.

Since En is a down-set and dn ∈ En, dn < dn+1. Also, dn+1 � en.

Let e′n+1 ∈ En+1 be such that Dn+1, En ⊆
◦

↓ e′n+1 (using Lemma 4.1). As

En+1 * Dn+2, there exists e
′′
n+1 ∈ En+1 \ Dn+2. Let en+1 ∈ En+1 be such that

dn+1, e
′
n+1, e

′′
n+1 6 en+1. Since dn+1 ∈ Dn+2 but en+1 /∈ Dn+2, then dn+1 < en+1.

Also, en < e′n+1 6 en+1, so en < en+1. Thus, we have di ∈ Di, ei ∈ Ei (i =

0, 1, 2, . . .) such that di < di+1 and ei < ei+1 and di < ei (i = 0, 1, 2, . . .). Also,

di+1 � ei (i = 0, 1, 2, . . .) and Ei ⊆
◦

↓ ei+1 andDi ⊆
◦

↓ ei and ei /∈ Di+1 (i = 0, 1, 2, . . .).

Assume that ei+1 6 dj+1 for some i, j ∈ {0, 1, 2, . . .}. Then Ei ⊆ Dj+1, a contra-

diction. Thus P contains ω × 2. �
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Lemma 4.3. Let P be a poset not containing ω × 2. If I(P ) contains ω∂ × 2,

then P contains ω∂ × 2.

P r o o f. Let D0, D1, D2, . . . , D
′
0, D

′
1, D

′
2, . . . ∈ I(P ) be such that Di ) Di+1 and

D′
i ) D′

i+1 and D′
i ) Di and D′

i+1 + Di (i = 0, 1, 2, . . .) and Di + D′
j (i, j =

0, 1, 2, . . .).

D
′

0

D
′

1

D
′

2

D
′

3

D0

D1

D2

.
.
.

.
.
.

Figure 5.

For each i ∈ {0, 1, 2, . . .}, let d̄i ∈ Di \D′
i+1 and, using Lemma 4.1, let

¯̄di ∈ Di be

such that Di+1 ⊆
◦

↓ ¯̄di; let
¯̄d′i ∈ D′

i be such that D
′
i+1 ⊆

◦

↓ ¯̄d′i; let d̄
′
i ∈ D′

i be such that

Di ⊆
◦

↓ d̄′i; let di ∈ Di be such that d̄i,
¯̄di 6 di; let d

′
i ∈ D′

i be such that d̄
′
i,
¯̄d′i 6 d′i.

Claim 1. For i ∈ {0, 1, 2, . . .}, di+1 < di and di /∈ D′
i+1.

P r o o f of Claim 1. Since di+1 ∈ Di+1, we have di+1 < ¯̄di 6 di. Also, if

di ∈ D′
i+1, then d̄i ∈ D′

i+1, a contradiction. �

Claim 2. For i ∈ {0, 1, 2, . . .}, d′i+1 < d′i and di � d′i+1.

P r o o f of Claim 2. Since d′i+1 ∈ D′
i+1 but di /∈ D′

i+1 by Claim 1, we have

di � d′i+1. Since d
′
i+1 ∈ D′

i+1 and
¯̄d′i 6 d′i, we have

◦

↓ ¯̄d′i ⊆
◦

↓ d′i, so D
′
i+1 ⊆

◦

↓ d′i. Hence

d′i+1 < d′i. �

Claim 3. For i ∈ {0, 1, 2, . . .}, di < d′i.

P r o o f of Claim 3. As di ∈ Di ⊆
◦

↓ d̄′i, we have di < d̄′i 6 d′i. �

Claim 4. For i, j ∈ {0, 1, 2, . . .}, d′i � dj.

P r o o f of Claim 4. Assume for a contradiction that d′i 6 dj . As
¯̄d′i 6 d′i, we

have D′
i+1 ⊆

◦

↓ d′i, so D
′
i+1 ⊆↓ dj ⊆ Dj , a contradiction. �

Hence {di, d′i : i = 0, 1, 2, . . .} ∼= ω∂ × 2 by Observation 1.3. �

Corollary 4.4. Let P be a poset not containing ω×2 and not containing ω∂ ×2.

Then P+ does not contain ω × 2 and does not contain ω∂ × 2.
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Lemma 4.5. Let P be a poset not containing ω × 2 such that every nonempty

chain has an infimum. Let C be a nonempty chain in I(P ). Then there exists

E ∈ I(P ) such that E ⊆ D for all D ∈ C, and if F ⊆ D for all D ∈ C, then F ⊆ E.

Moreover, if C has no least element, then E =↓P e for some e ∈ P .

Now suppose P is also inf-regular. Then if A ∈ I(P ) and A ) E, then A ) D for

some D ∈ C.

R em a r k 4.6. The above set F need not be in I(P ).

P r o o f. The chain C has a dually well-ordered co-initial subset, so we may assume

C = {Dβ : β < α} for a nonzero ordinal α, where for all β, β′ < α such that β < β′,

we have Dβ ) Dβ′ . If α is a successor, we are done, so assume α is a limit. By

Lemma 4.1, for all β < α there exists dβ ∈ Dβ such that

Dβ+1 ⊆
◦

↓ dβ .

Claim. The map β 7→ dβ (β < α) is strictly order-reversing.

P r o o f of the claim. Fix γ < α. Let γ < η < α. We show dγ > dη. If η = γ + 1,

then since dη ∈ Dγ+1 ⊆
◦

↓ dγ , we have dη < dγ .

Now assume η = ζ + 1, where γ < ζ < α and dγ > dζ . We know dζ > dη, so

dγ > dη.

Now assume η is a limit. As dη ∈ Dζ+1 for all ζ < η, we have dη ∈
◦

↓ dζ for all

ζ < η, so dγ > dη. �

For every limit β 6 α, let eβ :=
∧
P

{dγ : γ < β}. This is well-defined by the claim,

and for every limit β < α, dβ 6 eβ.

Let E =↓ eα ∈ I(P ). For every β < α, eα 6 dβ ∈ Dβ, so E ⊆ Dβ. If x ∈
⋂

β<α

Dβ,

then for all β < α, x ∈ Dβ+1 ⊆
◦

↓ dβ , so

x 6
∧

P

{dβ : β < α} = eα,

so x ∈ E. Hence, if F ⊆ ∩β<αDβ, then F ⊆ E.

Now assume P is also inf-regular. Assume A ∈ I(P ) and A ) E. Then there

exists a ∈ A such that a > eα. By inf-regularity, there exists β < α such that

a > dβ , and hence Dβ+1 ⊆
◦

↓ a. Thus A ) Dβ+1. �

Lemma 4.7. Let P be a poset not containing ω × 2. If every nonempty chain

of P has an infimum, then every nonempty chain of P+ has an infimum. If P is

inf-regular, then P+ is inf-regular.
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5. Making posets sup-pre-regular

In this section, let P0 be a poset. If n < ω and Pn is defined, let Pn+1 = P+
n . For

i < ω, let ϕi+1,i : Pi → Pi+1 be ι
+
Pi
. As per Lemma 2.3, define a filtered system

((Pi)i<ω , (ϕij : Pj → Pi)i,j<ω; j6i).

Let

(Pω , (ϕi : Pi → Pω)i<ω)

be its filtered limit. By Lemma 2.2 (2), ϕi is an order-embedding for all i < ω. We

will use ι+n , 6n, ↓n,
∨
n

, 6ω, and
∨
ω

for ι+Pn
, 6Pn

, ↓Pn
,
∨
Pn

, 6Pω
, and

∨
Pω

, but η−n and

η−ω will not have the meanings one might think they do (n < ω).

Definition 5.1. Let n < ω be nonzero. If pn ∈ Pn, define η−n (pn) by

η−(η−(. . . η−

n times

({pn}) . . .)).

Note that the domain of η−n is Pn and its range is P(P0), whereas the rightmost η
−

above has domain P(Pn).

Lemma 5.2. Assume 0 < j 6 i < ω. Suppose pj ∈ Pj . Then η−i (ϕij(pj)) =

η−j (pj).

P r o o f. We may assume j < i. First assume i = j + 1. Then

η−i (ϕij(pj)) = η−j+1(ι
+
j (pj)) = η−(η−(. . . η−

j+1 times

({↓j pj}) . . .))

= η−(η−(. . . η−

j times

(↓j pj) . . .))

= η−(η−(. . . η−

j times

({pj}) . . .)) by Lemma 3.4

= η−j (pj).

Now assume η−i (ϕij(pj)) = η−j (pj). Then

η−i+1(ϕi+1,j(pj)) = η−i+1[ϕi+1,i(ϕij(pj))] = η−i+1[ι
+
i (ϕij(pj))]

= η−i (ϕij(pj)) by the above

= η−j (pj).

�

Definition 5.3. For pω ∈ Pω , define η
−
ω (pω) as η

−
j (pj) for any pj ∈ Pj such that

0 < j < ω and ϕj(pj) = pω.
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Lemma 5.4. The map η−ω is well-defined.

P r o o f. Assume 0 < j 6 i < ω. Let pω ∈ Pω. Let pi ∈ Pi and p′j ∈ Pj be such

that ϕi(pi) = pω = ϕj(p
′
j) = ϕi[ϕij(p

′
j)]. Since ϕi is one-to-one, pi = ϕij(p

′
j). From

Lemma 5.2, η−i (pi) = η−j (p
′
j). �

Lemma 5.5. Assume 0 < i < ω and let pi ∈ Pi. Then η−i (pi) ∈ I(P0). Hence,

for all pω ∈ Pω, η
−
ω (pω) ∈ I(P0).

P r o o f. Use Lemmas 3.4, 3.5, and 3.7. �

Lemma 5.6. Let xω , yω ∈ Pω. Assume xω 6ω yω. Then η−ω (xω) ⊆ η−ω (yω).

P r o o f. By Lemma 5.4, we may assume there exist nonzero i < ω and xi, yi ∈ Pi

such that ϕi(xi) = xω, ϕi(yi) = yω, η
−
ω (xω) = η−i (xi) and η

−
ω (yω) = η−i (yi). As ϕi is

an order-embedding, xi 6i yi. As

η−ω (xω) = η−(η−(. . . η−

i times

({xi}) . . .)) = η−(η−(. . . η−

i times

(↓i xi) . . .))

by Lemma 3.4 and

η−ω (yω) = η−(η−(. . . η−

i times

(↓i yi) . . .)),

the result follows from ↓i xi ⊆↓i yi and Remark 3.2 (2). �

Corollary 5.7. Let D be a directed subset of Pω. Then
⋃

dω∈D

η−ω (dω) ∈ I(P0).

P r o o f. Use Lemma 5.5, Lemma 5.6, and Lemma 3.6. �

Lemma 5.8. Assume pω ∈ Pω . Then pω is an upper bound of

{ϕ0(x0) : x0 ∈ η−ω (pω)}.

Indeed, if 0 < i < ω and pi ∈ Pi and ϕi(pi) = pω, then ϕi0(x0) 6i pi for all

x0 ∈ η−ω (pω). If cω ∈ Pω is also an upper bound of

{ϕ0(x0) : x0 ∈ η−ω (pω)}

and i 6 j < ω and cj ∈ Pj and ϕj(cj) = cω (there is such a j), then ϕj0(x0) 6j cj
for all x0 ∈ η−ω (pω).
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P r o o f. Let i be such that 0 < i < ω and there is pi ∈ Pi with ϕi(pi) = pω and

η−ω (pω) = η−i (pi). Take any

x0 ∈ η−ω (pω) = η−(η−(. . . η−

i times

({pi}) . . .)) = η−(η−(. . . η−

i times

(↓i pi) . . .)) (by Lemma 3.4).

Thus, ϕ10(x0) =↓0 x0 ∈ η−(η−(. . . η−
i−1 times

(↓i pi) . . .)) (by Lemmas 3.7 and 3.8) and

ϕ20(x0) =↓1 (↓0 x0) ∈ η−(η−(. . . η−

i−2 times

(↓i pi) . . .)), etc., till we get ϕi0(x0) ∈↓i pi, that

is, ϕi0(x0) 6i pi. Applying ϕi, we get

ϕ0(x0) 6ω pω.

Hence, pω is an upper bound in Pω of

{ϕ0(x0) : x0 ∈ η−ω (pω)}.

Now assume cω ∈ Pω is an upper bound in Pω of

{ϕ0(x0) : x0 ∈ η−ω (pω)}.

By Proposition 2.1, there exist j < ω and cj ∈ Pj such that ϕj(cj) = cω. If j < i,

then ϕi(ϕij(cj)) = ϕj(cj) = cω. Thus, we may assume i 6 j.

For x0 ∈ η−ω (pω), let xj = ϕj0(x0), so ϕj(xj) = ϕ0(x0) 6ω cω = ϕj(cj). Since ϕj

is an order-embedding, xj 6j cj . �

Let ⊛ be the following statement, related to a specific positive integer k:

⊛ Assume P0 does not contain ω×2. Assume that whenever i and m are integers

such that 0 < i < k and i 6 m < ω and whenever pi ∈ Pi, then

ϕmi(pi) =
∨

m

{ϕm0(x0) : x0 ∈ η−i (pi)}

and for all qm ∈ Pm such that qm <m ϕmi(pi), there exists x0 ∈ η−i (pi) with

qm <m ϕm0(x0).

Lemma 5.9. Let ⊛ hold. Let pk ∈ Pk. Then

pk =
∨

k

{ϕk0(x0) : x0 ∈ η−k (pk)}.

Further, {ϕk0(x0) : x0 ∈ η−k (pk)} is directed. If qk ∈ Pk and qk <k pk, then there

exists x0 ∈ η−k (pk) such that qk <k ϕk0(x0).
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P r o o f. By Definition 5.1 and Lemma 3.10,

η−k (pk) = η−(η−(. . . η−

k times

({pk}) . . .))

= η−
(
η−

(
. . . η−

k−1 times

(⋃
{↓k−1 yk−1 : yk−1 ∈ pk}

)
. . .

))

=
⋃

yk−1∈pk

η−(η−(. . . η−

k−1 times

({yk−1}) . . .)) (by Lemmas 3.3 and 3.4)

=





⋃

yk−1∈pk

η−k−1(yk−1) if k > 1

pk if k = 1.

By Lemma 3.10, pk =
∨
k

{ϕk,k−1(yk−1) : yk−1 ∈ pk}, which settles the k = 1 case

of the first claim. By hypothesis, if k > 1, for all yk−1 ∈ pk, ϕk,k−1(yk−1) =∨
k

{ϕk0(x0) : x0 ∈ η−k−1(yk−1)}. Hence, if k > 1, pk =
∨

yk−1∈pk

∨

x0∈η
−

k−1(yk−1)

ϕk0(x0) =

∨

x0∈η
−

k
(pk)

ϕk0(x0) by the above. By Lemma 5.5, {ϕk0(x0) : x0 ∈ η−k (pk)} is directed.

Now let qk ∈ Pk be such that qk <k pk. By Lemma 3.10,

qk (
⋃

{↓k−1 yk−1 : yk−1 ∈ pk},

which is a directed down-set (by Lemma 3.6), as is qk. By Lemma 4.1, Proposition 4.2

and induction, there exists y′k−1 ∈ pk such that qk ⊆
◦

↓k−1 y′k−1, so qk (↓k−1 y′k−1, i.e.,

qk <k ϕk,k−1(y
′
k−1). This is the last statement if k = 1. If k > 1, then by ⊛, there

exists x′
0 ∈ η−k−1(y

′
k−1) such that qk <k ϕk0(x

′
0). By the above, x

′
0 ∈ η−k (pk). �

Lemma 5.10. Let ⊛ hold. Assume pk ∈ Pk. Assume k < n < ω. Assume that,

for k < i < n,

ϕik(pk) =
∨

i

{ϕi0(x0) : x0 ∈ η−k (pk)}

and also that, for all qi ∈ Pi such that qi <i ϕik(pk), there exists x0 ∈ η−k (pk) with

qi <i ϕi0(x0). Then for all qn ∈ Pn such that qn <n ϕnk(pk), there exists x0 ∈ η−k (pk)

such that qn <n ϕn0(x0). Further, ϕnk(pk) =
∨
n

{ϕn0(x0) : x0 ∈ η−k (pk)}.

P r o o f. By Proposition 4.2 and induction, Pn−1 does not contain ω × 2.

First assume qn = ι+n−1(qn−1), where qn−1 ∈ Pn−1. Since ι+n−1 is an order-

embedding and ϕnk(pk) = ι+n−1(ϕn−1,k(pk)), qn−1 <n−1 ϕn−1,k(pk), so by hypothe-

sis and Lemma 5.9, there exists x0 ∈ η−k (pk) with qn−1 <n−1 ϕn−1,0(x0), and hence

qn <n ϕn,n−1(ϕn−1,0(x0)) = ϕn0(x0).
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Now suppose qn ∈ I(Pn−1) such that
∨
n−1

qn exists and there exists an−1 ∈ Pn−1

such that an−1 <n−1

∨
n−1

qn but an−1 ≮n−1 bn−1 for all bn−1 ∈ qn. For every

bn−1 ∈ qn, we have ↓n−1 bn−1 ⊆ qn, so ι+n−1(bn−1) 6n qn < ϕnk(pk); from what

we just showed, there exists x0 ∈ η−k (pk) such that ι+n−1(bn−1) <n ϕn0(x0) =

ι+n−1(ϕn−1,0(x0)), so bn−1 <n−1 ϕn−1,0(x0). Hence qn ⊆
⋃

x0∈η
−

k
(pk)

↓n−1 ϕn−1,0(x0).

By Lemma 3.6 and Lemma 5.5, the latter is in I(Pn−1).

Case 1. qn (
⋃

x0∈η
−

k
(pk)

↓n−1 ϕn−1,0(x0). By Lemma 4.1, there exists x0 ∈ η−k (pk)

such that qn ⊆
◦

↓n−1 ϕn−1,0(x0). Hence qn <n ϕn0(x0).

Case 2. qn =
⋃

x0∈η
−

k
(pk)

↓n−1 ϕn−1,0(x0). Then

an−1 <n−1

∨

n−1

qn =
∨

n−1

{ϕn−1,0(x0) : x0 ∈ η−k (pk)} = ϕn−1,k(pk)

(by Lemma 5.9 and the hypothesis), so there exists x′
0 ∈ η−k (pk) such that an−1 <n−1

ϕn−1,0(x
′
0) ∈ qn (by Lemma 5.9 and the hypothesis), a contradiction.

Note that a version of the hypothesis holds if we let i = k, by Lemma 5.9, and

a version of the second part of the hypothesis holds for i = n by the above and

Lemma 5.9. We see that ϕnk(pk) is an upper bound in Pn of

{ϕn0(x0) : x0 ∈ η−k (pk)},

because ϕn−1,k(pk) is an upper bound of {ϕn−1,0(x0) : x0 ∈ η−k (pk)} in Pn−1.

Let rn ∈ Pn be an upper bound in Pn of {ϕn0(x0) : x0 ∈ η−k (pk)}. We show

rn >n ϕnk(pk), completing the proof that

ϕnk(pk) =
∨

n

{ϕn0(x0) : x0 ∈ η−k (pk)}.

Case I. rn = ι+n−1(rn−1) for some rn−1 ∈ Pn−1. By the fact ι
+
n−1 is an order-

embedding, rn−1 is an upper bound in Pn−1 of {ϕn−1,0(x0) : x0 ∈ η−k (pk)}. By the

hypothesis ϕn−1,k(pk) 6n−1 rn−1. Applying ϕn,n−1, we get ϕnk(pk) 6n rn.

Case II. rn ∈ I(Pn−1) is such that
∨
n−1

rn exists and there exists an−1 ∈ Pn−1

with an−1 <n−1

∨
n−1

rn but, for all rn−1 ∈ rn, an−1 ≮n−1 rn−1. For x0 ∈ η−k (pk),

ι+n−1(ϕn−1,0(x0)) 6n rn, that is, ι
+
n−1(ϕn−1,0(x0)) ⊆ rn, so ϕn−1,0(x0) ∈ rn. Hence⋃

x0∈η
−

k
(pk)

↓n−1 ϕn−1,0(x0) ∈ I(Pn−1) (by Lemmas 3.6 and 5.5) and it is a subset of rn.
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Case IIa.
⋃

x0∈η
−

k
(pk)

↓n−1 ϕn−1,0(x0) ( rn. By Lemma 4.1, there exists r
′
n−1 ∈ rn

such that ⋃

x0∈η
−

k
(pk)

↓n−1 ϕn−1,0(x0) ⊆
◦

↓n−1 r′n−1.

Thus, ϕn−1,0(x0) <n−1 r′n−1 for all x0 ∈ η−k (pk). By the hypothesis and Lemma 5.9,

ϕn−1,k(pk) 6n−1 r′n−1, so ϕnk(pk) 6n↓n−1 r′n−1 ⊆ rn.

Case IIb.
⋃

x0∈η
−

k
(pk)

↓n−1 ϕn−1,0(x0) = rn. Then

∨

n−1

rn =
∨

n−1

{ϕn−1,0(x0) : x0 ∈ η−k (pk)} = ϕn−1,k(pk),

so, by hypothesis and Lemma 5.9, there exists x′
0 ∈ η−k (pk) such that an−1 <n−1

ϕn−1,0(x
′
0) ∈ rn, a contradiction. �

Lemma 5.11. Assume P0 does not contain ω × 2. Then for 0 < k < ω, for all

pk ∈ Pk, and for every integer n such that k 6 n < ω,

ϕnk(pk) =
∨

n

{ϕn0(x0) : x0 ∈ η−k (pk)}

and for all qn ∈ Pn with qn <n ϕnk(pk), there exists x0 ∈ η−k (pk) such that qn <n

ϕn0(x0).

P r o o f. One proof by induction involves two cases: k = 1 and k > 1. In each

case, do k = n, k = n+ 1, and k > n+ 1 separately. �

Theorem 5.12. Assume P0 does not contain ω × 2. Then for all pω ∈ Pω,

pω =
∨

ω

{ϕ0(x0) : x0 ∈ η−ω (pω)}.

P r o o f. The cω in the statement of Lemma 5.8 is such that cj >j ϕji(pi) by

Lemma 5.11. Applying ϕj , we get cω >ω pω. �

Corollary 5.13. Assume P0 does not contain ω × 2. Let pω, p
′
ω ∈ Pω. Then

pω 6ω p′ω if and only if η
−
ω (pω) ⊆ η−ω (p′ω).

P r o o f. One direction is Lemma 5.6. The other follows from Theorem 5.12. �

The following is not needed in the sequel.

Observation 5.14. Assume P0 does not contain ω× 2. Let b, a0, a1, a2, . . . ∈ Pω

be such that a0 <ω a1 <ω a2 <ω . . . and η−ω (b) ⊆
∞⋃
i=0

η−ω (ai) and ai �ω b for

i = 0, 1, 2, . . . Then for some i ∈ {0, 1, 2, . . .}, b 6ω ai.
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P r o o f. Assume not, for a contradiction. Pick any b′0 ∈ η−ω (b), which is nonempty

by Lemma 5.5. (Directed sets are nonempty.) Let k0 ∈ N0 be such that b
′
0 ∈ η−ω (ak0).

We can pick ã′0 ∈ η−ω (ak0) \ η−ω (b) by Corollary 5.13. By Lemma 5.5, there exists

a′0 ∈ η−ω (ak0) such that ã
′
0, b

′
0 60 a′0. Since a′0 /∈ η−ω (b) but b

′
0 ∈ η−ω (b), we have

b′0 <0 a′0.

a
′

0

a
′

1

a
′

2

b
′

0

b
′

1

b
′

2

b
′

3

.
.
.

.
.
.

Figure 6.

Let n ∈ N (i.e., n > 0). Assume there exist k0, k1, . . . , kn−1 ∈ N0 and

a′0, a
′
1, . . . , a

′
n−1 ∈ P0 such that k0 < k1 < . . . < kn−1 and a′0 <0 a′1 <0 a′2 <0

. . . <0 a′n−1 and a′i ∈ η−ω (aki
) \ η−ω (b) (i = 0, 1, . . . , n − 1). Also assume there exist

b′0, b
′
1, . . . , b

′
n−1 ∈ η−ω (b) such that b′0 <0 . . . <0 b′n−1 and b

′
i <0 a′i (i = 0, 1, . . . , n− 1)

and b′i+1 �0 a′i (i = 0, 1, . . . , n− 2).

Since b �ω akn−1 , by Corollary 5.13 there exists b̃′n ∈ η−ω (b) \ η−ω (akn−1); by

Lemma 5.5, η−ω (b) is directed, so there exists b′n ∈ η−ω (b) such that b
′
n−1, b̃

′
n 60 b′n.

As b′n−1 ∈ η−ω (akn−1) (a down-set by Lemma 5.5), we have b
′
n−1 <0 b′n. Because

η−ω (akn−1) is a down-set by Lemma 5.5, b
′
n �0 a′n−1.

By the assumption, there exists kn ∈ N0 such that b
′
n ∈ η−ω (akn

). By Corol-

lary 5.13, we may assume kn > kn−1. By Corollary 5.13, a′n−1 ∈ η−ω (akn
).

By Lemma 5.5, η−ω (akn
) is directed, so there exists a′n ∈ η−ω (akn

) such that

a′n−1, b
′
n 60 a′n. Since b′n �0 a′n−1, then a′n−1 <0 a′n. Since a′n−1 /∈ η−ω (b), we

have b′n <0 a′n.

Hence, we have a′0, a
′
1, a

′
2, . . . , b

′
0, b

′
1, b

′
2, . . . ∈ P0 such that a

′
0 <0 a′1 <0 . . . and

b′0 <0 b′1 <0 . . . and b′i <0 a′i and b′i+1 �0 a′i and a′i /∈ η−ω (b) and b′i ∈ η−ω (b) (i =

0, 1, 2, . . .). By Lemma 5.5, η−ω (b) is a down-set, so we have a
′
i � b′j (i, j = 0, 1, 2, . . .).

That is, ω × 2 embeds in P0 by Observation 1.3. �

Proposition 5.15. If P0 does not contain ω×2, then Pω does not contain ω×2.

P r o o f. Assume Pω contains ω × 2, for a contradiction. Use Corollary 5.13,

Lemma 5.5, and Proposition 4.2. �

Proposition 5.16. If P0 does not contain ω × 2, then Pω is sup-pre-regular.
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P r o o f. Let D be a directed subset of Pω such that b :=
∨
ω

D exists. Assume

a ∈ Pω is such that a <ω b. Assume for a contradiction that a ≮ω d for all d ∈ D.

Hence, b /∈ D and D has no maximal element. By Lemma 2.4, Proposition 4.2

and induction, we may assume there exist a0, b0 ∈ P0 such that ϕ0(a0) = a and

ϕ0(b0) = b. Let ai := ϕi0(a0) and bi := ϕi0(b0) for i < ω.

Claim 1. The element b0 is an upper bound of
⋃

d∈D

η−ω (d).

P r o o f of Claim 1. Take any d ∈ D. There exist a nonzero i < ω and di ∈ Pi

such that ϕi(di) = d and η−ω (d) = η−i (di). Now ϕi(bi) = b, so since ϕi is an order-

embedding, bi >i di. Hence bi ⊇ di and ↓i bi ⊇ {di}, so by Remark 3.2 (2),

η−i (bi) = η−(η−(. . . η−

i times

({bi}) . . .)) = η−(η−(. . . η−

i times

(↓i bi) . . .)) (by Lemma 3.4)

⊇ η−(η−(. . . η−

i times

({di}) . . .)) = η−i (di) = η−ω (d).

By Lemma 5.2, η−i (bi) = η−1 (↓0 b0) = η−({↓0 b0}) =
⋃
{↓0 b0} =↓0 b0. Thus, b0 is

an upper bound of η−ω (d). �

Claim 2. Assume c0 ∈ P0 is an upper bound of
⋃

d∈D

η−ω (d). Then b0 60 c0.

P r o o f of Claim 2. For 0 < i < ω, let ci := ϕi0(c0) and let c := ϕ0(c0). Choose

d ∈ D. As before, there exist i such that 0 < i < ω and di ∈ Pi such that ϕi(di) = d

and η−ω (d) = η−i (di) = η−(η−(. . . η−

i times

({di}) . . .)). By Lemma 3.9, ci is an upper bound

of {di} in Pi. Hence, ci >i di, so, applying ϕi, c >ω d. Therefore c >ω b. Since ϕ0

is an order-embedding, c0 >0 b0. �

By Claims 1 and 2, b0 =
∨
0

[ ⋃
d∈D

η−ω (d)
]
.

Case 1. a0 60 x0 for some x0 ∈
⋃

d∈D

η−ω (d). Say x0 ∈ η−ω (d), where d ∈ D. As

before, there exist i such that 0 < i < ω and di ∈ Pi such that ϕi(di) = d and η−ω (d) =

η−i (di). By Lemma 5.5, a0 belongs to the down-set η
−
ω (d). By Lemmas 3.4, 3.7

and 3.8, ai = ϕi0(a0) ∈↓i di, so ai 6i di and a 6ω d. Since D has no maximal

element, there exists d′ ∈ D such that a <ω d′.

Case 2. a0 �0 x0 for all x0 ∈
⋃

d∈D

η−ω (d). By Corollary 5.7,
⋃

d∈D

η−ω (d) ∈ P1.

Claim 3. For all d ∈ D, d 6ω ϕ1(
⋃

d̄∈D

η−ω (d̄)).

P r o o f of Claim 3. Let d ∈ D. As before, let i be such that 0 < i < ω and let

di ∈ Pi be such that ϕi(di) = d and η−ω (d) = η−i (di). By Lemma 5.4, we may assume

i > 2. Assume for a contradiction that

d �ω ϕ1

( ⋃

d̄∈D

η−ω (d̄)
)
.
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Since ϕi is an order-embedding,

di �i ϕi1

( ⋃

d̄∈D

η−ω (d̄)
)
.

By applying Lemma 3.8 (2) i− 1 times (initially with B = {di}), there exists

ã1 ∈ η−(η−(. . . η−

i−1 times

({di}) . . .))

such that ã1 �1

⋃
d̄∈D

η−ω (d̄). Thus, there exists p̃0 ∈ ã1 such that p̃0 /∈
⋃

d̄∈D

η−ω (d̄). But

p̃0 ∈
⋃

η−(η−(. . . η−

i−1 times

({di}) . . .)) = η−(η−(. . . η−

i times

({di}) . . .)) = η−ω (d),

a contradiction. �

By Claim 3, b 6ω ϕ1

( ⋃
d∈D

η−ω (d)
)
. Thus a <ω ϕ1

( ⋃
d∈D

η−ω (d)
)
. By Proposi-

tion 2.1 (1) there exists h such that 0 < h < ω and ah 6h ϕh1

( ⋃
d∈D

η−ω (d)
)
and

the inequality is strict. Since ϕh1 is an order-embedding, a1 <1

⋃
d∈D

η−ω (d). Thus

a0 ∈
⋃

d∈D

η−ω (d), violating the assumption behind Case 2. �

Proposition 5.17. If P0 does not contain ω × 2 and does not contain ω∂ × 2,

then Pω does not contain ω∂ × 2.

P r o o f. Use Lemma 5.5, Corollary 5.13, and Lemma 4.3. �

Proposition 5.18. Assume P0 does not contain ω × 2.

(1) If every nonempty chain of P0 has an infimum, then every nonempty chain of

Pω has an infimum.

(2) If P0 is inf-regular, then Pω is inf-regular.

P r o o f. (1) Let C be a nonempty chain in Pω with no least element. By

Lemma 5.5 and Corollary 5.13, {η−ω (c) : c ∈ C} satisfies the conditions of Lemma 4.5.

Hence, there exists e0 ∈ P0 such that e0 ∈
⋂
c∈C

η−ω (c). By Theorem 5.12, ϕ0(e0) 6ω c

for all c ∈ C.

Further, if f ∈ Pω is a lower bound of C in Pω , then by Corollary 5.13, η
−
ω (f) ⊆

η−ω (c) for all c ∈ C. By the conditions of e0 given by Lemma 4.5, η
−
ω (f) ⊆↓0 e0.

Thus x0 60 e0 for all x0 ∈ η−ω (f), so ϕ0(x0) 6ω ϕ0(e0) for all x0 ∈ η−ω (f), and hence

by Theorem 5.12, f 6ω ϕ0(e0). Thus ϕ0(e0) =
∧
ω

C.
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(2) Let a ∈ Pω be such that a >ω ϕ0(e0) = ϕ1(ϕ10(e0)). By Lemma 5.4,

η−ω (ϕ0(e0)) = η−1 (ϕ10(e0)) = η−({↓0 e0}) =↓0 e0. By Corollary 5.13 and Lemma 5.5,

η−ω (a) )↓0 e0, so by Lemma 4.5, there exists c ∈ C such that η−ω (a) ) η−ω (c). By

Corollary 5.13, a >ω c. �

Corollary 5.19. Let P0 be a poset not containing ω× 2. Let R be a sup-regular

poset. Let f0 : P0 → R be an order-embedding. Then there is an order-embedding

fω : Pω → R such that fω ◦ ϕ0 = f0.

P r o o f. Use Lemma 3.11 and Lemma 2.3 and Lemma 2.2 (1). �

6. “Chain-completing” a sup-pre-regular poset

The articles [11] and [15] also discuss posets that could be called “chain-

completions.” In fact, the construction below may be equivalent to a special case of

a version of [11], Definition 6, although we have not checked this.

Definition 6.1. Let P be a sup-pre-regular poset. Let D̃ = {D ∈ I(P ) :∨
P

D does not exist}. Let P# = {↓ p : p ∈ P} ∪ D̃. Define a binary relation ⊑

on P# as follows. (Let p, p′ ∈ P and let D,D′ ∈ D̃.)

↓ p ⊑↓ p′ if p 6P p′,

↓ p ⊑ D′ if there exists a directed subset E ⊆ D′ such that p 6P

∨
E,

D ⊑↓ p′ if D ⊆↓ p′,

D ⊑ D′ if D ⊆ D′.

Let ι#P : P → P# be the map p 7→↓ p (p ∈ P ).

R em a r k 6.2. Note that for all p ∈ P , ↓ p /∈ D̃.

In the following theorem, if W is a poset and w ∈ W , we write ↓W w to mean

{v ∈ W : v 6 w}; we use the “W” subscript merely to remind the reader what poset

we are referring to, since the theorem deals with several posets.

Theorem 6.3. Let P be a sup-pre-regular poset. Then (P#,⊑) is a poset and

ι#P is an order-embedding.

Let E be a directed subset of P#. Then
∨
P#

E exists. Indeed:

(1) If for each e ∈ E , there exists qe ∈ P such that e ⊑↓ qe and ↓ qe ∈ E , let

F := {q ∈ P : ↓ q ∈ E}.

(1a) The set F is directed.

(1b) If
∨
P

F exists, then ↓P (
∨
P

F ) =
∨
P#

E .

(1c) If
∨
P

F does not exist, then ↓ F =
∨
P#

E .
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(2) If there exists ẽ ∈ E such that ẽ 6⊑↓ q for all q ∈ P with ↓ q ∈ E , let G :=
⋃
{D ∈

E : ẽ ⊑ D}.

(2a) We have ẽ ∈ D̃ and G ∈ I(P ).

(2b) If
∨
P

G exists, then ↓P (
∨
P

G) =
∨
P#

E .

(2c) If
∨
P

G does not exist, G =
∨
P#

E .

P r o o f. To avoid having to repeat this, assume p, p′, p′′ ∈ P and D,D′, D′′ ∈ D̃.

We show ⊑ is a partial ordering.

Reflexivity: Obviously ↓ p ⊆↓ p and D ⊆ D.

Antisymmetry: Assume ↓ p ⊑↓ p′ and ↓ p′ ⊑↓ p. Then p = p′ and hence ↓ p =↓ p′.

Now assume ↓ p ⊑ D and D ⊑↓ p. Then there exists a directed subset E ⊆ D

such that p 6
∨
E and also D ⊆↓ p. Thus, p =

∨
E and hence

∨
D exists (and

equals p), contradicting the fact that D ∈ D̃. Finally, assume D ⊑ D′ and D′ ⊑ D.

Then D = D′.

Transitivity: Case 1. ↓ p ⊑↓ p′ and ↓ p′ ⊑↓ p′′. Then p 6 p′′, so ↓ p ⊑↓ p′′.

Case 2. ↓ p ⊑↓ p′ and ↓ p′ ⊑ D′′. Then p 6 p′ and there exists a directed subset

E′ ⊆ D′′ such that p′ 6
∨
E′. Then ↓ p ⊑ D′′.

Case 3. ↓ p ⊑ D′ and D′ ⊑↓ p′′. Then there exists a directed set E ⊆ D′ such

that p 6
∨
E and D′ ⊆↓ p′′. As

∨
E 6 p′′, we have p 6 p′′, so ↓ p ⊑↓ p′′.

Case 4. ↓ p ⊑ D′ and D′ ⊑ D′′. Then there exists a directed set E ⊆ D′ such

that p 6
∨
E, and D′ ⊆ D′′. Hence ↓ p ⊑ D′′.

Case 5. D ⊑↓ p′ and ↓ p′ ⊑↓ p′′. Then D ⊆↓ p′ ⊆↓ p′′, so D ⊑↓ p′′.

Case 6. D ⊑↓ p′ and ↓ p′ ⊑ D′′. Then D ⊆↓ p′ and there exists a directed set

E′ ⊆ D′′ such that p′ 6
∨
E′. As D has no greatest element, D ⊆

◦

↓ p′. Thus, for

all d ∈ D, d <
∨
E′, so by sup-pre-regularity, there exists e′d ∈ E′ such that d < e′d.

Hence D ⊆ D′′, so D ⊑ D′′.

Case 7. D ⊑ D′ and D′ ⊑↓ p′′. Then D ⊆ D′ ⊆↓ p′′, so D ⊑↓ p′′.

Case 8. D ⊑ D′ and D′ ⊑ D′′. Then D ⊆ D′ ⊆ D′′, so D ⊑ D′′.

Let E be a directed subset of P#.

(1) Let F = {q ∈ P : ↓ q ∈ E}. Assume that for all e ∈ E , there exists q ∈ F such

that e ⊑↓ q.

(1a) Claim 1. The set F is directed.

P r o o f of Claim 1. Since E 6= ∅, being directed, F 6= ∅. Now let q, q′ ∈ F . Then

↓ q, ↓ q′ ∈ E , so there exists e ∈ E such that ↓ q, ↓ q′ ⊑ e. By assumption, there

exists q′′ ∈ F such that e ⊑↓ q′′, so ↓ q, ↓ q′ ⊑↓ q′′, so q, q′ 6 q′′. �

(1b) Assume
∨
P

F exists.

Claim 2. ↓P
(∨

P

F
)
=

∨
P#

E.
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P r o o f of Claim 2. First we show ↓P
(∨

P

F
)
is an upper bound of E in P#.

Pick e ∈ E . If e =↓ q for some q ∈ P , then q ∈ F , so q 6
∨
P

F and hence

e =↓ q ⊑↓P
(∨

P

F
)
. If e = D ∈ D̃, then by assumption there exists q′ ∈ F such that

e ⊑↓ q′. Hence, by transitivity and the above sentence, we have e ⊑↓ (
∨
F ).

Now suppose ↓ r is an upper bound of E in P#, where r ∈ P . Then for all q ∈ F ,

↓ q ⊑↓ r, so q 6 r. Thus
∨
F 6 r and hence ↓ (

∨
F ) ⊑↓ r.

Finally, suppose D ∈ D̃ is an upper bound of E . Then for all q ∈ F , ↓ q ⊑ D,

so there exists a directed set Eq ⊆ D such that q 6
∨
Eq. If F has a maximal

element q∗, then q∗ =
∨
F and ↓ (

∨
F ) =↓ q∗ ⊑ D.

Otherwise, given q ∈ F , there exists q̂ ∈ F such that q < q̂, so q <
∨
Eq̂. By

sup-pre-regularity, there exists g ∈ Eq̂ such that q < g and thus q ∈ D. Hence F ⊆ D

is a directed set (by Claim 1) and
∨
F 6

∨
F , so ↓P

(∨
P

F
)
⊑ D. �

(1c) Assume
∨
P

F does not exist. Then ↓P F ∈ D̃.

First, we show ↓P F is an upper bound of E in P#. Pick q ∈ F . Then {q} is a

directed set, q =
∨
{q}, and {q} ⊆↓ F , so ↓ q ⊑↓ F .

Now let D ∈ D̃ ∩ E . By assumption, there exists q ∈ F such that D ⊑↓ q, and by

the above, ↓ q ⊑↓ F , so by transitivity D ⊑↓ F .

Let q ∈ P be such that ↓ q is an upper bound of E . Thus, for all p ∈ F , ↓ p ⊑↓ q,

i.e., ↓ p ⊆↓ q, so ↓ F ⊆↓ q and hence ↓ F ⊑↓ q.

Finally, let D ∈ D̃ be an upper bound of E . Then for all q ∈ F , ↓ q ⊑ D, so there

exists a directed set Eq ⊆ D such that q 6
∨
Eq. Since

∨
F does not exist, F does

not have a maximal element, so for any q ∈ F there exists q̂ ∈ F such that q <
∨
Eq̂;

by sup-pre-regularity, there exists g ∈ Eq̂ such that q < g, and hence q ∈ D. That

is, ↓ F ⊆ D, so ↓ F ⊑ D.

(2) Assume there exists ẽ ∈ E such that ẽ 6⊑↓ q for all q ∈ P such that ↓ q ∈ E .

Let G :=
⋃
{D ∈ E : ẽ ⊑ D}.

(2a) Obviously ẽ ∈ D̃ and G ∈ I(P ) by Lemma 3.6.

(2b) Assume
∨
P

G exists. First, we show ↓P
(∨
P

G
)
is an upper bound of E in P#.

Let e ∈ E . Since E is directed, we may assume by transitivity that ẽ ⊑ e. Then

e ⊆ G, so p 6
∨
G for all p ∈ e, and hence e ⊆↓

(∨
P

G
)
, so e ⊑↓

(∨
P

G
)
.

Now let q ∈ P be such that ↓ q is an upper bound of E in P#. Then for all D ∈ E

such that ẽ ⊑ D, we have D ⊑↓ q, so D ⊆↓ q, and hence G ⊆↓ q, and thus
∨
G 6 q

and ↓
∨
G ⊆↓ q, or ↓

∨
G ⊑↓ q. If D′ ∈ D̃ is an upper bound of E in P#, then for

all D ∈ E such that ẽ ⊑ D, we have D ⊑ D′, or D ⊆ D′, so G ⊆ D′. By (2a), G is

directed, and
∨
G 6

∨
G, so ↓

∨
G ⊑ D′.
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We conclude that ↓
∨
G =

∨
P#

E .

(2c) Assume
∨
P

G does not exist. In this case, G ∈ D̃. First, we show G is an

upper bound of E in P#. Take e ∈ E . Since E is directed, we may assume (since we

then use transitivity) that ẽ ⊑ e, so e ⊆ G and hence e ⊑ G.

Now let Q ∈ P# be an upper bound of E in P#. Then for all D ∈ E such that

ẽ ⊑ D, we have D ⊑ Q, so D ⊆ Q. Hence, G ⊆ Q and thus G ⊑ Q.

We conclude that G =
∨
P#

E . �

.
.
.

.
.
.

.
.
.

.
.
.

P#

(b)

x0

x1

x2

x3

xω
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y2

P
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Figure 7.

Lemma 6.4. Let P be a sup-pre-regular poset not containing ω×2. Then for all

e, e′ ∈ P#, e ⊑ e′ if and only if e ⊆ e′.

P r o o f. We only need to consider the case in which e =↓P p and e′ = D′ ∈ D̃.

In particular, D′ has no maximal element. If e ⊆ e′, then let E = {p}, a directed

subset of D′ such that p 6 p =
∨
E. Hence e ⊑ e′.

Now assume e ⊑ e′ and let E ⊆ D′ be directed and such that p 6
∨
P

E. If p ∈ D′,

we are done, so assume p /∈ D′. Hence, for all d′ ∈ D′, p � d′, so there exists g ∈ E

such that g � d′. Since
∨
E =

∨
(↓ E) exists but

∨
D′ does not, ↓ E ( D′. By

Lemma 4.1, there exists d′ ∈ D′ such that ↓ E ⊆
◦

↓ d′, a contradiction. �

Corollary 6.5. Let P be a sup-pre-regular poset not containing ω×2. Then P#

is sup-regular.

P r o o f. By Theorem 6.3, every nonempty chain E has a supremum. Let a ∈ P#

be such that a ⊏
6=

∨
P#

E . By Lemmas 4.1 and 6.4, there exists d′ ∈
∨
P#

E such that

a ⊆
◦

↓Pd
′. We consider the four possibilities of Theorem 6.3, (1b), (1c), (2b), and (2c).
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(1b) If a =↓P p for some p ∈ P , then p <P

∨
P

F , so by sup-pre-regularity, there

exists f ∈ F such that p <P f , and hence ↓ p (↓ f ∈ E , so ↓ p ⊏
6=
↓ f , by Lemma 6.4.

If a = D ∈ D̃, the previous paragraph tells us D ⊆↓ F . We cannot have D =↓ F

since
∨
(↓ F ) exists but

∨
D does not. Hence, D (↓ F , so by Lemma 4.1, there

exists g′′ ∈↓ F such that D ⊆
◦

↓ g′′. Hence, there exists f ∈ F such that D (↓ f , i.e.,

by Lemma 6.4, D⊏
6=
e for some e ∈ E .

(1c) By Lemmas 4.1 and 6.4, there exists f ∈ F such that a ⊆
◦

↓ f , so a (↓ f ∈ E .

(2b) If a =↓P p for some p ∈ P , then by sup-pre-regularity, p <P g for some g ∈ G,

so a =↓ p ( D′′ for some D′′ ∈ E . If a = D ∈ D̃, the previous sentence tells us that

D ⊆ G. We cannot have D = G, since
∨
G exists but

∨
D does not, so D ( G, and

hence, by Lemma 4.1 there exists g′′ ∈ G such that D ⊆
◦

↓ g′′—thus D (↓ g′′ ⊆ D′′

for some D′′ ∈ E .

(2c) By Lemmas 4.1 and 6.4, there exists g ∈ G such that a ⊆
◦

↓ g, so a (↓ g ⊆ D′′

for some D′′ ∈ E . �

Corollary 6.6. Let P be a sup-pre-regular poset not containing ω × 2.

(1) The poset P# does not contain ω × 2.

(2) If P does not contain ω∂ × 2, then P# does not contain ω∂ × 2.

(3) If every nonempty chain of P has an infimum, every nonempty chain of P# has

an infimum.

(4) If P is inf-regular, then P# is inf-regular.

P r o o f. (1) This follows from Corollary 6.5 and Observation 1.2.

(2) This follows from Lemmas 4.3 and 6.4.

(3) and (4) These follow from Lemmas 4.5 and 6.4. �

Proposition 6.7. Let P be a sup-pre-regular poset. Let f : P → R be an order-

embedding into a sup-regular poset. Then there exists an order-embedding f# :

P# → R such that f# ◦ ι#P = f .

P r o o f. Since f is an embedding, ω×2 does not embed in P by Observation 1.2.

For D ∈ P#, define f#(D) :=
∨
R

{f(d) : d ∈ D}.

Let q, q′ ∈ P#. If q ⊑ q′, then by Lemma 6.4 q ⊆ q′, so f#(q) 6R f#(q′). Now

assume q 6⊑ q′. By Lemma 6.4, q * q′, so there exists p̄ ∈ q \ q′.

Assume for a contradiction that f#(q) 6R f#(q′). If f#(q) <R f#(q′), then

f(p̄) <R

∨
R

{f(d′) : d′ ∈ q′}. By sup-regularity, there exists d′ ∈ q′ such that f(p̄) <R

f(d′), so p̄ <P d′ and hence p̄ ∈ q′, a contradiction. Thus f#(q) = f#(q′).
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Case 1. q =↓ p and q′ =↓ p′ for some p, p′ ∈ P . Then f(p) = f(p′), so p = p′,

and hence q = q′, a contradiction.

Case 2. q =↓ p for some p ∈ P and q′ = D′ ∈ D̃. In particular, D′ has no

maximal element. Hence, f(d′) <R f(p) for all d ∈ D′, so d′ <P p for all d′ ∈ D′,

i.e., D′ (↓P p. Thus p is an upper bound of D′. Since
∨
P

D′ does not exist, there

exists p̃ ∈ P such that D′ ⊆↓P p̃ but p �P p̃. Hence, f(p) = f#(q) = f#(q′) =∨
R

{f(d′) : d′ ∈ D′} 6R f#(↓P p̃) = f(p̃), so p 6P p̃, a contradiction.

Case 3. q = D ∈ D̃. Thus, D does not have a maximal element, so there

exists ¯̄p ∈ q \ q′ such that p̄ <P ¯̄p. Hence, f(p̄) <R

∨
{f(d′) : d′ ∈ q′}. By sup-

regularity, there exists d′ ∈ q′ such that f(p̄) < f(d′), so p̄ <P d′ and hence p̄ ∈ q′, a

contradiction. �

Theorem 6.8. Let P be a poset not containing ω×2. Then there is a sup-regular

poset P⌣ and there is an order-embedding ϕP : P → P⌣ such that:

(1) If f : P → R is an order-embedding into a sup-regular poset, there is an order-

embedding f⌣ : P⌣ → R such that f⌣ ◦ ϕP = f .

(2) If P does not contain ω∂ × 2, then P⌣ does not contain ω∂ × 2.

(3) If P is inf-regular, then P⌣ is inf-regular.

P r o o f. Let P0 = P . Let P⌣ := (Pω)
#. Let ϕP := ι#ω ◦ϕ0 : P0 → P⌣. The poset

P⌣ is well-defined by Proposition 5.16. By Proposition 5.15, Proposition 5.16, and

Corollary 6.5, Pω is sup-pre-regular and does not contain ω × 2; P⌣ is sup-regular.

By Theorem 6.3, ϕP is an order-embedding.

(1) Let R be a sup-regular poset and f : P → R an order-embedding. By Corol-

lary 5.19 with f0 = f , there exists an order-embedding fω : Pω → R such that

fω◦ϕ0 = f . By Proposition 6.7, there is an order-embedding f⌣ := (fω)
# : P⌣ → R

such that (fω)
# ◦ ι#ω = fω. Hence, f

⌣ ◦ ϕP = (fω)
# ◦ ι#ω ◦ ϕ0 = fω ◦ ϕ0 = f .

(2) If P does not contain ω∂ × 2, then Pω does not contain ω∂ × 2 by Proposi-

tion 5.17. By Corollary 6.6 (2), P⌣ does not contain ω∂ × 2.

(3) If P is inf-regular, then, by Proposition 5.18 (2), Pω is inf-regular. By Corol-

lary 6.6 (4), P⌣ is inf-regular. �

Corollary 6.9. Let P be a poset that does not contain ω × 2 and does not

contain ω∂ × 2. Then there is a regular poset P reg and there is an order-embedding

ΨP : P → P reg such that: If f : P → R is an order-embedding into a regular poset,

there is an order-embedding f reg : P reg → R such that f reg ◦ΨP = f .
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P r o o f. By Theorem 6.8, especially part (2), (P⌣)∂ is inf-regular and does not

contain ω × 2. By Theorem 6.8, especially part (3), [(P⌣)∂ ]⌣ is regular, so P reg :=

{[(P⌣)∂ ]⌣}∂ is regular. The map

p 7→ (∂[(P⌣)∂ ]⌣ ◦ ϕ(P⌣)∂ ◦ ∂P⌣ ◦ ϕP )(p) (p ∈ P )

is an order-embedding ΨP from P to P reg.

If f : P → R is an order-embedding to a regular poset, then by Theorem 6.8(1),

there is an order-embedding f⌣ : P⌣ → R such that

f⌣ ◦ ϕP = f.

Thus, we get an order-embedding g := ∂R ◦ f⌣ ◦ ∂−1
P⌣ : (P⌣)∂ → R∂ . Since R∂ is

a regular poset, by Theorem 6.8 (1) there is an order-embedding

g⌣ : [(P⌣)∂ ]⌣ → R∂

such that

g⌣ ◦ ϕ(P⌣)∂ = g,

so

f reg = ∂−1
R ◦ g⌣ ◦ ∂−1

[(P⌣)∂ ]⌣

is an order-embedding from P reg to R and

f reg ◦ΨP = f reg ◦ ∂[(P⌣)∂ ]⌣ ◦ ϕ(P⌣)∂ ◦ ∂P⌣ ◦ ϕP

= ∂−1
R ◦ g⌣ ◦ ∂−1

[(P⌣)∂ ]⌣
◦ ∂[(P⌣)∂ ]⌣ ◦ ϕ(P⌣)∂ ◦ ∂P⌣ ◦ ϕP

= ∂−1
R ◦ g⌣ ◦ ϕ(P⌣)∂ ◦ ∂P⌣ ◦ ϕP = ∂−1

R ◦ g ◦ ∂P⌣ ◦ ϕP

= ∂−1
R ◦ ∂R ◦ f⌣ ◦ ∂−1

P⌣ ◦ ∂P⌣ ◦ ϕP = f⌣ ◦ ϕP = f.

�

Obviously some work could be done regarding the uniqueness of these extensions,

or regarding extensions of order-preserving maps that are not necessarily order-

embeddings. And perhaps these techniques can be used to address Grillet’s con-

jecture [7], page 157, mentioned in Section 1.

7. An example sought by Ginsburg in 1984

Let P be a poset. We write p ⋖ q if p is a lower cover of q in P . An element m ∈ P

is completely meet-irreducible if {p ∈ P : p > m} has a least element m∗, which will

be the unique upper cover of m. For p, p′ ∈ P , we write p ∼ p′ if p 6 p′ or p > p′;

we write p ‖ p′ if p ≁ p′; we write p E p′ if every maximal chain of P containing p

also contains p′ (equivalently, if p ∼ q ∈ P , then p′ ∼ q); we write p♦p′ if p E p′ and

p′ E p; see [9], [4].
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Observation 7.1. Let C be a minimal cutset of a poset P . If c1, c2 ∈ C and

c1 E c2, then c1 = c2.

Let T be a poset. For each t ∈ T , let Pt be a poset and assume that Pt ∩ Pt′ = ∅

if t, t′ ∈ T and t 6= t′. For p ∈ Pt, let τ(p) = t (t ∈ T ). The lexicographic sum of the

family (Pt)t∈T is the poset on
⋃
t∈T

Pt defined by:

x 6 y if

{
τ(x) = τ(y) and x 6Pτ(x)

y, or

τ(x) <T τ(y)

(x, y ∈
⋃
t∈T

Pt). Two special cases are the disjoint sum of posets Pt and Pu, Pt + Pu

(see [2], Section 1.24, if {t, u} is a two-element antichain) and the ordinal sum P0⊕P1

(see [2], Section 1.24, where 0 < 1). Note that if x, y ∈
⋃
t∈T

Pt and x 6 y, then

τ(x) 6T τ(y), so that each Pt (t ∈ T ) is a convex subset of the lexicographic sum.

Slatinský in [14], 3.9 Satz looked at when a lexicographic sum was a semilattice,

so the following is but a trivial extension.

Proposition 7.2. Let T be a nonempty poset and (Pt)t∈T a family of pairwise

disjoint nonempty posets. Let X ⊆
⋃
t∈T

Pt. Then
∨
X exists in the lexicographic

sum P if and only if
∨
T

{τ(x) : x ∈ X} exists—call it t0—and:

(1) If t0 /∈ τ [X ], then Pt0 has a least element.

(2) If t0 ∈ τ [X ] and the set {y ∈ X : τ(y) = t0} has an upper bound in Pt0 , then

that set has a least upper bound with respect to Pt0 .

(3) If t0 ∈ τ [X ] and the set {y ∈ X : τ(y) = t0} has no upper bound in Pt0 , then

t0 is completely meet-irreducible and Pt∗0
has a least element.

R em a r k 7.3. Note that in

(1)
∨
X = 0Pt0

;

(2)
∨
X =

∨
Pt0

{y ∈ X : τ(y) = t0};

(3)
∨
X = 0Pt∗

0
.

P r o o f. Case (1): τ [X ] has no greatest element. First, assume z :=
∨
X exists.

Then for all x ∈ X , τ(x) 6 τ(z), so τ(z) is an upper bound of τ [X ]. If w ∈ T is an

upper bound of τ [X ], then w /∈ τ [X ]. Hence, if p ∈ Pw, then p is an upper bound

of X , so z 6 p and thus τ(z) 6 τ(p) = w. Therefore
∨
τ [X ] exists and equals τ(z).

Since every p ∈ Pτ(z) is an upper bound of X , Pτ(z) has a least element (which is z).

This is (1).
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Now assume t0 =
∨
T

τ [X ] exists and (1) holds. Then the least element of Pt0 is

an upper bound of X . If q ∈ P is an upper bound of X in P , then τ(q) is an upper

bound of τ [X ] in T , so t0 6 τ(q), and either t0 < τ(q), in which case 0Pt0
6 q, or

t0 = τ(q), in which case q ∈ Pt0 and again 0Pt0
6 q. Hence 0Pt0

=
∨
X .

Case (2): τ [X ] has a greatest element t0.

Case (2a): {x ∈ X : τ(x) = t0} has an upper bound p′ in Pt0 . First assume

z :=
∨
X exists. Since p′ is an upper bound of X , then z 6 p′, and since x 6 z for

some x ∈ Pt0 , we know τ(z) = t0.

Let u ∈ Pt0 be an upper bound of {y ∈ X : τ(y) = t0} in Pt0 . Then u is an upper

bound of X in P . Hence z 6 u. Thus z =
∨
Pt0

{y ∈ X : τ(y) = t0}. Hence (2) holds.

Now assume ζ :=
∨
Pt0

{y ∈ X : τ(y) = t0} exists. Then ζ is an upper bound of X

in P . If u is an upper bound of X in P , then in Case 2, t0 6 τ(u). If τ(u) > t0,

then ζ 6 u. If τ(u) = t0, then u is an upper bound in Pt0 of {y ∈ X : τ(y) = t0}, so

ζ 6 u. Thus ζ =
∨
X .

Case (2b): {x ∈ X : τ(x) = t0} has no upper bound in Pt0 . First assume z :=
∨
X

exists. Then τ(z) > t0. But any u ∈ P such that τ(u) > t0 is an upper bound of X ,

so τ(u) > τ(z). Hence, t∗0 = τ(z) is the unique upper cover of the completely meet-

irreducible element t0. Since any u ∈ Pt∗0
is an upper bound of X , we must have

z = 0Pt∗
0
. Thus (3) holds.

Now assume (3) holds. Then 0Pt∗
0
is an upper bound of X . If u is an upper bound

of X , then t0 6 τ(u), but since in Case 2b, t0 6= τ(u), we have t0 < τ(u). Hence

t∗0 6 τ(u), so either t∗0 < τ(u) and 0Pt∗
0
6 u or t∗0 = τ(u) and again 0Pt∗

0
6 u. Thus

0Pt∗
0
=

∨
X . �

Grillet [7], pages 160–161 took a poset E and defined E∗ to be

{(u, v) ∈ E × E : u ⋖ v}.

For some S ⊆ E∗, he defined a partial ordering on E := E ∪ S as follows (where

x, y ∈ E and (u, v), (u′, v′) ∈ S):

x <E y ⇔ x <E y, x <E (u, v) ⇔ x 6E u,

(u, v) <E x ⇔ v 6E x, (u, v) <E (u′, v′) ⇔ v 6E u′.

Grillet had the hypothesis that E was regular, and proved that E was regular (in

particular, he showed what the supremum of a nonempty chain was); but we will not

assume E is regular.

The above definition makes it clear that (u, v) ∈ S is completely meet-irreducible

in E with unique upper cover v, and dually.
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Lemma 7.4. Let X ⊆ E. Then
∨
E

X exists if and only if
∨
E

X exists. In this case,

the two are equal.

P r o o f. Assume
∨
E

X exists. Since every (u, v) ∈ S is completely join-irreducible,
∨
E

X ∈ E. Obviously this means
∨
E

X =
∨
E

X .

Now assume
∨
E

X exists. It is an upper bound for X with respect to E. If

(u, v) ∈ S is an upper bound for X , then x 6 u for all x ∈ X ; hence
∨
E

X 6 u and

thus
∨
E

X 6 (u, v). We conclude that
∨
E

X =
∨
E

X . �

Let Υ(x) = x for x ∈ E and let Υ(u, v) = v for (u, v) ∈ S. The following is

a trivial modification of Grillet’s [7], Lemma 9.

Proposition 7.5. Let Y ⊆ E. If Y does not have a greatest element, then
∨
E

Y

exists if and only if
∨
E

Υ[Y ] exists. In this case, the two are equal.

P r o o f. Assume
∨
E

Y exists. Since Y has no greatest element, then
∨
E

Y /∈ E∗.

Thus
∨
E

Y ∈ E and for every y ∈ Y , Υ(y) 6
∨
E

Y . Obviously any upper bound e of

Υ[Y ] in E is an upper bound of Y , so
∨
E

Y 6 e. Thus
∨
E

Y =
∨
E

Υ[Y ].

Now assume
∨
E

Υ[Y ] exists. Then it is an upper bound of Y . Let e ∈ E be an

upper bound of Y in E. For all y ∈ Y , Υ(y) 6 e, so
∨
E

Υ[Y ] 6 e. Let (u, v) ∈ S be an

upper bound of Y . Then for all y ∈ Y , Υ(y) 6 u, so
∨
E

Υ[Y ] 6E u and u 6E (u, v).

Hence
∨
E

Y =
∨
E

Υ[Y ]. �

Definition 7.6. Let E be a poset. Define ER to be the lexicographic sum of

(Pē)ē∈E , where

Pē =

{
{ē} if ē ∈ E,

R× {ē} if ē ∈ E∗.

For (u, v) ∈ E∗ and r ∈ R, we will denote (r, (u, v)) by r(u,v).

Corollary 7.7. If E is a complete lattice, then ER is a complete lattice.

P r o o f. By Proposition 7.5, E is a complete lattice and in fact for all Y ⊆ E,∨
Y ∈ E (with

∨
E

Y =
∨
E

X for some X ⊆ E) unless Y has a greatest element.

Let W ⊆ ER and let Y = τ [W ] ⊆ E. If
∨
Y ∈ E, then |P∨

Y | = 1, so (3)

cannot occur and in case (1) or (2), we have what we need to guarantee the existence

of
∨
ER

W .
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If Y does have a greatest element and
∨
Y ∈ E∗, then the Least Upper Bound

Property for R tells us
∨
ER

W exists in situation (2); in situation (3), the fact that
∨
Y

is completely meet-irreducible in E with upper cover (
∨

Y )∗ such that |P(
∨

Y )∗ | = 1

tells us
∨
ER

W exists. �

Lemma 7.8. If E is countable, then every antichain of ER is countable. Also,

ER is densely ordered.

P r o o f. Let A be an uncountable antichain of ER. Let A1 = A ∩
⋃
e∈E

Pe and let

A2 = A \ A1. Then A2 is uncountable. Since E
∗ ⊆ E × E is countable, there exist

distinct a, a′ ∈ A2 such that τ(a) = τ(a′)—say, (u, v) ∈ E × E—so a = r(u,v) and

a′ = r′(u,v). But r < r′ or r′ < r, so a < a′ or a > a′, a contradiction.

Now let q, q′ ∈ ER be such that q < q′. We show there exists q′′ ∈ ER such that

q < q′′ < q′.

Case 1. q ∈
⋃

e∈E

Pe.

Case 1a. q′ ∈
⋃
e∈E

Pe. Then q <E q′. If there exists q′′ ∈ E such that q <E

q′′ <E q′, then q <ER q′′ <ER q′. Otherwise, (q, q′) ∈ E∗, so q <ER 0.5(q,q′) <ER q′.

Case 1b. q′ = r′(u′,v′) for some r
′ ∈ R, (u′, v′) ∈ E∗. Then

q <ER (r′ − 1)(u′,v′) <ER r′(u′,v′).

Case 2. q = r(u,v) for some r ∈ R, (u, v) ∈ E∗.

Case 2a. q′ ∈
⋃
e∈E

Pe. Then r(u,v) <ER (r + 1)(u,v) <ER q′.

Case 2b. q′ = r′(u′,v′) for some r
′ ∈ R, (u′, v′) ∈ E∗. If v 6E u′, then r(u,v) <ER

v <ER r′(u′,v′).

Otherwise, u = u′, v = v′, and r <R r′, so r(u,v) <ER (r + r′)/2(u,v) <ER r′(u,v).

�

Higgs in [8], page 373 defined a posetM = {(a0, . . . , am) ∈ Zm+1 : m ∈ N0}, where

(x0, . . . , xm) > (y0, . . . , yn) if m 6 n, x0 = y0, . . . , xm−1 = ym−1, and xm > ym. We

say that the length of (a0, . . . , am) is m+ 1.

Higgs showed thatM has no minimal cutset, he stated that every principal up-set

is a chain, and he said that 1⊕ (M + F4)⊕ 1 is a complete lattice, where F4 is the

four-element fence [2], page 28 and 1 is a one-element poset.

Lemma 7.9 (Higgs [8], page 373). Every principal up-set of M is a chain.

P r o o f. Let ā = (a0, . . . , am), ā′ = (a′0, . . . , a
′
m′) > (b0, . . . , bn), where m 6

m′ 6 n. Then a0 = b0 = a′0; a1 = b1 = a′1; . . . ; am−1 = bm−1 = a′m−1; and am > bm;

bm = a′m; bm+1 = a′m+1; . . . ; b
′
m′−1 = a′m′−1; and a′m′ > bm′ .
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Case 1. m′ < n.

Case 1a. m < m′. Then a0 = a′0; a1 = a′1; . . . ; am−1 = a′m−1; a
′
m = bm, so

am > a′m and ā > ā′.

Case 1b. m = m′. Then a0 = a′0; a1 = a′1; . . . ; am−1 = a′m−1; and am ∼ a′m, so

ā ∼ ā′.

Case 2. m′ = n.

Case 2a. m < m′. Then a0 = a′0; a1 = a′1; . . . ; am−1 = am′−1; am > bm = a′m.

Hence ā > ā′.

Case 2b. m = m′. Then a0 = a′0; a1 = a′1; . . . ; am−1 = a′m−1; and am ∼ a′m, so

ā ∼ ā′. �

Lemma 7.10.

(1) Let E be a poset such that ↑E e is a chain for all e ∈ E. Then every principal

up-set of E is a chain.

(2) Let T be a poset such that ↑T t is a chain and Pt is a chain for all t ∈ T . Then

the lexicographic sum of the family (Pt)t∈T is such that every principal up-set

is a chain.

P r o o f. (1) Let α, β, γ ∈ E be such that α < β, γ.

Case 1. α ∈ E.

Case 1a. β, γ ∈ E. Then β ∼ γ.

Case 1b. β ∈ E and γ = (u, v) ∈ E∗. Then α 6 u, v, so β ∼ u, v, and either β 6 u

or v 6 β, since u ⋖E v. Hence β ∼ γ.

Case 1c. β, γ ∈ E∗. Say β = (u, v) and γ = (u′, v′). We have α 6 u, u′, v, v′.

Without loss of generality, u 6 u′. If u = u′, then as u ⋖E v and u′ ⋖E v′ but

v ∼ v′, we have v = v′. Hence β = γ.

If u < u′, then since u ⋖E v and v ∼ u′, we cannot have u′ < v, so v 6 u′ and

β 6 γ.

Case 2. α ∈ E∗. Then Υ(α) 6 β, γ. By Case 1, β ∼ γ.

(2) Let p, q, r ∈
⋃
t∈T

Pt be such that p 6 q, r. So τ(p) 6T τ(q), τ(r). Without loss

of generality, τ(q) 6 τ(r). If τ(q) < τ(r), then q 6 r. If τ(q) = τ(r), then q ∼ r. �

Corollary 7.11. Every principal up-set of MR is a chain.

Observation 7.12. Let P be a poset such that every principal up-set is a chain.

Then p E q for all p, q ∈ P such that p 6 q.

Let H := {0} ⊕M ⊕ {1}.

Proposition 7.13. The poset H is a complete lattice.
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P r o o f. Let D ⊆ H . If D = ∅ or D = {1H}, then
∧
D = 1H . If 0H ∈ D, then∧

D = 0H . So assume D ⊆ M and D 6= ∅. If there exist x, y ∈ D such that x ‖ y,

then
∧
D = 0H by Lemma 7.9, so assume D is a chain.

Case 1. sup{length of ā : ā ∈ D} = ∞. Then
∧
D = 0H .

Case 2. sup{length of ā : ā ∈ D} = n+ 1.

Case 2a. inf{k ∈ Z : (a0, . . . , an−1, k) ∈ D} = −∞. Then
∧
D = 0H .

Case 2b. inf{k ∈ Z : (a0, . . . , an−1, k) ∈ D} = m ∈ Z. Then

∧
D = (a0, . . . , an−1,m).

�

Lemma 7.14. Let h1, h2 ∈ H . Then h1 ⋖H h2 if and only if h1, h2 ∈ M and for

some n ∈ N0, a0, . . . , an ∈ Z, h1 = (a0, . . . , an) and h2 = (a0, . . . , an−1, an + 1).

P r o o f. The element 0H has no upper covers since for any (a0, . . . , an) ∈ M ,

0H < (a0, . . . , an−1, an − 1) < (a0, . . . , an). Also, 1H has no lower covers, since

(a0, a1, . . . , an) < (a0, . . . , an−1, an + 1) < 1H .

Now suppose h1, h2 ∈ H and h1 ⋖ h2. Then h1, h2 ∈ M . Say h1 = (b0, . . . , bn)

and h2 = (a0, . . . , am), where m,n ∈ N0. If m < n, then h2 > (b0, b1, . . . , bn−1,

bn + 1) > h1. Thus m = n, and hence h2 = (b0, . . . , bn−1, bn + 1).

Conversely, (a0, . . . , am−1, am + 1) > (a0, . . . , am−1, am), and if (a0, . . . , am−1,

am + 1) > (b0, . . . , bn) > (a0, . . . , am−1, am), then m 6 n 6 m, so m = n and

am + 1 > bm > am, which is impossible. �

Corollary 7.15. The set HR = {0H} ⊕MR⊕ {1H}.

Lemma 7.16. Let ā, b̄ ∈ M ∩ MR be such that ā ⋖M b̄. Then for any r ∈ R,

r(ā,b̄)♦HRā.

R em a r k 7.17. By Lemma 7.14, the hypothesis means that ā = (a0, . . . , am)

and b̄ = (a0, . . . , am−1, am + 1).

P r o o f. If c̄ ∈ M and c̄ 6 r(ā,b̄), then c̄ 6 ā. Now let (x̄, y) ∈ M∗ and s ∈ R. If

s(x̄,y) 6 r(ā,b̄), then either y 6 ā, so s(x̄,y) 6 ā, or else (x̄, y) = (ā, b̄), so ā 6 s(ā,b̄).

This shows that r(ā,b̄) EHR ā. By Corollary 7.11 and Observation 7.12, ā EHR r(ā,b̄).

�

The following is not used but may help the reader understand the structure ofMR.

Observation 7.18. Let α, β ∈ MR be such that α ♦ β but α 6= β. Then there

exist ā, b̄ ∈ M and r, s ∈ R such that ā ⋖M b̄ and {α, β} = {ā, r(ā,b̄)} or {α, β} =

{r(ā,b̄), s(ā,b̄)}.
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P r o o f. Say α >MR β. We will show using only this assumption that there is an

element γ ∈ M such that α ∼ γ but γ ‖ β, unless one of the two situations in the

statement of the lemma holds.

Case 1. α = (a0, . . . , am) ∈ M .

Case 1a. β = (b0, . . . , bn) ∈ M . If m < n, then a0 = b0; a1 = b1; . . . ; am−1 =

bm−1; and am > bm, so α > (a0, a1, . . . , am−1, bm − 1) ‖ β.

Ifm = n, then a0 = b0; a1 = b1; . . . ; am−1 = bm−1; am > bm; α>(a0, . . . , am, 0)‖β.

Case 1b. β = s(x̄,y) where x̄ ⋖M y. Then α > y. If α > y, then by the above, there

exists γ ∈ M such that α ∼ γ and γ ‖ y, and hence γ ‖ β 6 y (by Corollary 7.11

and Observation 7.12).

If α = y, then α > (a0, . . . , am, 0) ‖ x̄ by Lemma 7.14. Hence, by Lemma 7.16,

(a0, . . . , am, 0) ‖ β.

Case 2. α = r(ū,v) where ū ⋖M v. Use the complete join-irreducibility of (ū, v)

in M . If β < ū, then by the above and Lemma 7.16, there is an element comparable

to ū and α but not β. If β = ū, we are done. Otherwise, β = s(ū,v), and we

are done. �

Lemma 7.19. Let C be a maximal chain inMR. Then C∩M is a maximal chain

in M . The map C 7→ C ∩M is a bijection.

P r o o f. Let m ∈ M be such that m ∼ c for all c ∈ C ∩M . Let c ∈ C \M—say

c = r(ā,b̄). By Lemmas 7.14 and 7.16, ā ∈ C so m ∼ ā, and hence m ∼ c. Thus

m ∈ C and hence m ∈ C ∩M . Obviously, any maximal chain D of M extends to a

maximal chain C of MR, so D = C ∩M .

Now suppose C1 ∩M = C2 ∩M . Let r(ā,b̄) ∈ C1. Then ā ∈ C1 and hence ā ∈ C2,

so r(ā,b̄) ∈ C2, by Lemma 7.16. By symmetry, C1 = C2. �

Notation 7.20. Let D ⊆ MR. Define Φ: D → M as follows: For d ∈ D,

Φ(d) =

{
d if d ∈ M,

ā if d = r(ā,b̄).

Note that d ♦ Φ(d) by Lemma 7.16.

Observation 7.21. Let Y be a maximal chain of MR. Then Φ[Y ] = Y ∩M .

P r o o f. Let y ∈ Y . Then y ♦ Φ(y), so Φ(y) ∈ Y and Φ(y) ∈ M . Thus Φ[Y ] ⊆

Y ∩M . Also, if y ∈ Y ∩M , then Φ(y) = y. Hence Y ∩M ⊆ Φ[Y ]. �

Lemma 7.22. Let D be a minimal cutset of MR. Then Φ is one-to-one on D.

P r o o f. Use Observation 7.1. �

493



Lemma 7.23. Let D be a minimal cutset ofMR. Then Φ[D] is a minimal cutset

of M .

P r o o f. Let X be a maximal chain ofM . Extend it to a maximal chain Y ofMR.

Then there exists d ∈ D ∩ Y . Thus d ♦ Φ(d), so Φ(d) ∈ Y ∩M = X . Thus Φ[D] is

a cutset of M .

Now pick any d ∈ D. There exists a maximal chain Y of MR such that

Y ∩ D = {d}. By Observation 7.21 and Lemma 7.19, Φ[Y ] is a maximal chain

of M . Suppose d′ ∈ D and Φ(d′) ∈ Φ[Y ] = Y ∩M . Then d′ ♦ Φ(d′) ∈ Y , so d′ ∈ Y .

Thus d′ ∈ Y ∩D = {d}, so d = d′. Hence Φ[Y ] ∩ Φ[D] = {Φ(d)}. �

Theorem 7.24. There is a complete densely ordered lattice HR with no uncount-

able antichains such that the only antichain cutsets are {0} and {1}.

P r o o f. By Corollary 7.15, HR \ {0, 1} = MR. We show MR has no antichain

cutsets. If it had one, it would be a minimal cutset, as Maltby observes [10], page 391.

By Lemma 7.23, M would have a minimal cutset, contradicting Higgs [8], page 373.

The rest follows from Corollary 7.7, Proposition 7.13 and Lemma 7.8. �

A c k n ow l e d g em e n t. The author thanks the referee and Dr. Ginsburg for

comments improving the paper.
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