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Abstract. In 1984, Ginsburg wrote, “We have been unable to find an example of an
ordered set P having the properties of [being complete, densely ordered, with no antichain
other than {0} and {1} that is a cutset] and in which all antichains are countable.” In
this very brief note, such an example is shown. Posets that can be embedded in regular
posets are characterized as posets that do not contain w x {0,1} or its dual as a subposet.
Any such poset P can be embedded in a regular poset that can be embedded in any other
regular poset containing P.

Keywords: regular poset; (minimal) cutset; (maximal) chain; (maximal) antichain; lexi-
cographic sum; complete lattice
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1. DEFINITIONS AND MOTIVATION

Our notation and terminology largely come from [1], [2], and [13]. We use sub-
scripts to indicate which poset we are referring to—for instance, \/S is the supremum
of the set S with respect to the poset R.

A subset D of a poset is directed if D # () and, for all d,d’ € D, there exists e € D
such that d,d’ < e. Let Z(P) denote the family of directed down-sets of a poset P,

ordered by set-inclusion. For an element p of a poset P, | p:={q € P: ¢ < p}. Let
dp: P — P? be the canonical anti-isomorphism from a poset P to its dual.

A poset P is sup-pre-reqular if for every directed subset D C P such that \/ D
exists and for all p € P such that p < \/ D, there exists d € D such that p < d.
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A poset is sup-regular if every nonempty chain has a supremum and for every
nonempty chain C and every element p such that p < \/ C, there exists ¢ € C such
that p < c.

Dually, we define inf-pre-regular and inf-reqular. A poset is regular if it is sup-
and inf-regular.

One finds the definitions of “sup-regular,” and “regular” posets in Grillet’s article
(see [7]). Other articles discussing regular posets include [3], [8], [9], [10] and [12].

Proposition 1.1. A poset is sup-regular if and only if it is sup-pre-regular and
every directed subset has a supremum.

Proof. For the nontrivial direction, assume P is sup-regular. By [11], Corol-
lary 2, every directed subset has a supremum.

We now prove by transfinite induction on |D| that if D is a directed set and p € P
such that p < \/ D, then there exists d € D with p < d. This is clear if D is finite
(so D has a greatest element \/ D € D). If D is infinite, [11], Theorem 1, implies
there is a sequence (Dq)o<|p| of directed subsets of D such that, for all o < |D],
D, is either finite or [Dy| = |af; if @,8 < |D| and a < 3, then D, C Dg; and

D= | D..
a<|D|
Let ¢co = \/ Do (o < |D|). Then {co: a < |D|} is a nonempty chain, and

V{ca: o < |D|} =V D. By sup-regularity, there exists o < |D| such that p < cq.
By induction, there exists d, € D, C D such that p < d,. O

A cutset of a poset is a subset that intersects every maximal chain. A poset is
CAC if every maximal antichain is a cutset. Grillet showed that every regular poset
E can be embedded in a regular CAC poset E in a “minimal” way: no subposet
F C E containing E is CAC and, if G is CAC, every order-preserving map from F
to G can be extended to E. He conjectured that any poset had such a “completion.”

Maltby observed that no regular poset can contain w x 2 (where 2 is the chain
{0,1}) or its dual (w x 2)? = w? x 2 (see Figure 1).

We repeat (the dual of) Maltby’s argument:

Observation 1.2 (Maltby [10], page 394). Let P be a poset containing w X 2.
Then P cannot be embedded in a sup-regular poset.

Proof. Assume w X 2 is contained in a sup-regular poset R. Let r; = \/{(n,i):
n < w} for i € {0,1}. Then ro < 7. B

Case 1. ro < 1. Then, by sup-regularity, there exists n < w such that ro < (n,1).
But (n+1,0) < rg < (n,1) gives a contradiction.

Case 2. rog = ry. Then (42,1) < rg, so, by sup-regularity, there exists n < w such
that (42,1) < (n,0), a contradiction. O
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(0,0)

(a) The poset w x 2. (b) The poset w? x 2.

Figure 1.

Observation 1.3. Let P be a poset. Let ag,ai,as,...,by,b1,ba,... € P be such
that ap < a1 < az < ... and by < by < by < ... and a; < b; and a;41 £ b;
(1=0,1,2,...) and b; £ a; (i,j =0,1,2,...). Then {ag,a1,...,bo,b1,...} is order-
isomorphic to w x 2.

The poset w x 2U{(w,0)} (Figure 7 (a)) appears in [6], Theorem 1.4 as a forbidden
subposet for a certain class of posets we will not describe (the “chain-complete”
posets whose space of maximal chains is compact).

We prove the converse of Maltby’s observation: a poset can be embedded in a
regular poset if it does not contain w x 2 or its dual. Indeed, there is a “least” such
“regular completion.” We prove an analogous result for sup-regular posets and posets
excluding w x 2 (Theorem 6.8 and Corollary 6.9). Lemma 4.1 makes it all work.

While Ginsburg does not define the term, a poset P is densely ordered if, for all
x,y € P such that x < y, there exists z € P such that x < z < y, and P is a complete
ordered set if it is a complete lattice. He calls an antichain {0} or {1} of a bounded
poset trivial.

In his 1984 article [6], Example 2.1, Ginsburg exhibits a “complete ordered set P
which is densely ordered... and in which no nontrivial antichain is a cutset.” He
adds, “We have been unable to find an example of an ordered set P having the
properties of Example 2.1 and in which all antichains are countable.”

We provide such an example in Section 7 (Theorem 7.24), by modestly altering
a poset Higgs created for another purpose. Additional terminology related to the
example will be in Section 7, which with Section 1 is self-contained.
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2. MORE TERMINOLOGY: FILTERED LIMITS OF POSETS

Let Poset be the category of posets + order-preserving maps. Let (C;)i<. be
a family of posets and

(fij: Cj = Ci)ijj<wj<i
a family of order-preserving maps with the following properties:
(1) fis =idg, for all i < w;
(2) fij o fjr = fir for all 4, j, k < w such that k < j <.
Then
S = ((Ci)icw, (fij: Cj = Ci)ijcw; j<i)
is a filtered system in Poset.

Assume C is a poset and (f;: C; — ()<, is a family of order-preserving maps
such that, for i, j < w, j < ¢ implies f; o fi; = f;. Then

(C,(fi: Ci = C)icw)

is compatible with S. It is a filtered limit of S if we assume further that whenever
(C',(fl: C; = C")i<w) is compatible with S, there is a unique order-preserving map
f: C — C"such that fof, = f/ forall i <w.

A construction of a filtered limit is given in [5], Proposition 4.1. The reader can
find proofs of the following in [5], Proposition 4.2, Lemma 4.4, and Lemma 4.5.

Proposition 2.1. Let
(C,(fir Ci = Clicw)

be the filtered limit of the filtered system
S = ((Ciicw, (fij: Cj = Ci)ij<w;j<i)-

Then for all ¢ € C there exist i < w and ¢; € C; such that f;(c¢;) = ¢. For ¢,d € C,

¢ < d Is equivalent to each of the following:

(1) ifi,j <w, ¢; € Cy, ¢;j € Cj, and fi(¢;) = ¢ and f;(c;) = d, then there exists
h < w such that i,j < h and fri(c;) < frj(c);

(2) there exist h,i,j < w, ¢; € Cy, ¢; € Cj such thati,j < h, fi(c;) =¢, fj(¢;) =d,
and fri(ci) < fnj(c;).

For (1) or (2), any h/ < w such that h < h' also works.
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Lemma 2.2. Let
(C,(fir Ci = C)icw)

be a filtered limit of the filtered system
S = ((Ci)icw, (fiz: C; = Ci)ijcw; j<i)-

(1) Let
(€ (fi: Ci = Cicw)

be compatible with S. Let f: C — C’ be the order-preserving map such that
fofi=flforalli <w. If f is an order-embedding for all i < w, then f is an
order-embedding.

(2) If fit1, is an order-embedding for all i < w, then f; is an order-embedding for
alli < w.

Lemma 2.3. Let C; be a poset for all i < w. Let fi11,;: C; = C;11 be an order-
preserving map for all i < w. For all i,j < w such that j < i, define f;;: C; — C; as
fi,i—l o fi—l,i—Q 0...0 fj+2,j+1 o fj+17j and let fjj : Cj — Cj be idcj. Then

S = ((Ci)icw, (fij: Cj = Ci)ijcw; j<i)

is a filtered system in Poset.
Let C be a poset. Let f;: C; — C be an order-preserving map for all i < w. Then

(C,(fir Ci = C)icw)
is compatible with S if and only if fi11 0 fit1,, = fi for all i < w.
Lemma 2.4. Let
S = ((Ci)icw, (fij: Cj = Ci)ijj<wij<i)
be a filtered system in Poset with filtered limit
T=(C,(fi: Ci = Cicw)-

Fix k <w. Then

kS 1= ((Ci)kgicw (fij: Cj = Ci)ij<w;k<j<i)
is a filtered system in Poset with filtered limit

T = (C, (fi: Ci = Cigicw)-
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Proof. Let ;7' = (C',(f!: C; — C")k<i<w) be compatible with ;S. For i < k,
let f/ == f. o fri: Ci = C'. Let T' := (C",(f{: C; = C")icw). We show T is
compatible with S. Let i, j < w be such that j <. If i <k, then f/o fi; = f} o frio
fij = frofr; = fjsince j < k. If j <k <4, then fjofi; = flofixofi; = fiofr; = [}
since j < k. If k < j, then f/o f;; = fj’ . Thus, there exists a unique order-preserving
map f: C' — C’ such that, for all i <w, f/ = fo fi.

Now assume g: C' — C’ is an order-preserving map such that k¥ < ¢ < w implies
fl=gofi. Leti<k. Wehavego fy=gofrofui=frofui=f. Thusg=f 0O

3

3. ONE STEP OF THE PROCESS OF MAKING POSETS SUP-PRE-REGULAR

What makes a poset P not be sup-pre-regular is the existence of a directed sub-
set D with a join \/ D and an element p < \/ D such that p £ d for all d € D. We
fix the problem by making the “join” of D be less than \/ D in a new poset P+.

We start with results that have trivial proofs.

Definition 3.1. Let P be a poset. Let
D= {D €Z(P): \/D exists and there exists p € P
with p < \/ D but for all d € D, p # d}.

Let Pt :={| p: p € P}UD be ordered by set-inclusion.
Let LJISI P — PT be the order-embedding p —| p (p € P).
Let = : P(P') — P(P) be given as follows: for all B C P*,

n~ (B) :UB: {p € P: pebfor some b € B}.
(Remember every element of Pt is a subset of P.)

/b Aib
a {a} {x()’$17.~ ..}

z3 Y3 lxs 1ys

T2 Y2 lxg Ly

T (3 ) l

xo Yo 1z 1y
P Pt

(a) The poset P. (b) The poset P+.

Figure 2. The poset P.
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Remark 3.2.

(1) Forallp € P, | p ¢ D, since no D € D has a maximal element.
(2) The map 7~ is C-preserving.

Lemma 3.3. Let P be a poset. Let D be a set. For eachd € D, let B4 € P(P™).
Then 777( U Bd) = U n (Ba).

deD deD

Proof. By Remark 3.2(2), | n~(Ba4) C 77’( U Bd).
deD deD

Now let p € 77*( U Bd), so there exists b € |J By such that p € b. Hence, there
deD deD
exists d € D such that b € Bg, so p € n~(By). O

Lemma 3.4. Let P be a poset. For all x € P*, n~({z}) =n~ ({p+ ).

Proof. By Remark 3.2(2), n~ ({z}) Cn (I p+ ).
Now let 2 € = ({p+ 2) = U Ip+ . = U{y € PT: y <p+ z}. Thus, there exists
y € P such that y C x and z € y, so z € x. Hence z € [ J{z} = n~ ({z}). O

Lemma 3.5. Let P be a poset. If B C P is a directed subset of PT, then n™ (B)
is a directed subset of P.

Proof. Since B # (), there exists b € B, and every element of B is nonempty.
Thus, there exists ¢ € b, and ¢ € |JB =n~(B), so n~ (B) # 0.

Now let p,p’ € n~(B) = |JB. Then there exist b,0’ € B such that p € b and
p’ € V. Since B is directed, there exists b € B such that b, C b”, so p,p’ € b”.
As every element of P is a directed subset of P, there exists p” € 0" such that
p, o <pp”. Also p” € UB =n"(B). O

Lemma 3.6. Let P be a poset. Let D be a directed set such that, for all d € D,
By € Z(P). Assume that for all d,d’ € D, if d <p d', then B4 C By. Then
U B4 € Z(P).
deD

Proof. Since D is directed, D # 0, so take d € D. Since Bj is directed, then
B;j#0,s0 |J By #0.

deD
Now let p,p’ € |J Bg. Then there exist d,d’ € D such that p € By and p’ € By.
deD
There exists d” € D such that d,d’ <p d’, so By, By C Bg» and hence p,p’ € Bgr.
Since By is directed, there exists p” € By such that p,p’ <p p”. Hence |J B. is

directed. ««b 0

Lemma 3.7. Let B be a subset of PT. Then n~(B) is a down-set of P.
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Proof. Let p € n7(B). Let p’ € P be such that p’ <p p. As p € | B, there
exists b € B such that p € b. Since every element of P is a down-set of P, p’ € b,
sop' €| JB=n"(B). O

Lemma 3.8. Let P be a poset.

(1) Let B C P* be a down-set of P*. Let p € n~(B). Then t5(p) € B.
(2) Let pe P, BC P*. Assume there is a b € B such that b Z|p p. Then there is
a € n~ (B) such that a £ p.

Proof. (1) Since p € n~(B) = U B, there exists b € B such that p € b. Every
element of P is a down-set of P, so ,p p Cb. As |p p € PT and B is a down-set
of PT and b € B, then |p p € B.

(2) There is a € b such that a £p p. But a € |JB = n~ (B). O

Lemma 3.9. Let P be a poset. Let B C PT. Let c € P be an upper bound of
n~(B) in P. Then |p c is an upper bound of B in P*.

Proof. For all p € n~(B) = |UB we have p <p c¢. Thus, for all b € B and for
all p € b we have p <p ¢, i.e., for all b € B and for all p € b we have p €| p c. Hence,
for all b € B we have b Clp ¢ = t5(c). This means that ¢5(c) is an upper bound
of B in P*. O

Lemma 3.10. Let P be a poset. Let b € Pt. Then

b=\/{lpec: ceb}=|J{lpec: ceb}.
P+

Lemma 3.11. Let P be a poset. Let R be a sup-regular poset. Let f: P — R
be an order-embedding. Define f: P* — R by f(D) = \/{f(d): d € D} for all
R

D € P*. The map f is an order-embedding such that f o}, = f.

Proof. Any D € P is directed, so {f(d): d € D} is directed and hence,
V{f(d): d € D} exists. If D = (};(p) for some p € P, then {f(d): d € D} has a
R

greatest element f(p), which is the supremum. Thus, f is well-defined and fo L; = f.

Now we show f is an order-embedding. Let D,D’ € P*. If D C D', then
F(D) < F(D).

Now assume f(D) <g f(D’).

Case 1. D' =|p p', where p’ € P. Then f(D) <g f(p') and hence, for all d € D,
f(@d)<gr f(p'),so,forallde D, d<pp’. Thus D Clpp =D’
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Case 2. D' € Z(P) has no mazimal element; \/ D' exists and there exists a € P
P
witha <p \/ D" buta £p d' for alld’" € D’. Assume for a contradiction that D ¢ D’.
P

Then there exists d € D\ D’. Yet f(d) <z \ f(d).
d'eD’

Case 2(a). f(d) = \/ f(d). In this case, f(d') <r f(d) for all d' € D,
d'eD’
so, since f is an order-embedding, d’ <p d for all d € D’. As D is a down-set,

D' Cl dC D. Hence a <p \/ D' < d, so f(a) <g f(d) = \ f(d'). By sup-
P d’en’

regularity, there exists d’ € D’ such that f(a) <g f(d') and so a <p d’, because [ is
an embedding. This is a contradiction.
Case 2(b). f(d) <gp \/ f(d'). By sup-regularity, there exists d’ € D’ such that

d'eD’
f(d) <gr f(d'). Since f is an order-embedding, d <p d’,so d € D', since D’ is a down-
set, a contradiction. Hence D C D’. This proves f is an order-embedding. O

4. CHAINS OF DIRECTED DOWN-SETS OF POSETS
NOT CONTAINING w X 2 OR w? x 2

Lemma 4.1. Let P be a poset not containing w x 2. Let D, D' € Z(P) be such
that D C D’'. Then there exists d' € D' such that D Clp d'.

Proof. Case 1. D' =] d'. Since D C D', then d’' ¢ D. Thus, for all d € D,
d<d,soD Qid’.

Case 2. D’ has no mazimal element. This means that for any d’ € D’, there exists
d" € D' such that d' < d”. Pick d’ € D'\ D. Pick dy € D. Let d) € D’ be such that
d_/, dy < d6

ds dy
dy dq
dy dj,
do d
Figure 3.

Now assume there exist n € Ny, do,ds,...,d, € D, dy,d},...,d,, € D' such that
dy < dy <...<dpandd <dj <...<d,andd; <d (i =0,1,...,n) and
dit1 £d; (i=0,1,...,n—1). If D C| d,, then since there exists d” € D’ such that

[e]
d), < d’, we have D C| d" and we are done.

467



Otherwise, there exists d € D such that d ﬁ d),. Then there exists dy,+1 € D such
that d,d,, < dny1. As d, < d, but dp 1 £ dl,, we have d,, < dp+1. We then have
d;, .1 € D' such that d,41,d;, < d;, ;. By induction, we have do,d1,ds,... € D and
d,dy,dy,...€ D', where dy < dy < dy <...and d < dj <d; < ... whered ¢ D
(sodjy,d,...¢ D) and d; < d; and di11 £ d; (i =0,1,2,...). Fori,j € {0,1,2,...},
d} % d;j. Use Observation 1.3. O

Proposition 4.2. Let P be a poset. Then P contains w x 2 if and only if Z(P)
contains w X 2.

Proof. One direction is trivial. For the other, let Dy, Dy, Do, ..., Ey, F1,
E27... S I(P) be such that Dy C Dy g Do g ... and Ey g Ey g Ey C ...

= =

and Di g_El and Di+1 ,@Ez (i:0,1,2,...) and Ei gD] (i,j:0,1,2,...).

D3 Es
Do Ey
D, Eo
Dy

Figure 4.

Let dg € Dg. There exists e(, € Ey such that Dy C| e}, by Lemma 4.1, so dy < €},.
As Ey ¢ D., there exists ej € Ey \ D1. Let eg € Ey be such that ef), ej < eg. Thus
do < eg and e ¢ D;.

Now assume n € Ng, d; € D; (i =0,1,...,n)and e; € E; (i =0,1,...,n), where
do <dy <dy<...<dpandey<e <...<epandd; <e; (i =0,1,...,n) and
dit1 £ e (i=0,1,...,n—1). Further assume that E; Cl e;41 (1 =0,1,...,n—1)

(o)
and D; Cle; (i =0,1,...,n). Finally, assume e,, ¢ Dy, 1. Since D, 11 ¢ E,, there
exists d;,, | € Dyy1\ E,. Thus, there exists dy, 11 € D1 such that dy,, d), | < dpq1.
Since F, is a down-set and d,, € E,,, d,, < dp4+1. Also, dj, 41 ﬁ en-
[e]

Let e;,,, € Eny1 be such that Dy, 1,E, C| e, (using Lemma 4.1). As
E. ,@ D, 2, there exists €Z+1 € Ent1 \ Dpyo2. Let €41 € Eptq be such that
dnt1, €415 €mi1 < €ny1. Since dyy1 € Dpyo but engy € Dypg, then dyyq < epq1.
Also, e, < €], < €ny1, 50 €, < eny1. Thus, we have d; € D;, e; € E; (i =
0,1,2,...) such that d; < d;41 and e; < e;41 and d; < e; (¢ = 0,1,2,...). Also,
d7;+1 ﬁ €; (Z = O7 1, 2, .. ) and Ei gJ, €i+1 and Di QL €; and €; ¢ Di+1 (Z = O7 1, 2, .. )

Assume that e;11 < dj41 for some 4,5 € {0,1,2,...}. Then E; C Dj;4, a contra-
diction. Thus P contains w X 2. Il
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Lemma 4.3. Let P be a poset not containing w x 2. If T(P) contains w® x 2,
then P contains w? x 2.

Proof. Let DO,Dl,Dg,...,D6,D’1,D’2,... € Z(P) be such that D; 2 D;y1 and

D; 2 Djy and D; 2 D; and Djy, 2 D; (i = 0,1,2,...) and D; 2 D} (i,j =
0.1,2,..).
Dy
Dy Dy
D} Dy
Dy Dy
Figure 5.
For each i € {07 ...}, let d; € D;\ D}, and, using Lemma 4.1, let d; € D; be

such that D,y C¢ dz, let d’ € Dj be such that D}, C¢ d’ let d; € D! be such that

D; QL d); let d; € D; be such that d;, d; < di; let d; € D/ be such that d, d; d;.
Claim 1. Fori€{0,1,2,...}, dix1 < d; and di ¢ D,

Proof of Claim 1. Since d;y1 € D;y1, we have d;y1 < cz < d;. Also, if
d; € D}, then d; € D! |, a contradiction. O

Claim 2. For i€ {0,1,2,...}, di,, <dj and d; £ d},
Proof of Claim 2.  Since dj, € Dj,, but d; ¢ Dz+1 by Claim 1, we have

di £ dj,,. Since dj, | € D , and d’ d};, we have J, d’ CJ, dj, so Dj CJ, d;. Hence
diy < d. a

Claim 3. For i€ {0,1,2,...}, d; < d;.
ProofofClaim3. Asd; € D; Cid’ we have d; < d; < d.. O

Claim 4. Fori,j € {0,1,2,...}, d; £ d;.
Proof of Claim 4. Assume for a contradiction that d} < d;. As d, < d, we
have D; , C| dj, so D, C| d;j C Dj, a contradiction. O

Hence {d;,d,: i=0,1,2,...} = w? x 2 by Observation 1.3. O

Corollary 4.4. Let P be a poset not containing w x 2 and not containing w? x 2.
Then Pt does not contain w x 2 and does not contain w? x 2.
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Lemma 4.5. Let P be a poset not containing w X 2 such that every nonempty
chain has an infimum. Let C be a nonempty chain in Z(P). Then there exists
E € Z(P) such that E C D for all D € C, and if F C D for all D € C, then F C E.
Moreover, if C has no least element, then E =|p e for some e € P.

Now suppose P is also inf-regular. Then if A € Z(P) and A D E, then A 2 D for
some D € C.

Remark 4.6. The above set F' need not be in Z(P).

Proof. The chain C has a dually well-ordered co-initial subset, so we may assume
C ={Dg: B < a} for a nonzero ordinal «, where for all 8,8 < « such that 8 < ',
we have Dg 2 Dg. If o is a successor, we are done, so assume « is a limit. By
Lemma 4.1, for all § < o there exists dg € Ds such that

Dgy1 €l dg.

Claim. The map B dg (B < «) is strictly order-reversing.

Proof of theclaim. Fixy <a. Let vy <n <a. Weshow d, >d,. If n=v+1,
then since d,, € D41 Qi d, we have d, < d.

Now assume 77 = ¢ + 1, where v < ( < a and dy > d¢. We know d¢ > d,), so
dy > d,.

Now assume 7 is a limit. As d,, € D¢y for all ( < 7, we have d, EJO, d¢ for all
¢ <n,s0dy>d,. ([

For every limit 5 < «, let eg := Q{dyz v < B}. This is well-defined by the claim,

and for every limit 8 < o, dg < eg.
Let E =] eq € Z(P). For every 8 < a, eq < dg € Dg,s0 EC Dg. If x € () Dg,

o B<a
then for all 8 < a, x € Dgy1 CJ dg, so

xé/\{dg: B < al=eq,
P

so x € E. Hence, if F C Ng<oDg, then F' C E.
Now assume P is also inf-regular. Assume A € Z(P) and A 2D E. Then there
exists a € A such that a > e,. By inf-regularity, there exists § < «a such that

a > dg, and hence Dgyq Cl a. Thus A D Dgy;. O

Lemma 4.7. Let P be a poset not containing w x 2. If every nonempty chain
of P has an infimum, then every nonempty chain of P has an infimum. If P is
inf-regular, then P is inf-regular.
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5. MAKING POSETS SUP-PRE-REGULAR

In this section, let Py be a poset. If n < w and P, is defined, let P, = P;}. For
i <w,let wiy1:: P = Piy1 be ngi. As per Lemma 2.3, define a filtered system

(P)icw, (pij 1 Pj = Pi)ijcw; j<i)-

Let
(Po, (@i P = Pu)icw)
be its filtered limit. By Lemma 2.2 (2), ¢; is an order-embedding for all i < w. We
will use 1}, <, In, V, <w, and \/ for o} , <p,, lp,, V/, <p,, and \/, but 5, and
w ) P, P,

n w

7, will not have the meanings one might think they do (n < w).

Definition 5.1. Let n < w be nonzero. If p, € P,, define n, (p,) by

= (..n"({pa})--)-

n times
Note that the domain of 7, is P, and its range is P(Py), whereas the rightmost 5~
above has domain P(P,).

Lemma 5.2. Assume 0 < j < i < w. Suppose p; € P;. Then n; (¢ij(p;)) =
n; (pj)-

Proof. We may assume j < i. First assume ¢ = j + 1. Then

0y (i (p) = M1 (e (03)) =0~ (0 (..~ ({ds 25}) - )

j+1 times
= 777(77;(- -~ (pi) )
= 77_(77:( ..n"({p;})...)) by Lemma 3.4
=n; (pj)-

Now assume 7; (¢ij(p;)) = n; (p;). Then

M1 (P13 (P5)) = i [P0, (Pig ()] = M 1 (015 ()]
=1n; (pij(pj)) by the above
=n; (pj)-
O

Definition 5.3. For p,, € B, define 1, (p.,) as n; (p;) for any p; € P; such that
0<j<wand ¢;(p;) = pw.
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Lemma 5.4. The map n, is well-defined.

Proof. Assume 0 < j <i < w. Let p, € P,. Let p; € P; and p; € P; be such
that ¢;(pi) = pw = ¢; (pQ) = vilpi; (P;)] Since ¢; is one-to-one, p; = @;; (P;) From
Lemma 5.2, n; (p;) = n; (P})- O

Lemma 5.5. Assume 0 < ¢ < w and let p, € P;. Then n; (p;) € Z(Py). Hence,
for all p, € Py, n, (pw) € Z(PRy).

Proof. Use Lemmas 3.4, 3.5, and 3.7. ([

Lemma 5.6. Let x,,,y, € P,. Assume z,, <, Y- Then n; (zu) C 0, (Yu)-

Proof. By Lemma 5.4, we may assume there exist nonzero i < w and z;,y; € P;

such that ¢;(x;) = 2w, ©i(¥i) = Yuw, 1, (zw) =n; (z:) and 0, (yo) =n; (i) As @; is
an order-embedding, x; <; y;. As

N (@) =0 (.. {zi})..) =0 (..n" (i @i)...))

i times itimes
by Lemma 3.4 and
Mo (Yo) =0~ (0 (..n (s vi) - )),

itimes

the result follows from |; ; CJ; y; and Remark 3.2 (2). O

Corollary 5.7. Let D be a directed subset of P,,. Then |J n;(d,) € Z(P).
dw,€D

Proof. Use Lemma 5.5, Lemma 5.6, and Lemma 3.6. (]
Lemma 5.8. Assume p,, € P,,. Then p,, is an upper bound of

{wo(wo): o € 1y (Pw) }-

Indeed, if 0 < i < w and p; € P; and ¢;(p;) = pu, then pio(xo) <; p; for all
x0 € 1, (pw). If ¢, € P, is also an upper bound of

{wo(wo): o € 1y, (Pw)}

and i < j <w and ¢; € P; and gj(c;) = ¢, (there is such a j), then pjo(x0) < ¢;
for all xo € n;, (pw)-
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Proof. Let ¢ be such that 0 < i < w and there is p; € P; with ¢;(p;) = p. and
n, (pw) = n; (p;). Take any

zoen;s)=n" (.. {p})..) =0~ (..n" (s pi)...)) (by Lemma 3.4).

i times i times
Thus, v10(z0) =do @0 € =~ (-..n~ s pi)...)) (by Lemmas 3.7 and 3.8) and

i—1 times

wao(zo) =41 (o xo) €~ (= (...~ {i pi)...)), etc., till we get wio(xo) €Js pi, that

i—2 times

is, pio(xo) <i pi. Applying ¢;, we get

wo(x0) Sw Pu-

Hence, p,, is an upper bound in P,, of

{eo(z0): mo € 1, (pu)}

Now assume ¢, € P, is an upper bound in P, of

{®o(z0): w0 € 1, (pu)}

By Proposition 2.1, there exist j < w and ¢; € P; such that ¢;(c;) = c,. If j <1,
then ;(vij(c;)) = ¢;(cj) = co. Thus, we may assume ¢ < j.

For zg € 0 (pu), let z; = @jo(xo), s0 ¢j(z;) = wo(x0) Sw cw = @;(c;). Since g;
is an order-embedding, z; <; ¢;. O

Let ® be the following statement, related to a specific positive integer k:
® Assume Py does not contain w X 2. Assume that whenever i and m are integers
such that 0 < i < k and i < m < w and whenever p; € P;, then

omi(pi) = \/{pmo(z0): x0 € n; (pi)}

and for all g,, € P, such that ¢, <m @mi(p;), there exists zy € n; (p;) with
dm <m @mO(xO)'

Lemma 5.9. Let ® hold. Let py € Px. Then

Pk = \/{@ko(ﬂ?o)i zo € 1y, ()}
k

Further, {ro(x0): xo € 1), (pr)} is directed. If g € Py and qi <y pk, then there
exists xo € 1, (px) such that qi <p pro(zo).
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Proof. By Definition 5.1 and Lemma 3.10,

e (o) =n"(m (..n ({pr})--)

k times
=n 777(~- N (U{ikq Yk—1' Yk—1 € pk}) : ))
k—1 times
= U n (m (...n ({yk-1})...)) (by Lemmas 3.3 and 3.4)
Yk—1EDk k—1 times
U maw—) ifk>1
= Yk—1€PK
Dk if k=1.

By Lemma 3.10, pr = {9k r—1(Ur—1): ys—1 € pr}, which settles the k = 1 case
k

of the first claim. By hypothesis, if k& > 1, for all yx_1 € pr, Pk r—1(Yp—1) =

VA{wro(xo): w0 € my,_(yk—1)}. Hence, if k> 1,pp= V ero(To) =
k Yrk—1€EPK zo€n,_, (Ye—1)
V  ¢ro(zo) by the above. By Lemma 5.5, {¢ro(z0): xo € 1, (pr)} is directed.
zo€n, (pk)
Now let i € Py be such that ¢ <g px. By Lemma 3.10,

g G ({1 w1t vk € pi}y

which is a directed down-set (by Lemma 3.6), as is g;. By Lemma 4.1, Proposition 4.2
and induction, there exists y;,_; € py such that gy Qik_l Yp—1>50 Gk Tle—1 Yp_q, i€,
Gk <k Pk,—1(Yp_1)- This is the last statement if K = 1. If £ > 1, then by ®, there
exists z(, € n,_,(y;,_;) such that g, < ro(zj). By the above, i, € n, (pr). O

Lemma 5.10. Let ® hold. Assume p; € P,. Assume k < n < w. Assume that,
for k <i<n,

pir(pr) = \/{%‘0(3?0)1 zo € ny, (Pr)}

7

and also that, for all ¢; € P; such that q¢; <; @ir(pr), there exists xo € 1, (pr) with
¢ <i wio(xo). Then for all ¢, € P,, such that q, <y, @nk(pr), there exists xo € 1, (pr)
such that g, <, @no(xo). Further, ni(pr) = \V{no(xo): xo € 1, (pr)}-

Proof. By Proposition 4.2 and induction, P,_; does not contain w X 2.

First assume ¢, = L:{fl(qn,l), where ¢,_1 € P,_1. Since L:fl is an order-
embedding and @k (pr) = ¢t} (Pn—1%Dk)), Gr—1 <n—1 Pn—1,k(Pk), S0 by hypothe-
sis and Lemma 5.9, there exists xo € 7, (pr) with ¢n—1 <n—1 ¥n—1,0(%0), and hence
In <n Pnn-1(Pn-1,0(20)) = ¢no(zo)-
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Now suppose g, € Z(P,,—1) such that \/ ¢, exists and there exists a,_1 € P,_1
n—1

such that ap—1 <n—1 V gn but an—1 £n—1 bp_1 for all b,_1 € g,. For every
n—1

bp—1 € dn, W€ have \Ln—l bn-1 C Gn, SO Lz_l(bn—l) <n @ < Sonk(pk); from what

we just showed, there exists xo € 7, (px) such that L:_l(bn,l) <n @no(zo) =

w1 (Pn-1,0(%0)), 80 by—1 <p—1 Pn—1,0(w0). Hence ¢, C U dn-1 ®n_1,0(x0)-

o€y, (Pr)
By Lemma 3.6 and Lemma 5.5, the latter is in Z(P,_1).

Case 1. g, S U In—1 ¢n—1,0(z0). By Lemma 4.1, there exists zo € 7;, (pr)
zo€n, (pk)
[e]
such that g, Cl,,_; ¥n—1,0(x0). Hence g, <n @no(zo)-

Case 2. q, = U dn=1 @n-1,0(x0). Then
zo€Ny, (Pk)

Un—1 <p-1 \/ qn = \/ {n—1,0(x0): 0 €N (P)} = Pr—1,k(Dk)

n—1 n—1

(by Lemma 5.9 and the hypothesis), so there exists zj, € 1, (pr) such that a,_1 <,_1
©n—1,0(x}) € ¢n (by Lemma 5.9 and the hypothesis), a contradiction.

Note that a version of the hypothesis holds if we let ¢ = k£, by Lemma 5.9, and
a version of the second part of the hypothesis holds for ¢ = n by the above and
Lemma 5.9. We see that ¢,k (pk) is an upper bound in P, of

{eno(xo): o € ny, (Pr)}

because ¢y, 1,k (pr) is an upper bound of {¢p,_1,0(x0): o € 1y, (Pr)} In Pr_y.
Let r, € P, be an upper bound in P, of {¢no(z0): zo € ny (pr)}. We show
Tn Zn Onk(Pk), completing the proof that

enk(pr) = \/{eno(wo): w0 € my; (pr)}-

n

Case I. r, = Lj;_l(rn,l) for some r,_1 € P,_1. By the fact L;t_l is an order-
embedding, r,—1 is an upper bound in P,,_; of {¢,_1,0(20): zo € 1, (pr)}. By the
hypothesis ¢n—1.%(Pk) <n—1 n—1. Applying @un n—1, we get ©nk(Pr) <n 7.

Case II. r,, € Z(P,_1) is such that \/ r, exists and there exists ap,—1 € Pp_1

n—1
with an—1 <p—1 '\ 1 but, for all rn—1 € ry, an_1 £n—1 1. For zo € 1, (Pr),
n—1
wt 1 (0n—1,0(x0)) <n T, that is, of 1 (¢n—1,0(z0)) €y, 50 @n_1,0(z0) € 7. Hence
U dn—1 ©n—1,0(x0) € Z(Pr—1) (by Lemmas 3.6 and 5.5) and it is a subset of r,.

o€y, (Pr)
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Case IIa. | dn-1 ¥n-1,0(x0) C rn. By Lemma 4.1, there exists r,_; € ry
such that — #0€7 (Px)

U In—1 0n—10(x0) Sy 77y
zo€n, (pk)

Thus, ¢n—1,0(x0) <p—1 7,_; for all zo € n, (px). By the hypothesis and Lemma 5.9,

@n—l,k(pk) <n-1 ’I“;lfl, 50 Sonk(pk) <ndn—1 7“»1,171 Cry.
Case IIb. U dn—1 ¢n—1,0(x0) = ry. Then

zo€N,, (Pr)
V o=V A{en10(@0): zo €y (p)} = on—1,5(pr),
n—1 n—1
so, by hypothesis and Lemma 5.9, there exists zj € 7, (px) such that a,_1 <,—1

©n—1,0(z() € ryn, a contradiction. O

Lemma 5.11. Assume P, does not contain w x 2. Then for 0 < k < w, for all
P € Py, and for every integer n such that k < n < w,

enie(pr) = \/{eno(@o): z0 € m; (pr)}

n

and for all ¢, € P, with g, <, ¢nk(pk), there exists xo € 1, (py) such that g, <,
©no(To).

Proof. One proof by induction involves two cases: k = 1 and k£ > 1. In each
case,do k=n, k=n+1, and k > n + 1 separately. O

Theorem 5.12. Assume P, does not contain w x 2. Then for all p, € P,

po = \/po(zo): zo € n; (po)}-

Proof. The ¢, in the statement of Lemma 5.8 is such that ¢; >; ¢;i(p;) by
Lemma 5.11. Applying ¢;, we get ¢y =u Do- (]

Corollary 5.13. Assume P, does not contain w x 2. Let py,p., € P,. Then
Pw <w py, if and only if n; (pw) € 1 (pg,)-
Proof. One direction is Lemma 5.6. The other follows from Theorem 5.12. [

The following is not needed in the sequel.

Observation 5.14. Assume P, does not contain w X 2. Let b, ag,a1,as,... € P,
oo

be such that ag <, a1 <o a2 <o ... and n;(b) € Un,(a;) and a; £, b for
i=0,1,2,... Then for somei € {0,1,2,...}, b <, a;. '~ °
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Proof. Assume not, for a contradiction. Pick any bj, € 1, (b), which is nonempty
by Lemma 5.5. (Directed sets are nonempty.) Let ko € Ny be such that b € 7, (ak,)-
We can pick aj, € n, (ax,) \ n, (b) by Corollary 5.13. By Lemma 5.5, there exists
af, € n, (ak,) such that ag,by <o ap. Since afy ¢ n,(b) but by € n_ (b), we have
b6 <p af).

as b
al by
ap by
b

Figure 6.

Let n € N (ie., n > 0). Assume there exist ko,k1,...,k,—1 € Np and
ag,ay,...,a,_, € Py such that kg < k1 < ... < kn—1 and af), <o @] <o @b <o
... <o al,_qy and af € n, (ag;) \n, () (i =0,1,...,n—1). Also assume there exist

0 b1y, b1 € n5 (b) such that b <¢ ... <o b,_; and b, <¢ a} (1 =0,1,...,n—1)
and b, £oa; (i=0,1,...,n—2).

Since b %. ak, ,, by Corollary 5.13 there exists v, e ng(b)\ n;lax, ,); by
Lemma 5.5, 15 (b) is directed, so there exists b, € n (b) such that b, ,,b, <o bl,.
As vl _, € n;(ar, ,) (a down-set by Lemma 5.5), we have b),_; <o b,,. Because
N, (ak, ) is a down-set by Lemma 5.5, b}, %o a,,_;.

By the assumption, there exists k, € Ng such that b/, € n;(ax,). By Corol-
lary 5.13, we may assume k, > k,—;. By Corollary 5.13, a,_; € n,(ak,).
By Lemma 5.5, 7 (a,) is directed, so there exists al, € n(ag,) such that
al,_q,b, <o al,. Since b, ¢ al,_,, then a,_; <¢ al,. Since al,_; ¢ n,(b), we
have b, <¢ al,.

Hence, we have ay,a},ab,..., by, b1, b5, ... € Py such that afj <o a} <o ... and
by <o b} <o ... and b <g a} and b}, %o a] and a] ¢ 1, (b) and b} € n;(b) (i =
0,1,2,...). By Lemma 5.5, 7, (b) is a down-set, so we have a} £ b; (i,5=0,1,2,...).
That is, w x 2 embeds in Py by Observation 1.3. (]

Proposition 5.15. If Py does not contain w X 2, then P,, does not contain w X 2.

Proof. Assume P, contains w X 2, for a contradiction. Use Corollary 5.13,
Lemma 5.5, and Proposition 4.2. ([

Proposition 5.16. If Py does not contain w X 2, then P, is sup-pre-regular.
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Proof. Let D be a directed subset of P, such that b := \/ D exists. Assume

a € P, is such that a <, b. Assume for a contradiction that awﬁw d for all d € D.
Hence, b ¢ D and D has no maximal element. By Lemma 2.4, Proposition 4.2
and induction, we may assume there exist ag,by € Py such that ¢g(ag) = a and
©wo(bg) = b. Let a; := @io(ag) and b; := p;o(bg) for i < w.

Claim 1. The element by is an upper bound of | n, (d).
deD

Proof of Claim 1. Take any d € D. There exist a nonzero i < w and d; € P;
such that ¢;(d;) = d and 5, (d) = n; (d;). Now ¢;(b;) = b, so since ¢; is an order-
embedding, b; >; d;. Hence b; O d; and |; b; O {d;}, so by Remark 3.2 (2),

n; (b)) =n"(n (..n"({b:})...)) =n"(n (..n (L b;)...)) (by Lemma 3.4)

2 n’(n;(- -~ ({di})...)) = n; (di) = ng, (d).

By Lemma 5.2, n; (b;) = ny (do bo) = 1~ ({40 bo}) = U{Jo bo} =lo bo. Thus, by is
an upper bound of 7 (d). O

Claim 2. Assume co € Py is an upper bound of |J n,(d). Then by <o co.
deD

Proof of Claim 2. For 0 < i < w, let ¢; := wip(co) and let ¢ := ¢o(cp). Choose

d € D. As before, there exist ¢ such that 0 < ¢ < w and d; € P; such that ¢;(d;) = d

andn, (d) =n; (d;)) =n"(n"(...n7({d;}) ...)). By Lemma 3.9, ¢; is an upper bound
i times

of {d;} in P;. Hence, ¢; >; d;, so, applying ¢;, ¢ >, d. Therefore ¢ >, b. Since ¢

is an order-embedding, co > bg. O
By Claims 1 and 2, by = \/[ U (d)}
0 Ldep
Case 1. ag <o xo for some g € |J n,(d). Say xo € n,(d), where d € D. As
deD

before, there exist ¢ such that 0 < ¢ < w and d; € P; such that ¢;(d;) = dand n, (d) =
n; (d;). By Lemma 5.5, ag belongs to the down-set 7, (d). By Lemmas 3.4, 3.7
and 3.8, a; = wio(ap) €l d;, so a; <; d; and a <, d. Since D has no maximal
element, there exists d’ € D such that a <, d'.

Case 2. ag Lo xo for all zg € |J n (d). By Corollary 5.7, |J n;(d) € Pi.
deD deD

Claim 3. For alld € D, d <, v1( U 1, (d)).
deD
Proof of Claim 3. Let d € D. As before, let i be such that 0 < i < w and let

d; € P; be such that ¢;(d;) = d and n;, (d) =n, (d;). By Lemma 5.4, we may assume
1 > 2. Assume for a contradiction that

d % sm(U 77;(6?))-

debD
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Since ¢; is an order-embedding,

di i pin ( U U;(J))

deD
By applying Lemma 3.8 (2) ¢ — 1 times (initially with B = {d;}), there exists

aen (n (..n ({di})...))

1—1 times

such that a; £1 | n; (d). Thus, there exists py € a1 such that po ¢ |J 7, (d). But
deD deD

poclJn 0 (.on{di})..)=n"(n (..n ({d:})...)) =5 (d),

i—1 times 7 times

a contradiction. O
By Claim 3, b <, 301( U n;(d)). Thus a <, <p1( U n;(d)). By Proposi-
deD deD

tion 2.1(1) there exists h such that 0 < h < w and ap < gphl( U ng(d)) and
deD
the inequality is strict. Since ¢p; is an order-embedding, a; <y |J 7, (d). Thus

ap € U mng (d), violating the assumption behind Case 2. deb O

deD

Proposition 5.17. If Py does not contain w x 2 and does not contain w? x 2,
then P,, does not contain w? x 2.

Proof. Use Lemma 5.5, Corollary 5.13, and Lemma 4.3. O

Proposition 5.18. Assume Py does not contain w X 2.

(1) If every nonempty chain of Py has an infimum, then every nonempty chain of
P, has an infimum.
(2) If Py is inf-regular, then P, is inf-regular.

Proof. (1) Let C be a nonempty chain in P, with no least element. By
Lemma 5.5 and Corollary 5.13, {n_ (¢): ¢ € C} satisfies the conditions of Lemma 4.5.
Hence, there exists eg € Py such that eg € () 7, (¢). By Theorem 5.12, ¢g(eg) < ¢
forall c € C. ecC

Further, if f € P, is a lower bound of C in F,,, then by Corollary 5.13, n_ (f) C
N, (¢) for all ¢ € C. By the conditions of ey given by Lemma 4.5, n, (f) Clo eo.
Thus xo <o €o for all zg € 0, (f), so wo(z0) <w woleo) for all g € n, (f), and hence
by Theorem 5.12, f <., wo(eop). Thus po(eg) = AC.

w
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(2) Let a € P, be such that a >, ®o(er) = ¢i(pio(eo)). By Lemma 5.4,
Mg (wo(eo)) = ny (w10(eo)) =n~ ({do €o}) =lo eo. By Corollary 5.13 and Lemma 5.5,
n,, (a) Dlo eo, so by Lemma 4.5, there exists ¢ € C such that n_ (a) 2 n,(c). By
Corollary 5.13, a >, c. (]

Corollary 5.19. Let Py be a poset not containing w x 2. Let R be a sup-regular
poset. Let fo: Py — R be an order-embedding. Then there is an order-embedding
fw: P, — R such that f, o pg = fo.

Proof. Use Lemma 3.11 and Lemma 2.3 and Lemma 2.2 (1). O

6. “CHAIN-COMPLETING” A SUP-PRE-REGULAR POSET

The articles [11] and [15] also discuss posets that could be called “chain-
completions.” In fact, the construction below may be equivalent to a special case of
a version of [11], Definition 6, although we have not checked this.

Definition 6.1. Let P be a sup-pre-regular poset. Let D = {D € Z(P):
\/ D does not exist}. Let P#* = {| p: p € P} UD. Define a binary relation C
P

on P# as follows. (Let p,p’ € P and let D, D’ € 5)
IpElp ifp<pp,
1 p C D’ if there exists a directed subset £ C D’ such that p <p \/ E,
DClp if DClp,
DCD ifDCD.
Let Lﬁ: P — P# be the map p —/] p (p € P).

Remark 6.2. Note that forallpe P, | p¢ D.

In the following theorem, if W is a poset and w € W, we write |y w to mean
{veW: v < w}; we use the “W” subscript merely to remind the reader what poset
we are referring to, since the theorem deals with several posets.

Theorem 6.3. Let P be a sup-pre-regular poset. Then (P#,C) is a poset and

Lﬁ is an order-embedding.

Let € be a directed subset of P#. Then \/ £ exists. Indeed:
P#

(1) If for each e € &, there exists q. € P such that e C g, and | ¢. € &, let
F:={qeP: lqef}.
(1a) The set F' is directed.
(1b) If\/ F exists, then lp (V F) =V &.
P P P#

(1c) If \/ F does not exist, then || F = \/ &.
P P#
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(2) If there exists é € € such that é (L] q for allqg € P with | q € &, let G :=|J{D €
E: eC D}.
(2a) We have é € D and G € Z(P).
(2b) If\/ G exists, then |p (\VG) =V €.
P P P#

(2¢) If \/G does not exist, G = \/ £.
P pi#

Proof. To avoid having to repeat this, assume p,p/,p” € P and D, D', D" € D.
We show L is a partial ordering.

Reflexivity: Obviously | p Cl pand D C D.

Antisymmetry: Assume | p C| p’ and | p’ T p. Then p = p’ and hence | p =] p’.

Now assume | p E D and D C| p. Then there exists a directed subset £ C D
such that p < \/ £ and also D C| p. Thus, p = \/ E and hence \/ D exists (and
equals p), contradicting the fact that D € D. Finally, assume D E D’ and D' C D.
Then D = D’.

Transitivity: Case 1. | p El p’ and | p' E) p”. Then p < p”’,s0 L p T p".

Case 2. L pClp and | p’ C D”. Then p < p’ and there exists a directed subset
E' C D" such that p’ < \/ E’. Then | p C D".

Case 3. | p & D' and D' C| p”. Then there exists a directed set £ C D’ such
that p < \/ E and D' Cl p”. As\/ E < p”, we have p < p”,so | p Clp".

Case 4. | p T D' and D' C D”. Then there exists a directed set £ C D’ such
that p < \/ E, and D' C D”. Hence | p C D".

Case 5. DCLp' and | p' Cl p”. Then D C|l p’ C| p"”,s0 D C| p”.

Case 6. D C| p and | p’ C D”. Then D CJ p’ and there exists a directed set
E’' C D” such that p’ < \/ E’. As D has no greatest element, D QJO, p’. Thus, for
alld € D, d < \/ E', so by sup-pre-regularity, there exists e/, € E’ such that d < ¢/;.
Hence D C D", so D C D".

Case 7. DE D' and D' T p"”. Then D C D' Cl p”,so D C| p”.

Case 8. DE D' and D' C D". Then D C D' C D", s0o D C D".

Let € be a directed subset of P#.

(1) Let F ={qe€ P: | q € £}. Assume that for all e € £, there exists ¢ € F such
that e £ q.

(1a) Claim 1. The set F is directed.

Proof of Claim 1. Since £ # (), being directed, F' # (). Now let q,¢' € F. Then
1 ¢,1 ¢ € &, so there exists e € £ such that | ¢, | ¢ C e. By assumption, there
exists ¢ € F such that e C| ¢”, 50l ¢, 1 ¢ ©l ¢", 50 ¢,q' < ¢". O

(Ib) Assume \/ F exists.
P

Claim 2. |p (\/ F) =V E
P p#
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Proof of Claim 2. First we show |p (\/ F) is an upper bound of £ in P7#.
P
Pick e € £&. If e =| ¢ for some q € P, then ¢ € F, so ¢ < \VV F and hence
P

e=lqLClp (\/ F) Ife=De¢ 15, then by assumption there exists ¢’ € F' such that
P

e C| ¢'. Hence, by transitivity and the above sentence, we have e T (\/ F).

Now suppose | r is an upper bound of £ in P#, where r € P. Then for all g € F,
lqClr,s0oqg<r. Thus\/ F < r and hence | (\/ F) C| r.

Finally, suppose D € D is an upper bound of £. Then for all ¢ € F, | ¢ E D,
so there exists a directed set E; C D such that ¢ < \/ E,. If F has a maximal
element ¢*, then ¢* =\/F and | (\V F) =l ¢* C D.

Otherwise, given ¢ € F, there exists ¢ € F such that ¢ < ¢, so ¢ < \/ E5. By
sup-pre-regularity, there exists g € F4 such that ¢ < g and thus ¢ € D. Hence F' C D
is a directed set (by Claim 1) and \V F <\ F, so |p (\/ F) CD. O

P

(1c) Assume \/ F does not exist. Then |p F € D.
P

First, we show |p F is an upper bound of £ in P#. Pick ¢ € F. Then {¢} is a
directed set, ¢ = \/{q}, and {q} C} F,so L ¢C| F.

Now let D e DNE. By assumption, there exists ¢ € F' such that D C| ¢, and by
the above, | ¢ C| F, so by transitivity D C| F.

Let ¢ € P be such that | ¢ is an upper bound of £. Thus, for all p € F, | p C| ¢,
ie., lpClqg,sol F Cl qandhence | FFC|gq.

Finally, let D € D be an upper bound of £. Then for all ¢ € F', | ¢ C D, so there
exists a directed set E, C D such that ¢ < \/ E,. Since \/ I does not exist, F' does
not have a maximal element, so for any g € F' there exists § € F such that ¢ < \/ Ej;
by sup-pre-regularity, there exists g € E4 such that ¢ < g, and hence ¢ € D. That
is, JFCD,sol FC D.

(2) Assume there exists é € £ such that é [Z| ¢ for all ¢ € P such that | ¢ € £.
Let G:=J{D €&: ¢ C D}.

(2a) Obviously é € D and G € Z(P) by Lemma 3.6.

(2b) Assume \/ G exists. First, we show |p (\/ G) is an upper bound of £ in P#.

P P

Let e € £. Since € is directed, we may assume by transitivity that ¢ C e. Then
e CG,s0p < \/G forall p €e, and hence e C| (\/G), soe ] (\/G)
P P

Now let ¢ € P be such that | ¢ is an upper bound of £ in P#. Then for all D € £
such that € C D, we have D C| ¢, so D C| ¢, and hence G C| ¢, and thus \/ G < ¢
and | VG Clg or L \/GLClq IfD € D is an upper bound of € in P#, then for
all D € & such that é C D, we have DC D/, or D C D', so G C D'. By (2a), G is
directed, and \/ G < VG, s0 L VGLC D'.
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We conclude that | VG =V &.
p#

(2c) Assume \/ G does not exist. In this case, G € D. First, we show @ is an
P

upper bound of £ in P#. Take e € £. Since £ is directed, we may assume (since we
then use transitivity) that é C e, so ¢ C G and hence e C G.

Now let @Q € P* be an upper bound of £ in P#. Then for all D € £ such that
éC D, we have D C @, so D C Q. Hence, G C @ and thus G C Q.

We conclude that G = V/ €. O
P#
Ty 0 /
3 Y2
T2 Y1
T Yo
o
P p#
(a) (b)
Figure 7.

Lemma 6.4. Let P be a sup-pre-regular poset not containing w x 2. Then for all
e,e/ € P# e C ¢ ifand only ife C €.

Proof. We only need to consider the case in which e =|p p and ¢/ = D’ € D.
In particular, D’ has no maximal element. If e C €', then let £ = {p}, a directed
subset of D’ such that p < p=\/E. Hence e C ¢’

Now assume e C ¢’ and let E C D’ be directed and such that p < \V E. If p € D',

P

we are done, so assume p ¢ D’. Hence, for all d € D', p £ d’, so there exists g € £
such that ¢ £ d’. Since \/ E = /(] E) exists but \/ D’ does not, | E C D’. By

[e]
Lemma 4.1, there exists d’ € D’ such that | £ C| d’, a contradiction. O

Corollary 6.5. Let P be a sup-pre-regular poset not containing w x 2. Then P#
is sup-regular.

Proof. By Theorem 6.3, every nonempty chain £ has a supremum. Let a € P#

be such that a I; \ €. By Lemmas 4.1 and 6.4, there exists d’ € \/ & such that
o pP# P#
a C | pd'. We consider the four possibilities of Theorem 6.3, (1b), (1c), (2b), and (2¢).

483



(1b) If @ =] p p for some p € P, then p <p \/ F, so by sup-pre-regularity, there
P
exists f € F' such that p <p f, and hence [ pCl fe&,s0]p |;¢ f, by Lemma 6.4.

Ifa=D € 5, the previous paragraph tells us D C| F. We cannot have D =| F
since \/( F) exists but \/ D does not. Hence, D C| F, so by Lemma 4.1, there
exists ¢” €| F such that D Qi g". Hence, there exists f € F such that D C| f, i.e.,
by Lemma 6.4, DCe for some e € .

(1c) By Lemmaz 4.1 and 6.4, there exists f € F' such that a Qi fysoaCl feé.

(2b) If a =] p p for some p € P, then by sup-pre-regularity, p <p g for some g € G,
soa=|pC D" for some D" € . If a = D € D, the previous sentence tells us that
D C G. We cannot have D = G, since \/ G exists but \/ D does not, so D C G, and
hence, by Lemma 4.1 there exists ¢"” € G such that D Qi g'—thus D C| ¢”" C D"
for some D" € £. i

(2¢) By Lemmas 4.1 and 6.4, there exists g € G such that a C} g, s0a T} g C D"
for some D" € &. O

Corollary 6.6. Let P be a sup-pre-regular poset not containing w X 2.
(1) The poset P# does not contain w x 2.
(2) If P does not contain w® x 2, then P# does not contain w? x 2.
(3) If every nonempty chain of P has an infimum, every nonempty chain of P¥ has
an infimum.
(4) If P is inf-regular, then P# is inf-regular.

Proof. (1) This follows from Corollary 6.5 and Observation 1.2.
(2) This follows from Lemmas 4.3 and 6.4.
(3) and (4) These follow from Lemmas 4.5 and 6.4. O

Proposition 6.7. Let P be a sup-pre-regular poset. Let f: P — R be an order-
embedding into a sup-regular poset. Then there exists an order-embedding f7 :
P# — R such that f# o Lﬁ = f.

Proof. Since f is an embedding, w x 2 does not embed in P by Observation 1.2.
For D € P# define f#(D) := \/{f(d): d € D}.
R

Let q,¢' € P¥. If ¢ C ¢/, then by Lemma 6.4 ¢ C ¢/, so f#(q) <z f7(q'). Now
assume ¢ IZ ¢’. By Lemma 6.4, ¢ ¢/, so there exists p € ¢\ ¢
Assume for a contradiction that f#(q) <r f*(¢'). If f#(q) <r f¥(¢'), then
F() <g V{f(d): d' € q¢'}. By sup-regularity, there exists d’ € ¢’ such that f(p) <g
R

f(d"), so p <p d' and hence p € ¢/, a contradiction. Thus f#(q) = f#(¢').
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Case 1. q =1 p and ¢ =] p' for some p,p’ € P. Then f(p) = f(p'), so p = p/,
and hence g = ¢/, a contradiction.

Case 2. q =) p for somep € P and ¢ = D' € D. In particular, D’ has no
maximal element. Hence, f(d') <gr f(p) for alld € D', sod" <p p for all d’ € D/,
i.e., D' Clp p. Thus p is an upper bound of D’. Since \/ D’ does not exist, there

P

exists p € P such that D' Clp p but p £p p. Hence, f(p) = f#(q) = f#(¢) =
V{f(d): d € D'} <g f#*(lp p) = f(p), so p <p P, a contradiction.
R

Case 8. ¢ = D € D. Thus, D does not have a maximal element, so there
exists p € ¢\ ¢’ such that p <p p. Hence, f(p) <g V{f(d'): d' € ¢'}. By sup-
regularity, there exists d’ € ¢’ such that f(p) < f(d’), so p <p d’ and hence p € ¢/, a
contradiction. (I

Theorem 6.8. Let P be a poset not containing w x 2. Then there is a sup-regular
poset P~ and there is an order-embedding ¢p: P — P~ such that:

(1) If f: P — R is an order-embedding into a sup-regular poset, there is an order-
embedding f~: P~ — R such that f~ opp = f.
(2) If P does not contain w® x 2, then P~ does not contain w? x 2.

(3) If P is infregular, then P~ is inf-regular.

Proof. Let Py = P. Let P~ := (P,)*. Let op := 17 oy: Py — P~. The poset
P~ is well-defined by Proposition 5.16. By Proposition 5.15, Proposition 5.16, and
Corollary 6.5, P, is sup-pre-regular and does not contain w X 2; P~ is sup-regular.
By Theorem 6.3, ¢p is an order-embedding.

(1) Let R be a sup-regular poset and f: P — R an order-embedding. By Corol-
lary 5.19 with fy = f, there exists an order-embedding f,: P, — R such that
fuowo = f. By Proposition 6.7, there is an order-embedding f~ := (f.,)#: P~ — R
such that (f,)# o# = f,. Hence, f~ o pp = (fu)* 01 0o = fu,opo = f.

(2) If P does not contain w? x 2, then P, does not contain w? x 2 by Proposi-
tion 5.17. By Corollary 6.6 (2), P~ does not contain w? x 2.

(3) If P is inf-regular, then, by Proposition 5.18 (2), P, is inf-regular. By Corol-
lary 6.6 (4), P~ is inf-regular. d

Corollary 6.9. Let P be a poset that does not contain w x 2 and does not
contain w? x 2. Then there is a regular poset P™& and there is an order-embedding
Up: P — P™® such that: If f: P — R is an order-embedding into a regular poset,
there is an order-embedding f™8: P'°® — R such that [ o Up = f.
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Proof. By Theorem 6.8, especially part (2), (P~)? is inf-regular and does not
contain w x 2. By Theorem 6.8, especially part (3), [(P~)?]~ is regular, so P8 :=
{[(P~)?]—}? is regular. The map

P+ (Op—yo)— © p(p—yo 0 Op— o pp)(p) (p€P)

is an order-embedding ¥ p from P to P™5.
If f: P — R is an order-embedding to a regular poset, then by Theorem 6.8(1),
there is an order-embedding f~: P~ — R such that

[Topp =1
Thus, we get an order-embedding g := g o f~ o 5‘13i . (P7)? = R?. Since R? is
a regular poset, by Theorem 6.8 (1) there is an order-embedding
g7 [(P7)]” = R
such that
g~ oppp—ye =4,
S0
reg _ a—1 — —1
JE=0r 09 0 O poyo)
is an order-embedding from P'*¢ to R and
freg oUp = freg o 8[(Pv)8]v o p(p—)o © 8pv opp
=0g' 097 00 (p_ya © O (p—)ya)~ 0 P(p—yo © Op— 0 pp
:leogvosp(]gv)a o Jp— owp :5‘;1 ogodp— owp
=0p' 00ro fT00pl 0Op—opp=f"opp=f
O
Obviously some work could be done regarding the uniqueness of these extensions,
or regarding extensions of order-preserving maps that are not necessarily order-

embeddings. And perhaps these techniques can be used to address Grillet’s con-
jecture [7], page 157, mentioned in Section 1.

7. AN EXAMPLE SOUGHT BY GINSBURG IN 1984

Let P be a poset. We write p < ¢ if p is a lower cover of ¢ in P. An element m € P
is completely meet-irreducible if {p € P: p > m} has a least element m*, which will
be the unique upper cover of m. For p,p’ € P, we write p ~ p' if p < p' or p > p';
we write p || p’ if p = p'; we write p < p’ if every maximal chain of P containing p
also contains p’ (equivalently, if p ~ ¢ € P, then p’ ~ q); we write pQp’ if p < p’ and
p’ < p; see [9], [4].
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Observation 7.1. Let C' be a minimal cutset of a poset P. If ¢1,co € C and
c1 < ¢, then ¢; = cs.

Let T be a poset. For each t € T, let P, be a poset and assume that P, N P, = ()
ift,t’ e T andt #¢. For p € P, let 7(p) =t (t € T'). The lexicographic sum of the

family (P;)¢er is the poset on |J P; defined by:
teT

= d g - )
r<y if 7(r) =7(y) and x <p,,, Y, oOr
7(z) <7 7(y)

(x,y € U P:). Two special cases are the disjoint sum of posets P, and P,, P; + P,
teT
(see [2], Section 1.24, if {t, u} is a two-element antichain) and the ordinal sum Py® Py

(see [2], Section 1.24, where 0 < 1). Note that if z,y € |J P, and = < y, then
teT
7(x) <7 7(y), so that each P, (t € T') is a convex subset of the lexicographic sum.

Slatinsky in [14], 3.9 Satz looked at when a lexicographic sum was a semilattice,
so the following is but a trivial extension.

Proposition 7.2. Let T be a nonempty poset and (P;)icr a family of pairwise
disjoint nonempty posets. Let X C |J P;. Then \/ X exists in the lexicographic
teT
sum P if and only if \/{7(x): = € X} exists—call it ty—and:
T
(1) Ifty ¢ 7[X], then P,, has a least element.
(2) Ifto € 7[X] and the set {y € X: 7(y) = to} has an upper bound in P,, then
that set has a least upper bound with respect to P;,.
(3) Ifty € 7[X] and the set {y € X: 7(y) = to} has no upper bound in P,,, then
to is completely meet-irreducible and Py has a least element.

Remark 7.3. Note that in
(1) VX =0p,;
2) VX =V{yeX: 7(y) =to};

to

(3) \/XZOPtS'

Proof. Case (1): 7[X] has no greatest element. First, assume z := \/ X exists.
Then for all x € X, 7(x) < 7(2), so 7(2) is an upper bound of 7[X]. If w € T is an
upper bound of 7[X], then w ¢ 7[X]. Hence, if p € P, then p is an upper bound
of X, so z < p and thus 7(z) < 7(p) = w. Therefore \/ 7[X] exists and equals 7(z).
Since every p € P, (.) is an upper bound of X, P.(.) has a least element (which is z).
This is (1).
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Now assume to = \/ 7[X] exists and (1) holds. Then the least element of P, is

an upper bound of X.T If ¢ € P is an upper bound of X in P, then 7(q) is an upper
bound of 7[X] in T', so to < 7(g), and either to < 7(g), in which case 0p, < g, or
to = 7(q), in which case g € P, and again Op,, < ¢. Hence Op,, =\/ X.

Case (2): T[X] has a greatest element tg.

Case (2a): {r € X: 7(x) = to} has an upper bound p’ in P,,. First assume
z := \/ X exists. Since p’ is an upper bound of X, then 2 < p’, and since = < z for
some x € Py, we know 7(2) = 1.

Let u € P,, be an upper bound of {y € X: 7(y) =to} in P,,. Then u is an upper

bound of X in P. Hence z < w. Thus z = \/ {y € X: 7(y) = to}. Hence (2) holds.
Pr,

Now assume ¢ := \/{y € X: 7(y) = to} exists. Then ( is an upper bound of X

Py,

in P. If u is an upper bound of X in P, then in Case 2, tg < 7(u). If 7(u) > to,
then ¢ < u. If 7(u) = to, then w is an upper bound in P, of {y € X: 7(y) =to}, so
¢(<u. Thus ( =V X.

Case (2b): {x € X: 7(x) = to} has no upper bound in P;,. First assume z := \/ X
exists. Then 7(z) > ty. But any u € P such that 7(u) > to is an upper bound of X,
so 7(u) > 7(z). Hence, t§ = 7(z) is the unique upper cover of the completely meet-
irreducible element to. Since any u € Py; is an upper bound of X, we must have
z=0p,,. Thus (3) holds.

Now Oassume (3) holds. Then 0 Py is an upper bound of X. If u is an upper bound
of X, then to < 7(u), but since in Case 2b, ¢y # 7(u), we have ty < 7(u). Hence
ty < 7(u), so either t§ < 7(u) and OP* u or t§ = 7(u) and again Opt* u. Thus
Op, =V X. O

Grillet [7], pages 160-161 took a poset E and defined E* to be
{(u,v) € Ex E: u <v}.

For some S C E*, he defined a partial ordering on E := E U S as follows (where
x,y € F and (u,v), (v/,v") € S):

r<pyer<gy, z<puv)er<pu,
(u,v) <grev<gr, (uwv)<g@W,W)esvgu

Grillet had the hypothesis that E was regular, and proved that E was regular (in
particular, he showed what the supremum of a nonempty chain was); but we will not
assume F is regular.

The above definition makes it clear that (u,v) € S is completely meet-irreducible
in F with unique upper cover v, and dually.
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Lemma 7.4. Let X C E. Then \/X exists if and only if \/X exists. In this case,

the two are equal. E

Proof. Assume \/ X exists. Since every (u,v) € S is completely join-irreducible,

E
\V X € E. Obviously this means \/ X =\/ X.
E E E
Now assume \/X exists. It is an upper bound for X with respect to E. If
(u,v) € S'is an upper bound for X, then z < u for all z € X; hence \/X u and

thus \/ X < (u,v). We conclude that \/ X =/ X. O
E E E

Let Y(z) = « for ¢ € FE and let T(u,v) = v for (u,v) € S. The following is
a trivial modification of Grillet’s [7], Lemma 9.

Proposition 7.5. Let Y C E. If Y does not have a greatest element, then \/Y
exists if and only if \/ T[Y] exists. In this case, the two are equal. E
E

Proof. Assume \/Y exists. Since Y has no greatest element, then \/Y ¢ E*.
E E
Thus \/Y € E and for every y € Y, T(y) < \/Y. Obviously any upper bound e of
E
T[Y] in E is an upper bound of Y, so \/Y e. Thus \/Y \/T[ ].

Now assume \/ T[Y] exists. Then 1t is an upper bound of Y. Let e € £ be an
upper bound on inE. Forally € Y, T(y) <e,so \/T[ ] <e. Let (u,v) € S bean
upper bound of Y. Then for all y € Y, T(y) < u, so \/T[ ] <g uwand u <3 (u,v).
Hence VY =/ T[Y]. O

E E

Definition 7.6. Let E be a poset. Define ER to be the lexicographic sum of
(Pz)sc, where
{e} ifee E,
| Rx{e ifeeE*
For (u,v) € E* and r € R, we will denote (r, (u,v)) by 7(y,v)-

Corollary 7.7. If E is a complete lattice, then ER is a complete lattice.

Proof. By Proposition 7.5, E is a complete lattice and in fact for all Y C E,
VY € E (with VY =\/ X for some X C F) unless Y has a greatest element.
E E

Let W C ER and let Y = 7[W] C E. If \/Y € E, then |Pyy| = 1, so (3)
cannot occur and in case (1) or (2), we have what we need to guarantee the existence

of \/ W.
ER
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If Y does have a greatest element and \/Y € E*, then the Least Upper Bound
Property for R tells us \/ W exists in situation (2); in situation (3), the fact that \/ Y

ER
is completely meet-irreducible in E with upper cover (\/ Y)* such that [Py yy«| =1
tells us \/ W exists. O
ER

Lemma 7.8. If F is countable, then every antichain of ER is countable. Also,
ER is densely ordered.

Proof. Let A be an uncountable antichain of ER. Let A1 = AN |J P. and let
As = A\ A;. Then As is uncountable. Since E* C F x E is countabelijﬂthere exist
distinct a,a’ € Ay such that 7(a) = 7(a’)—say, (u,v) € E X E—=s0 a = r(,,) and
a = TE%U). But r <7’ orr’ <r,s0a<a ora>a,a contradiction.

Now let q,q' € ER be such that ¢ < ¢’. We show there exists ¢’ € ER such that
q < q// < q/.

Case 1. g€ | P..
ecE
Case la. ¢ € |J P.. Then q <g ¢'. If there exists ¢” € F such that ¢ <pg
ecE
q" <g ¢, then ¢ <gr ¢" <pr ¢'. Otherwise, (¢,¢) € E*, s0 ¢ <pr 0.5(4,¢) <pr ¢

Case 1b. ¢ = rzu, oy for some r eR, (u,v") € E*. Then
9 <ER (T/ - 1)(u'ﬂ)') <ER TZu’,v’)'

Case 2. q = T(yv) for somer € R, (u,v) € E*.

Case 2a. ¢' € |J P.. Then r(y ) <gr (r + 1)) <er ¢
eckE
Case 2b. ¢ = r(u, ) for some v’ € R, (v/,v") € E*. If v <g ', then r, ) <gr
vV <ER TEu,,U,).

Otherwise, u = u’, v =v', and 7 <g 7/, 80 7(,») <pr (r + ")/2 40y <BR T

(w)
O

Higgs in [8], page 373 defined a poset M = {(aq,...,am) € 2™ : m € Ny}, where
oy s m) = Wo, -y yn) Em <ny 2o =yo, -+, Tm—1 = Ym—1, and Ty = Y. We
say that the length of (ag,...,am) is m + 1.

Higgs showed that M has no minimal cutset, he stated that every principal up-set
is a chain, and he said that 1 ® (M + Fy) @ 1 is a complete lattice, where F}y is the
four-element fence [2], page 28 and 1 is a one-element poset.

Lemma 7.9 (Higgs [8], page 373). Every principal up-set of M is a chain.

Proof. Let a = (ag,...,am), @ = (ap,...,a,,,) = (bo,...,b,), where m <
m’ <n. Then ag = by =af; a1 = by =al; ... amo1 = b1 = a,,_q; and Gy, = byy;
’ Y _ . /
b = apy; b1 = g -5 by =@y, g5 and ap, 2 by
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Case 1. m' < n.

Case 1a. m < m'. Then ap = ap; a1 = af; ... am—1 = al,_1; al,, = b, s0
am = a,, and a > a'.

Case 1b. m = m/. Then ag = al; a1 = a}; ...; Am—1 = al,_q; and a,, ~ al,, so
an~a.

Case 2. m’ = n.

Case 2a. m < m'. Then ag = af); a1 = a}; ...; Am—1 = Am/—1; Am = by = al,,.
Hence a > @'.

Case 2b. m = m/. Then ap = al; a1 = a}; ...; Am—1 = al,_q; and a,, ~ al,, so
an~a. O

Lemma 7.10.

(1) Let E be a poset such that Tg e is a chain for all e € E. Then every principal
up-set of E is a chain.

(2) Let T be a poset such that 17 t is a chain and P, is a chain for allt € T. Then
the lexicographic sum of the family (P;)ier Is such that every principal up-set
is a chain.

Proof. (1) Let a, 3,y € E be such that o < 3, 7.

Case 1. a € E.

Case 1la. B,y € E. Then 8 ~ ~.

Case 1b. f € E and v = (u,v) € E*. Then a < u, v, so 8 ~ u, v, and either 8 < u
or v < 3, since u <g v. Hence g ~ ~.

Case 1c. B,v € E*. Say 8 = (u,v) and v = (u/,v'). We have a < u,u/,v,v'.

/

Without loss of generality, v < /. If w = v/, then as u <g v and v’ <g v’ but

v ~ v, we have v = v’. Hence 8 = 7.

If u < v, then since u <g v and v ~ u’, we cannot have v’ < v, so v < v’ and
B <.

Case 2. oo € E*. Then Y(a) < f3,v. By Case 1, 5 ~ 7.

(2) Let p,q,r € |J P be such that p < ¢,7. So 7(p) <7 7(¢), 7(r). Without loss

teT
of generality, 7(¢) < 7(r). If 7(¢) < 7(r), then ¢ < r. If 7(¢) = 7(r), then g ~r. O
Corollary 7.11. Every principal up-set of MR is a chain.

Observation 7.12. Let P be a poset such that every principal up-set is a chain.
Then p < q for all p,q € P such that p < q.

Let H := {0} & M & {1}.
Proposition 7.13. The poset H is a complete lattice.
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Proof. Let DC H. If D=0 or D= {1y}, then AD =1g. If Oy € D, then
AD =0g. So assume D C M and D # (). If there exist z,y € D such that z || y,
then A D = 0y by Lemma 7.9, so assume D is a chain.

Case 1. sup{length of a: a € D} = co. Then A D = 0py.

Case 2. sup{length of a: a € D} =n+ 1.

Case 2a. inf{k € 7: (ag,...,an—1,k) € D} = —00. Then A D = 0y.

Case 2b. inf{k € Z: (ag,...,an—1,k) € D} =m € Z. Then

/\D = (a05"'7a‘n—1;m)'
(]

Lemma 7.14. Let hy,hy € H. Then hy <y hs if and only if hy,ho € M and for

some n € N, ao,...,an € Z, h1 = (ag,...,a,) and he = (ag,...,ap—1,an + 1).

Proof. The element 0y has no upper covers since for any (ag,...,a,) € M,
O < (ag,...,an—1,an — 1) < (ag,...,an). Also, 1y has no lower covers, since
(ag,a1,...,an) < (ag,...,an—1,an+1) < 1g.

Now suppose h1,ha € H and hy < ha. Then hy,hy € M. Say hy = (bo,...,bn)
and he = (ag,...,am), where m,n € Ng. If m < n, then hy > (b, b1,...,bp_1,
bn, + 1) > hy. Thus m = n, and hence hy = (bg,...,bp—1,b, + 1).

Conversely, (ag,...,am—1,am + 1) > (ag,...,am—-1,am), and if (ag,...,am-1,
am + 1) > (bo,...,bn) > (ao,...,am-1,am), then m < n < m, so m = n and
am + 1 > by, > am,, which is impossible. O

Corollary 7.15. The set HR = {0y} ® MR & {14}.

Lemma 7.16. Let a,b € M N MR be such that @ <; b. Then for any r € R,
"(a.5) O HRA-

Remark 7.17. By Lemma 7.14, the hypothesis means that a = (ao,...,amn)
and b = (ag, . .., Qm—_1,am + 1).

Proof. If ¢ € M and ¢ < r(55), then ¢ < a. Now let (z,7) € M* and s € R. If
S(z.3) < T(a,p), then either § < a, so sz 7 < a, or else (z,7) = (@,b), so a < S(a,b)-
This shows that T(a,b) <dggr a. By Corollary 7.11 and Observation 7.12, a <gyg T(a,5)-

U

The following is not used but may help the reader understand the structure of MR.

Observation 7.18. Let o, 3 € MR be such that o { 8 but « # 3. Then there
exist a,b € M and r,s € R such that a <j; b and {o, 3} = {a,745} or {o, B} =
{T(a,s)a S(a,E)}-
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Proof. Say a >ppr 8. We will show using only this assumption that there is an
element v € M such that a ~ « but « || 5, unless one of the two situations in the
statement of the lemma holds.

Case 1. o= (ag,-..,am) € M.

Case 1a. B = (bg,...,b,) € M. If m < n, then a9 = bg; a1 = b1;...;a4m-1 =
bm—1; and @, = b, S0 @ > (ag, a1, ...y Gm—1,bm — 1) || B.

If m = n, then ag = bo; a1 = b1;...;Am—1 = bim—1; Gm > bm; a>(ao, ..., am,0)|| 5.

Case 1b. 8 = 5(z5) where T <p; J. Then o > 7. If a > 7, then by the above, there
exists v € M such that « ~ v and v || 7, and hence 7 || 8 < 7 (by Corollary 7.11
and Observation 7.12).

If « =7, then o > (ag,...,am,0) | Z by Lemma 7.14. Hence, by Lemma 7.16,
(ao,-.-,am,0) || 5.

Case 2. o = r(z,5 where u <pr 0. Use the complete join-irreducibility of (u,7)
in M. If 8 < 1, then by the above and Lemma, 7.16, there is an element comparable
to u and a but not 8. If 3 = u, we are done. Otherwise, 8 = s(37), and we
are done. O

Lemma 7.19. Let C be a maximal chain in MR. Then CNM is a maximal chain
in M. The map C — C N M is a bijection.

Proof. Let m € M be such that m ~ cfor all c€ CNM. Let c € C'\ M—say
¢ = r@p)- By Lemmas 7.14 and 7.16, a € C so m ~ a, and hence m ~ c¢. Thus
m € C and hence m € C'N M. Obviously, any maximal chain D of M extends to a
maximal chain C of MR, so D=CnNM.

Now suppose C1 "M = Co N M. Let T(ap) € C1. Then a € Cy and hence a € Cs,
80 7'(g,5) € C2, by Lemma 7.16. By symmetry, C1 = Cs. O

Notation 7.20. Let D C MR. Define ®: D — M as follows: For d € D,

d ifde M,
®(d) =
a ifd= 7"((—1’5).

Note that d ¢ ®(d) by Lemma 7.16.

Observation 7.21. Let Y be a maximal chain of MR. Then ®[Y] =Y N M.

Proof. Let y € Y. Then y  ®(y), so ®(y) € Y and ®(y) € M. Thus [Y] C
Y NM. Also, if y € Y N M, then ®(y) =y. Hence Y N M C D[Y]. d

Lemma 7.22. Let D be a minimal cutset of MR. Then ® is one-to-one on D.

Proof. Use Observation 7.1.
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Lemma 7.23. Let D be a minimal cutset of MR. Then ®[D] is a minimal cutset
of M.

Proof. Let X be a maximal chain of M. Extend it to a maximal chain Y of MR.
Then there exists d € DNY. Thus d ¢ ®(d), so (d) e Y N M = X. Thus ®[D] is
a cutset of M.

Now pick any d € D. There exists a maximal chain ¥ of MR such that
Y N D = {d}. By Observation 7.21 and Lemma 7.19, ®[Y] is a maximal chain
of M. Suppose d € D and &(d') € @[Y]|=Y NM. Thend O &(d')€Y,sod €Y.
Thus d € YN D = {d}, so d=d'. Hence ®[Y| N P[D] = {®(d)}. O

Theorem 7.24. There is a complete densely ordered lattice HR with no uncount-
able antichains such that the only antichain cutsets are {0} and {1}.

Proof. By Corollary 7.15, HR \ {0,1} = MR. We show MR has no antichain
cutsets. If it had one, it would be a minimal cutset, as Maltby observes [10], page 391.
By Lemma 7.23, M would have a minimal cutset, contradicting Higgs [8], page 373.
The rest follows from Corollary 7.7, Proposition 7.13 and Lemma 7.8. ]
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