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Abstract. The aim of the present paper is to show that the concepts of the intuitionistic
implication and negation formalized by means of a Heyting algebra can be generalized in
such a way that these concepts are formalized by means of a bounded poset. In this case
it is not assumed that the poset is relatively pseudocomplemented. The considered logical
connectives negation, implication or even conjunction are not operations in this poset but
so-called operators since they assign to given entries not necessarily an element of the poset
as a result but a subset of mutually incomparable elements. We show that these operators
for negation and implication can be characterized by several simple conditions formulated
in the language of posets together with the operator of taking the lower cone. Moreover,
our implication and conjunction form an adjoint pair. We call these connectives “unsharp”
or “inexact” in accordance with the existing literature. We also introduce the concept
of a deductive system of a bounded poset with implication and prove that it induces an
equivalence relation satisfying a certain substitution property with respect to implication.
Moreover, the restriction of this equivalence to the base set is uniquely determined by its
kernel, i.e., the class containing the top element.

Keywords: bounded poset; logical connectives defined on a poset; unsharp negation; un-
sharp implication; adjoint operator; Modus Ponens; deductive system; equivalence relation
induced by a deductive system
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1. Introduction

Intuitionistic logic was algebraically formalized by means of relatively pseudocom-

plemented semilattices, see [1], [2] and [14]–[17]. If such a semilattice is even a lattice,
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it is called a Heyting algebra, see [14] and [17]. It is well known that every relatively

pseudocomplemented lattice is distributive. The concept of relative pseudocomple-

mentation was extended by the first author to non-distributive lattices in [3] under

the name sectional pseudocomplementation. This concept was further extended also

for posets in [10]. Thus, some kind of intuitionistic connectives defined on sectionally

pseudocomplemented lattices were realized.

However, there exist logics defined on bounded posets, e.g. the logic of quantum

mechanics, see e.g. [7], [8], [13] and [18]. In particular, orthomodular posets on

which the logic of quantum mechanics is defined are thoroughly studied in [7], [8],

[11] and [18].

In order to formalize logical connectives defined on a poset, there are two possible

ways how to solve the problem that the operations meet and join need not be defined

everywhere. One method is to consider these operations as partial only and then

the logical connectives formalized by them and by partial operations derived from

them are also only partial. The disadvantage of this approach is that in some cases

one does not know the result of a given implication. Hence, we prefer another

approach, namely we consider so-called operators instead of operations which assign

to given entries not necessarily an element as the result, but a certain subset of

elements. We work with such results of logical connectives which are subsets, but

their elements are mutually incomparable. It means that one cannot prefer one

element of this set with respect to the other elements. Hence, such an approach

defined on a poset gets a result to any implication, but this result may be “unsharp”,

see e.g. [9] or [13]. We suppose that if an exact logical derivation is impossible from

the reasons mentioned above, it is better to have an unsharp result than none. In

our opinion unsharp reasoning is an alternative to multiple-valued reasoning, which

is now generally accepted though it was not accepted by all specialists at first.

In their recent paper [9] the authors showed that certain intuitionistic-like logical

connectives implication and negation can be defined on arbitrary meet-semilattices

satisfying the Ascending Chain Condition (ACC) regardless whether there exist (rel-

ative) pseudocomplements or not. We can ask if similar logical connectives may be

derived also by means of arbitrary posets with 0 satisfying the ACC. Within meet-

semilattices the logical connective conjunction is usually formalized by the meet

operation. Then the unsharp implication as introduced in [9] forms an adjoint oper-

ator to conjunction. In the case of a poset we must find another operator formalizing

conjunction. In [13] so-called unsharp properties of formal logics were used. In [9]

we considered unsharpness of implication as well as of negation. This means that for

given propositions p and q the results of the implication p → q and of the negation ¬p

need not be elements of the corresponding meet-semilattice L, but may be nonempty

subsets of it consisting of mutually incomparable elements. When proceeding from
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meet-semilattices to posets, we will apply this principle again for the connective con-

junction in such a way that implication and conjunction will still be connected by a

certain kind of adjointness, see e.g. [6]. Due to this fact, in such logics we still have

the derivation rule Modus Ponens.

The aim of the present paper is to get a formal description of the logical connectives

defined on a poset but not to constitute such a logic; it means we do not construct

axioms and derivation rules or relations for possible Kripke frames.

2. Preliminaries

In the following we identify singletons with their unique element, i.e., we write x

instead of {x}. Moreover, all posets considered in the sequel are assumed to satisfy

the Ascending Chain Condition which we will abbreviate by ACC. This condition

means that in the considered poset there do not exist infinite ascending chains. This

implies that every element of a subset lies under a maximal element of this subset.

Of course, every finite poset satisfies the ACC.

In the sequel we will use the following notation: Let P = (P,6) be a poset,

a, b, c ∈ P and A,B be nonempty subsets of P .

MaxA := set of all maximal elements of A,

L(a, b) := {x ∈ P : x 6 a and x 6 b},

Λ(A,B) :=
⋃

x∈A,y∈B

L(x, y),

A 6 B if x 6 y for all x ∈ A and all y ∈ B,

A 61 B if for every x ∈ A there exists some y ∈ B with x 6 y,

A =1 B if both A 61 B and B 61 A.

The relations 61 and =1 are a quasiorder relation on 2
P and an equivalence relation

on 2P , respectively. (Here and in the following, 2P denotes the power set of P .) It

is easy to see that A 61 MaxB provided A ⊆ B and that A 61 b is equivalent to

A 6 b.

If a poset P has a bottom and a top element, we will denote them by 0 and 1,

respectively, and we will express this fact by writing P = (P,6, 0, 1). Such a poset

is called bounded.

The element c is called the relative pseudocomplement of a with respect to b,

formally c = a ∗ b, if c is the greatest element x of P satisfying L(a, x) 6 b. If

P = (P,6, 0) then the relative pseudocomplement a ∗ 0 of a with respect to 0 is

denoted by a∗ and called the pseudocomplement of a, see e.g. [4] or [12]. Especially,

we have L(a, a∗) = 0.
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3. Negation derived in posets

Consider a bounded poset P = (P,6, 0, 1) satisfying the ACC. For a ∈ P we define

a0 := Max{x ∈ P : L(a, x) = 0}.

Clearly a0 need not be a singleton, but it is a nonempty subset of P since L(a, 0) = 0.

From now on, we will call a0 the unsharp negation of a. Of course, if the pseudo-

complement a∗ of a exists, then a0 is a singleton and hence a0 = {a∗}, or shortly

a0 = a∗.

We extend this concept to subsets of P as follows: If A is a nonempty subset of P

then

A0 := Max{x ∈ P : L(x, y) = 0 for all y ∈ A}.

We are going to show that the negation 0 defined in this way shares several properties

with the negation in intuitionistic logic.

Proposition 3.1. Let P = (P,6, 0, 1) be a bounded poset satisfying the ACC,

a, b ∈ P and A,B nonempty subsets of P . Then the following holds:

(i) A0 is an antichain, in particular, a0 is an antichain,

(ii) 00 = 1 and 10 = 0,

(iii) L(x, y) = 0 for all x ∈ A and all y ∈ A0, in particular, L(a, y) = 0 for all y ∈ a0,

(iv) A 61 B implies B0 61 A0, in particular, a 6 b implies b0 61 a0,

(v) if A and B are antichains and A =1 B, then A = B,

(vi) A 61 A00, in particular, a 61 a00; A000 = A0, in particular, a000 = a0,

(vii) Λ(a, (L(a, b))0) =1 Λ(a, b0).

P r o o f. (i)–(iii) follow directly from the definition of 0.

(iv) If A 61 B, then

{x ∈ P : L(x, y) = 0 for all y ∈ B} ⊆ {x ∈ P : L(x, y) = 0 for all y ∈ A}.

(v) Assume a ∈ A =1 B. Because A 61 B there exists some b ∈ B with a 6 b, and

because B 61 A there exists some c ∈ A with b 6 c. Together we obtain a 6 b 6 c

and hence a 6 c. Since a and c belong to the antichain A, we conclude a = c and

therefore a = b ∈ B. This shows A ⊆ B. Interchanging the roles of A and B yields

B ⊆ A. Together we obtain A = B.
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(vi) We have A ⊆ {x ∈ P : L(x, y) = 0 for all y ∈ A0} and hence A 61 A00. Re-

placing A by A0 we get A0 61 A000. From A 61 A00 and (iv) we obtain A000 61 A0.

Together we have A000 =1 A0, whence A000 = A0 according to (v).

(vii) Any of the following statements implies the next one:

(1) L(x, y) = 0 for all x ∈ (L(a, b))0 and all y ∈ L(a, b),

(2) L(b, y) = 0 for all x ∈ (L(a, b))0 and all y ∈ L(a, x),

(3) Λ(a, (L(a, b))0) 61 b0,

(4) Λ(a, (L(a, b))0) 61 Λ(a, b0).

The fact that (1) implies (2) can be seen as follows: If x ∈ (L(a, b))0, y ∈ L(a, x)

and c ∈ L(b, y), then c ∈ L(a, b) and c 6 x and therefore L(x, c) = 0 by (1), whence

L(c) = L(x, c) = 0, i.e., c = 0. From L(a, b) 6 b we conclude b0 61 (L(a, b))0

according to (iv) and hence

Λ(a, b0) 61 Λ(a, (L(a, b))0).

�

E x am p l e 3.2. Consider the bounded posetP = (P,6, 0, 1) visualized in Fig. 1:

0

1

a

d

b c

e f

Figure 1. Bounded non-lattice poset with unsharp negation.

We have

x 0 a b c d e f 1

x0 1 f ac d c 0 a 0

x00 0 a b c d 1 f 1

(Here and in the following we write a1 . . . an instead of {a1, . . . , an}.) One can see

that x00 = x for all x ∈ P \ {e} and e00 = 1 6= e. But e000 = 10 = 0 = e0 and

hence P satisfies the identity x000 ≈ x0 in accordance with (vi) of Proposition 3.1.
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The following example shows that (iv) of Proposition 3.1 does not hold for 6

instead of 61.

E x am p l e 3.3. Consider the bounded poset P = (P,6, 0, 1) depicted in Fig. 2:

0

ba d

f

1

ec

Figure 2. Bounded poset with unsharp negation.

We have

x 0 a b c d e f 1

x0 1 ef acde abde abce af ae 0

x00 0 a b c d e f 1

and hence, c 6 f and f0 61 c0, but f0 = {a, e} 66 {a, b, d, e} = c0.

The next question is whether the unary operator 0 can be characterized by means

of simple conditions formulated in the language of posets. This is possible, see the

following theorem.

Theorem 3.4. Let (P,6, 0, 1) be a bounded poset satisfying the ACC and 0 a

unary operator on P . Then the following conditions (1) and (2) are equivalent:

(1) x0 = Max{y ∈ P : L(x, y) = 0} for all x ∈ P ,

(2) the operator 0 : 2P → 2P satisfies the following conditions for all x ∈ P :

(P1) x0 is an antichain,

(P2) L(x, y) = 0 for all y ∈ x0,

(P3) Λ(x, (L(x, y))0) =1 Λ(x, y0).

P r o o f. (1) ⇒ (2): This follows from Proposition 3.1.

(2) ⇒ (1): If L(x, y) = 0, then according to (P3) we have

y =1 L(y, 1) = Λ(y, (L(x, y))0) = Λ(y, (L(y, x))0) =1 Λ(y, x0) 61 x0

and hence y 61 x0. Conversely, if y 61 x0, then according to (P2) we get

L(x, y) ⊆ Λ(x, x0) = 0,
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which implies L(x, y) = 0. This shows that L(x, y) = 0 is equivalent to y 61 x0. We

conclude

Max{y ∈ P : L(x, y) = 0} = Max{y ∈ P : y 61 x0} = x0.

The last equality can be seen as follows. Since both Max{y ∈ P : y 61 x0} and x0

are antichains, it suffices to show Max{y ∈ P : y 61 x0} =1 x0 according to (v) of

Proposition 3.1. We have Max{y ∈ P : y 61 x0} 61 x0 by definition, and x0 ⊆

Max{y ∈ P : y 61 x0} implies x0 61 Max{y ∈ P : y 61 x0}. �

4. Unsharp implication and conjunction

Let us recall that Brouwerian semilattices are relatively pseudocomplemented

meet-semilattices, see e.g. [15] and [16]. It is known that in logics defined on Brouwe-

rian semilattices or on Heyting algebras the relative pseudocomplement is considered

as the logical connective implication, i.e.,

x → y = x ∗ y = Max{z ∈ S : x ∧ z 6 y}.

Of course, Max{z ∈ S : x∧z 6 y} is a singleton, thus x∗y is an element of S. In our

case we will use formally the same definition, but the result x → y need not be an

element of the poset P in question, it may be a subset of P in general. However, the

elements of x → y are mutually incomparable. Hence, one cannot pick one of them

to be the preferable element. Now we are going to define our main concept, i.e.,

the operator → which formalizes the logical connective implication. As mentioned

above, for given entries x and y the result of x → y may be a subset of P . Due to

this, if we combine this operator in various formulas, we must define its value also

for entries which are subsets. We define:

Definition 4.1. Let P = (P,6, 0, 1) be a bounded poset satisfying the ACC,

a, b ∈ P and A,B nonempty subsets of P . Then

(I) a → b := Max{x ∈ P : L(a, x) 6 b}, A → B := Max{y ∈ P : L(x, y) 61 B for

all x ∈ A}.

(C) a⊙ b := MaxL(a, b), A⊙B := MaxΛ(A,B).

Of course, if P is a lattice, then a ⊙ b = a ∧ b. It is evident that a → 0 = a0 as

usual in intuitionistic logic. In order to estimate how reasonable our definition of

implication is, we can verify its relationship with conjunction. In the next proposition

we show that these two unsharp logical connectives are related as follows:
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(AD) x⊙ y 6 z if and only if x 61 y → z

or, even more general,

A⊙ y 6 z if and only if A 61 y → z

for every nonempty subset A of P .

This is a variant of adjointness of the operators ⊙ and →. Hence, the connectives

introduced before seem to be sound. We list some of their properties. It is evident

that ⊙ is commutative and x⊙ 1 ≈ 1⊙ x ≈ x.

Moreover, from x → y = x → y we infer by (AD)

(x → y)⊙ x 61 y,

which is a kind of the Modus Ponens derivation rule in intuitionistic logic. Namely,

it says that from x and x → y we can derive y despite the fact that x → y may

consist of a number of propositions.

For the operator → we prove the following result.

Proposition 4.2. Let P = (P,6, 0, 1) be a bounded poset satisfying the ACC,

a, b, c ∈ P and A,B nonempty subsets of P . Then the following holds:

(i) a → b is an antichain,

(ii) b 61 a → b,

(iii) a 61 (a → b) → b,

(iv) a 6 b implies c → a 61 c → b and b → c 61 a → c,

(v) Λ(a, a → b) = L(a, b),

(vi) Λ(a → b, b) =1 b,

(vii) 1 → A =MaxA, especially 1 → a = a,

(viii) A → B = 1 if and only if A 61 B; especially a → b = 1 if and only if a 6 b,

(ix) A⊙ b 6 c if and only if A 61 b → c,

(x) a⊙ (a → b) = a⊙ b.

P r o o f. (i), (ii), (vii) and (ix) follow directly from the definition of →.

(iii) follows from L(x, a) = L(a, x) 6 b for all x ∈ a → b.

(iv) holds since a 6 b implies

{x ∈ P : L(c, x) 6 a} ⊆ {x ∈ P : L(c, x) 6 b},

{x ∈ P : L(b, x) 6 c} ⊆ {x ∈ P : L(a, x) 6 c}.

(v) If c ∈ Λ(a, a → b), then there exists some d ∈ a → b with c ∈ L(a, d). Since

L(a, d) 6 b, we have c ∈ L(a, b). Conversely, assume c ∈ L(a, b). Since L(a, b) 6 b,

there exists some d ∈ a → b with b 6 d. Now c ∈ L(a, d) ⊆ Λ(a, a → b).
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(vi) Since L(a, b) 6 b, there exists some c ∈ a → b with b 6 c. Now b ∈ L(c, b) ⊆

Λ(a → b, b) showing b 61 Λ(a → b, b). Of course, Λ(a → b, b) 61 b.

(viii) The following are equivalent: A → B = 1, L(x, 1) 61 B for all x ∈ A,

A 61 B.

(x) According to (v) we have

a⊙ (a → b) = MaxΛ(a, a → b) = MaxL(a, b) = a⊙ b.

�

We can see that our operator → shares a lot of properties with the intuitionistic

implication. In particular, our→ is antitone in the first and monotone in the second

entry.

E x am p l e 4.3. Consider the bounded poset ({0, a, b, c, d, e, 1},6, 0, 1) visual-

ized in Fig. 3:

0

1

c

a

d

b

e

Figure 3. Bounded poset with unsharp implication and conjunction.

The operator tables of → and ⊙ are as follows:

→ 0 a b c d e 1

0 1 1 1 1 1 1 1

a bc 1 bc bc 1 1 1

b ac ac 1 ac 1 1 1

c de de de 1 de de 1

d c ac bc c 1 ce 1

e c ac bc c cd 1 1

1 0 a b c d e 1

⊙ 0 a b c d e 1

0 0 0 0 0 0 0 0

a 0 a 0 0 a a a

b 0 0 b 0 b b b

c 0 0 0 c 0 0 c

d 0 a b 0 d ab d

e 0 a b 0 ab e e

1 0 a b c d e 1

Now we characterize the binary operator → in a similar way as it was done for

the unary operator 0 in Theorem 3.4.

Theorem 4.4. Let P = (P,6, 0, 1) be a bounded poset satisfying the ACC and→

a binary operator on P . Then the following conditions (1) and (2) are equivalent:
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(1) x → y = Max{z ∈ P : L(x, z) 6 y} for all x, y ∈ P ,

(2) the operator → : 2P × 2P → 2P (restricted to P × P ) satisfies the following

conditions for all x, y, z ∈ P :

(R1) x → y is an antichain,

(R2) L(x, z) 6 y implies z 61 x → y,

(R3) Λ(x, x → y) = L(x, y).

P r o o f. (1) ⇒ (2): This follows from Proposition 4.2.

(2) ⇒ (1): According to (R2) we have that L(x, z) 6 y implies z 61 x → y.

Conversely, if z 61 x → y, then by (R3) we obtain

L(x, z) ⊆ Λ(x, x → y) = L(x, y) 6 y

and hence L(x, z) 6 y. This shows that L(x, z) 6 y is equivalent to z 61 x → y. We

conclude

Max{z ∈ S : L(x, z) 6 y} = Max{z ∈ S : z 61 x → y} = x → y.

The last equality can be seen as follows. Both Max{z ∈ S : z 61 x → y} 61

x → y and x → y 61 Max{z ∈ S : z 61 x → y} follow immediately. This gives

Max{z ∈ S : z 61 x → y} =1 x → y. Since both sides are antichains, we find

Max{z ∈ S : z 61 x → y} = x → y according to (v) of Proposition 3.1. �

Let us note that using both (R2) and (R3) we can prove the adjointness (AD)

mentioned above.

R em a r k 4.5. It is of some interest that the unsharp operator → can be char-

acterized by three exact and simple conditions in the language of posets equipped

with the operator L of the lower cone.

5. Deductive systems

As mentioned in Section 4, we can derive the rule Modus Ponens. This rule is in

fact closely related to the concept of a deductive system. Recall that in a Heyting

algebra A = (A,∨,∧, ∗, 0, 1) a non-void subset D of A is called a deductive system

if x ∈ D and x → y ∈ D imply y ∈ D. The connection to Modus Ponens rule

is evident. However, our unsharp connective implication is weaker than that in a

Heyting algebra and hence we define our concept as follows. We show that it satisfies

what is asked in a Heyting algebra and, moreover, this deductive system induces an

equivalence relation on the poset in question, which is compatible with the logical

connectives.
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Definition 5.1. Let P = (P,6, 0, 1) be a bounded poset satisfying the ACC and

let → be defined by (I) from Definition 4.1. A deductive system of P is a subset D

of 2P \ {∅} satisfying the following conditions:

(i) 1 ∈ D,

(ii) if x, y, z, u ∈ P , x → y ∈ D and (x → y) → (z → u) ∈ D, then z → u ∈ D,

(iii) if x, y, z ∈ P and x → y, y → x ∈ D, then (z → x) → (z → y) ∈ D and

(x → z) → (y → z) ∈ D.

In the following we make use of the identities x⊙1 ≈ 1⊙x ≈ x and 1 → x ≈ x (see

Section 4). (x⊙ 1 ≈ x means that x⊙ 1 = x for all x belonging to the corresponding

base set.)

R em a r k 5.2. If x ∈ D, y ∈ P and x → y ∈ D, then according to (vii) of

Proposition 4.2 we have 1 → x = x ∈ D and (1 → x) → (1 → y) = x → y ∈ D and

hence because of (ii) of Definition 5.1 we get y = 1 → y ∈ D. Therefore, x ∈ D and

x → y ∈ D imply y ∈ D which justifies the name “deductive system” and illuminates

the connection of such systems with the derivation rule Modus Ponens.

E x am p l e 5.3. Consider the bounded poset P = (P,6, 0, 1) depicted in Fig. 4:

0

ba

e

c

d

1

Figure 4. Bounded non-lattice poset.

The operator table for → is as follows:

→ 0 a b c d e 1

0 1 1 1 1 1 1 1

a b 1 b 1 1 1 1

b c c 1 c 1 1 1

c b e b 1 1 e 1

d 0 a b c 1 e 1

e 0 c b c d 1 1

1 0 a b c d e 1
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We want to show that D := {d, e, 1} is a deductive system of P. (The following

considerations make heavy use of the operation table for →.) In order to make the

proof of this statement short and clear we define two subsets A and B of P 2 as

follows:

A := {(c, a), (c, e)} ∪D2 ∪ {(x, y) ∈ P 2 : x 6 y},

B := {a, c}2 ∪D2 ∪ {(x, x) : x ∈ P}.

Now let x, y, z ∈ P . Then we have

x → y ∈ D if and only if (x, y) ∈ A,

x → y, y → x ∈ D if and only if (x, y) ∈ B,

1 ∈ D according to the definition of D,

if x ∈ D and (x, y) ∈ A, then y ∈ D,

if (x, y) ∈ B, then (z → x, z → y), (x → z, y → z) ∈ B

completing the proof that D is a deductive system of P.

Since in posets we do not have everywhere defined lattice operations join and meet,

we formulate a certain kind of compatibility in the following way.

Definition 5.4. Let (P,6, 0, 1) be a bounded poset satisfying the ACC and Φ be

an equivalence relation on 2P \ {∅}. We say that Φ satisfies the substitution property

with respect to ⊙ if for all x, y ∈ P we have

1 Φ x → y implies x⊙ 1 Φ x⊙ (x → y).

We say that Φ satisfies the substitution property with respect to → if for all

x, y, z, u ∈ P we have

x Φ y implies x → x Φ x → y,

x Φ y implies (z → x) → (z → x) Φ (z → x) → (z → y),

x Φ y implies (x → z) → (x → z) Φ (x → z) → (y → z),

1 Φ x → y implies 1 → (z → u) Φ (x → y) → (z → u).

If an equivalence relation on 2P \{∅} satisfies the substitution property with respect

to ⊙ and →, then we can easily describe the relationship to its kernel.

In the following, if Φ is an equivalence relation on a set A and a ∈ A, then [a]Φ

denotes the equivalence class of a with respect to Φ.

Lemma 5.5. Let (P,6, 0, 1) be a bounded poset satisfying the ACC, Φ an equiv-

alence relation on 2P \ {∅} satisfying the substitution property with respect to ⊙

and →, and a, b ∈ P . Then (a, b) ∈ Φ if and only if a → b, b → a ∈ [1]Φ.
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P r o o f. If (a, b) ∈ Φ, then

a → b ∈ [a → a]Φ = [1]Φ, b → a ∈ [b → b]Φ = [1]Φ.

If, conversely, a → b, b → a ∈ [1]Φ, then according to (x) of Proposition 4.2 we have

a = a⊙ 1 Φ a⊙ (a → b) = a⊙ b = b⊙ a = b⊙ (b → a) Φ b⊙ 1 = b.

�

When studying congruences in varieties of algebras, an important congruence

property is the so-called weak regularity. It means that if the algebra in question has

a constant 1 and if for two of its congruences Φ and Ψ we have [1]Φ = [1]Ψ then

Φ = Ψ, see e.g. [5]. Surprisingly, we obtain a similar result for posets and equivalence

relations having the substitution property with respect to ⊙ and →. In fact, this is

a consequence of Lemma 5.5.

Corollary 5.6. If (P,6, 0, 1) is a bounded poset satisfying the ACC, Φ,Ψ are

equivalence relations on 2P \ {∅} satisfying the substitution property with respect

to ⊙ and →, and [1]Φ = [1]Ψ, then Φ ∩ P 2 = Ψ ∩ P 2.

For varieties of algebras, the mentioned weak regularity was characterized by

Csákány, see e.g. [5], by means of certain binary terms satisfying a simple condi-

tion. This is not possible for posets, but we can show such a term, see the following

proposition. Unfortunately, this term is not connected with the result presented in

Corollary 5.6.

Proposition 5.7. Let (P,6, 0, 1) be a bounded poset satisfying the ACC, put

t(x, y) := (x → y)⊙ (y → x) for all x, y ∈ P and let a, b ∈ P . Then t(a, b) = 1 if and

only if a = b.

P r o o f. According to (viii) of Proposition 4.2 the following are equivalent:

t(a, b) = 1,

(a → b)⊙ (b → a) = 1,

MaxΛ(a → b, b → a) = 1,

1 ∈ Λ(a → b, b → a),

there exists some x ∈ a → b and some y ∈ b → a with 1 ∈ L(x, y),
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there exists some x ∈ a → b and some y ∈ b → a with x = y = 1,

1 ∈ (a → b) ∩ (b → a),

a → b = b → a = 1,

a 6 b 6 a,

a = b.

�

We are going to show that the kernel of an equivalence relation satisfying the

substitution property with respect to ⊙ and → is just a deductive system.

Theorem 5.8. Let P = (P,6, 0, 1) be a bounded poset satisfying the ACC and Φ

an equivalence relation on 2P \ {∅} satisfying the substitution property with respect

to ⊙ and →. Then [1]Φ is a deductive system of P.

P r o o f. We check (i)-(iii) of Definition 5.1. Let a, b, c, d ∈ P .

(i) This is clear.

(ii) If a → b, (a → b) → (c → d) ∈ [1]Φ, then according to (vii) of Proposition 4.2

we have

c → d = 1 → (c → d) ∈ [(a → b) → (c → d)]Φ = [1]Φ.

(iii) If a → b, b → a ∈ [1]Φ, then (a, b) ∈ Φ according to Lemma 5.5 and hence

(c → a) → (c → b) ∈ [(c → a) → (c → a)]Φ = [1]Φ,

(a → c) → (b → c) ∈ [(a → c) → (a → c)]Φ = [1]Φ.

�

The question if a given deductive system D on a bounded poset (P,6, 0, 1) satis-

fying the ACC induces an equivalence relation on 2P \ {∅} with kernel D∩P having

a property similar to the substitution property with respect to→, is answered in the

next result. At first, we define the relation induced by D.

Definition 5.9. For every bounded poset (P,6, 0, 1) satisfying the ACC and

every subset E of 2P \ {∅} define a binary relation Θ(E) on 2P \ {∅} as follows:

(A,B) ∈ Θ(E) if and only if A → B,B → A ∈ E

(A,B nonempty subsets of P ). We call Θ(E) the relation induced by E.
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In Theorem 5.8 we proved that for every equivalence relation Φ on 2P \{∅} satisfy-

ing the substitution property with respect to ⊙ and→, its kernel [1]Φ is a deductive

system of P. The next theorem shows that there holds a converse version of this

result if we consider the restriction of the relation induced by a deductive system

of P to the base set P .

Theorem 5.10. Let P = (P,6, 0, 1) be a bounded poset satisfying the ACC

and D a deductive system of P. Then the following hold:

(i) Θ(D) ∩ P 2 is an equivalence relation on P ,

(ii) [1](Θ(D) ∩ P 2) = D ∩ P ,

(iii) if x, y, z ∈ P and (x, y) ∈ Θ(D), then (z → x, z → y) ∈ Θ(D) and (x → z,

y → z) ∈ Θ(D).

P r o o f. Let a, b, c ∈ P .

(i) Evidently, Θ(D) is reflexive and symmetric. If (a, b), (b, c) ∈ Θ(D), then

b → c, (b → c) → (a → c), c → b, (c → b) → (c → a) ∈ D

and hence, a → c, c → a ∈ D according to (ii) of Definition 5.1., i.e., (a, c) ∈ Θ(D).

This shows that Θ(D) is transitive and therefore an equivalence relation on P .

(ii) The following are equivalent: a ∈ [1](Θ(D)); a → 1, 1 → a ∈ D; 1, a ∈ D;

a ∈ D.

(iii) follows from Definition 5.1. �

E x am p l e 5.11. For the deductive system D from Example 5.3 we have

Θ(D) ∩ P 2 = D2 ∪ {a, c}2 ∪ {b}2 ∪ {0}2.
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