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Abstract. The aim of the present paper is to show that the concepts of the intuitionistic
implication and negation formalized by means of a Heyting algebra can be generalized in
such a way that these concepts are formalized by means of a bounded poset. In this case
it is not assumed that the poset is relatively pseudocomplemented. The considered logical
connectives negation, implication or even conjunction are not operations in this poset but
so-called operators since they assign to given entries not necessarily an element of the poset
as a result but a subset of mutually incomparable elements. We show that these operators
for negation and implication can be characterized by several simple conditions formulated
in the language of posets together with the operator of taking the lower cone. Moreover,
our implication and conjunction form an adjoint pair. We call these connectives “unsharp”
or “inexact” in accordance with the existing literature. We also introduce the concept
of a deductive system of a bounded poset with implication and prove that it induces an
equivalence relation satisfying a certain substitution property with respect to implication.
Moreover, the restriction of this equivalence to the base set is uniquely determined by its
kernel, i.e., the class containing the top element.

Keywords: bounded poset; logical connectives defined on a poset; unsharp negation; un-
sharp implication; adjoint operator; Modus Ponens; deductive system; equivalence relation
induced by a deductive system

MSC 2020: 06A11, 06D15, 06D20, 03G25

1. INTRODUCTION

Intuitionistic logic was algebraically formalized by means of relatively pseudocom-
plemented semilattices, see [1], [2] and [14]-[17]. If such a semilattice is even a lattice,
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it is called a Heyting algebra, see [14] and [17]. It is well known that every relatively
pseudocomplemented lattice is distributive. The concept of relative pseudocomple-
mentation was extended by the first author to non-distributive lattices in [3] under
the name sectional pseudocomplementation. This concept was further extended also
for posets in [10]. Thus, some kind of intuitionistic connectives defined on sectionally
pseudocomplemented lattices were realized.

However, there exist logics defined on bounded posets, e.g. the logic of quantum
mechanics, see e.g. [7], [8], [13] and [18]. In particular, orthomodular posets on
which the logic of quantum mechanics is defined are thoroughly studied in [7], [8],
[11] and [18].

In order to formalize logical connectives defined on a poset, there are two possible
ways how to solve the problem that the operations meet and join need not be defined
everywhere. One method is to consider these operations as partial only and then
the logical connectives formalized by them and by partial operations derived from
them are also only partial. The disadvantage of this approach is that in some cases
one does not know the result of a given implication. Hence, we prefer another
approach, namely we consider so-called operators instead of operations which assign
to given entries not necessarily an element as the result, but a certain subset of
elements. We work with such results of logical connectives which are subsets, but
their elements are mutually incomparable. It means that one cannot prefer one
element of this set with respect to the other elements. Hence, such an approach
defined on a poset gets a result to any implication, but this result may be “unsharp”,
see e.g. [9] or [13]. We suppose that if an exact logical derivation is impossible from
the reasons mentioned above, it is better to have an unsharp result than none. In
our opinion unsharp reasoning is an alternative to multiple-valued reasoning, which
is now generally accepted though it was not accepted by all specialists at first.

In their recent paper [9] the authors showed that certain intuitionistic-like logical
connectives implication and negation can be defined on arbitrary meet-semilattices
satisfying the Ascending Chain Condition (ACC) regardless whether there exist (rel-
ative) pseudocomplements or not. We can ask if similar logical connectives may be
derived also by means of arbitrary posets with 0 satisfying the ACC. Within meet-
semilattices the logical connective conjunction is usually formalized by the meet
operation. Then the unsharp implication as introduced in [9] forms an adjoint oper-
ator to conjunction. In the case of a poset we must find another operator formalizing
conjunction. In [13] so-called unsharp properties of formal logics were used. In [9]
we considered unsharpness of implication as well as of negation. This means that for
given propositions p and ¢ the results of the implication p — ¢ and of the negation —p
need not be elements of the corresponding meet-semilattice L, but may be nonempty
subsets of it consisting of mutually incomparable elements. When proceeding from
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meet-semilattices to posets, we will apply this principle again for the connective con-
junction in such a way that implication and conjunction will still be connected by a
certain kind of adjointness, see e.g. [6]. Due to this fact, in such logics we still have
the derivation rule Modus Ponens.

The aim of the present paper is to get a formal description of the logical connectives
defined on a poset but not to constitute such a logic; it means we do not construct
axioms and derivation rules or relations for possible Kripke frames.

2. PRELIMINARIES

In the following we identify singletons with their unique element, i.e., we write x
instead of {x}. Moreover, all posets considered in the sequel are assumed to satisfy
the Ascending Chain Condition which we will abbreviate by ACC. This condition
means that in the considered poset there do not exist infinite ascending chains. This
implies that every element of a subset lies under a maximal element of this subset.
Of course, every finite poset satisfies the ACC.

In the sequel we will use the following notation: Let P = (P,<) be a poset,
a,b,c € P and A, B be nonempty subsets of P.

Max A := set of all maximal elements of A,
L(a,b) :={zx € P: z < aand z < b},
AMAB) = | L),
r€A,yeB
AL Bifx<yforallz € Aandall y € B,

A <4 B if for every x € A there exists some y € B with x < y,
A =1 Bifboth A<y Band B <1 A.

The relations <; and =; are a quasiorder relation on 2° and an equivalence relation
on 27 respectively. (Here and in the following, 2¥ denotes the power set of P.) It
is easy to see that A <; Max B provided A C B and that A <; b is equivalent to
A <b.

If a poset P has a bottom and a top element, we will denote them by 0 and 1,
respectively, and we will express this fact by writing P = (P, <,0,1). Such a poset
is called bounded.

The element c is called the relative pseudocomplement of a with respect to b,
formally ¢ = a % b, if ¢ is the greatest element x of P satisfying L(a,z) < b. If
P = (P,<,0) then the relative pseudocomplement a * 0 of a with respect to 0 is
denoted by a* and called the pseudocomplement of a, see e.g. [4] or [12]. Especially,
we have L(a,a*) = 0.
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3. NEGATION DERIVED IN POSETS

Consider a bounded poset P = (P, <, 0, 1) satisfying the ACC. For a € P we define
= Max{z € P: L(a,z) = 0}.

Clearly a° need not be a singleton, but it is a nonempty subset of P since L(a,0) = 0.
From now on, we will call a® the unsharp negation of a. Of course, if the pseudo-
complement a* of a exists, then a° is a singleton and hence a® = {a*}, or shortly
0 _ *
a’ = a*.
We extend this concept to subsets of P as follows: If A is a nonempty subset of P
then

A% := Max{z € P: L(z,y) =0 for all y € A}.

We are going to show that the negation © defined in this way shares several properties
with the negation in intuitionistic logic.

Proposition 3.1. Let P = (P,<,0,1) be a bounded poset satisfying the ACC,
a,b € P and A, B nonempty subsets of P. Then the following holds:

0 is an antichain,

(i) A is an antichain, in particular, a

(i) 0°=1 and 1° =0,

x,y)=0forallz € Aandally € in particular, L(a,y) = 0 for all y € a°,
0 for all A and all AC lar, L 0 for all

)
) L
(iv) A <1 B implies B® <; A| in particular, a < b implies v° <; a°,
)
i)
)

(iii
(v) if A and B are antichains and A =, B, then A = B,
(vi) A <q A% in particular, a < a®; A% = A°_ in particular, a"®° = a°,

Aa, (L(a,b))") =1 A(a,b%).

(vii

Proof. (i)-(iii) follow directly from the definition of °.
(iv) If A <; B, then

{reP: L(z,y) =0forally € B} C{x € P: L(z,y) =0 for all y € A}.

(v) Assume a € A =1 B. Because A <; B there exists some b € B with a < b, and
because B <; A there exists some ¢ € A with b < ¢. Together we obtain a < b < ¢
and hence a < ¢. Since a and ¢ belong to the antichain A, we conclude ¢ = ¢ and
therefore a = b € B. This shows A C B. Interchanging the roles of A and B yields
B C A. Together we obtain A = B.
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(vi) We have A C {z € P: L(x,y) =0 for all y € A’} and hence A <; A°. Re-
placing A by A° we get A° <; A0, From A <; A% and (iv) we obtain A%%Y <; A°.
Together we have A%0 =; A% whence A% = A° according to (v).

(vii) Any of the following statements implies the next one:

1) L(z,y) =0 for all z € (L(a,b))? and all y € L(a,b),
2) L(b,y) =0 for all z € (L(a,b))? and all y € L(a,x),
3) A(a, (L(a,b))") <1 ",

4) A(a, (L(a,b))°) <1 A(a,0°).

The fact that (1) implies (2) can be seen as follows: If x € (L(a,b))°, y € L(a,z)
and ¢ € L(b,y), then ¢ € L(a,b) and ¢ < x and therefore L(x,c) = 0 by (1), whence
L(c) = L(x,c) = 0, i.e.,, ¢ = 0. From L(a,b) < b we conclude b° <; (L(a,b))°
according to (iv) and hence

AA/_\/_\

A(a’a bo) <1 A(a’a (L(aa b))o)

O

Example 3.2. Consider the bounded poset P = (P, <, 0, 1) visualized in Fig. 1:

Figure 1. Bounded non-lattice poset with unsharp negation.

We have
0a b cdef1
22 |1 facdc 0 a0
2°010a b cdl f1
(Here and in the following we write a; .. .a, instead of {a1,...,a,}.) One can see
that 2% = z for all z € P\ {e} and €” = 1 # e. But ¢’ = 1 = 0 = ¢° and

000 0

hence P satisfies the identity """ ~ 2" in accordance with (vi) of Proposition 3.1.
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The following example shows that (iv) of Proposition 3.1 does not hold for <

instead of <.

Example 3.3. Consider the bounded poset P = (P, <,0, 1) depicted in Fig. 2:

1

Figure 2. Bounded poset with unsharp negation.

We have

0 a b c d e f 1
20 | 1 ef acde abde abce af ae 0
2900 a b c d e f 1

and hence, ¢ < f and f° <; &, but £ = {a,e} £ {a,b,d, e} = .

The next question is whether the unary operator © can be characterized by means
of simple conditions formulated in the language of posets. This is possible, see the

following theorem.

Theorem 3.4. Let (P,<,0,1) be a bounded poset satisfying the ACC and ° a
unary operator on P. Then the following conditions (1) and (2) are equivalent:

(1) 2 = Max{y € P: L(z,y) =0} for all z € P,

(2) the operator ©: 2F — 2F satisfies the following conditions for all v € P:
(P1) 2V is an antichain,
(P2) L(x,y) =0 for all y € 2°,
(P3) A, (L(z,1))°) =1 Al 5°).

Proof. (1) = (2): This follows from Proposition 3.1.
(2) = (1): If L(z,y) = 0, then according to (P3) we have

y =1Ly, 1) = Ay, (L(z,9))°) = Ay, (L(y,2))°) =1 Ay, 2°) <1 2
and hence y <; 2°. Conversely, if y <; 2°, then according to (P2) we get
L(z,y) C Az, z°%) =0,
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which implies L(z,y) = 0. This shows that L(x,y) = 0 is equivalent to y <; 2°. We
conclude

Max{y € P: L(z,y) = 0} = Max{y € P: y <; 2"} = 2°.

The last equality can be seen as follows. Since both Max{y € P: y <; 2} and 2°
are antichains, it suffices to show Max{y € P: y <; 2°} =; 2° according to (v) of
Proposition 3.1. We have Max{y € P: y <; 2°} <; 2° by definition, and 2° C

Max{y € P: y <; 2°} implies 2° <; Max{y € P: y <; 2°}. O

4. UNSHARP IMPLICATION AND CONJUNCTION

Let us recall that Brouwerian semilattices are relatively pseudocomplemented
meet-semilattices, see e.g. [15] and [16]. It is known that in logics defined on Brouwe-
rian semilattices or on Heyting algebras the relative pseudocomplement is considered
as the logical connective implication, i.e.,

x—y=xxy=Max{z€S: zANz <y}

Of course, Max{z € S: Az < y} is a singleton, thus xxy is an element of S. In our
case we will use formally the same definition, but the result + — y need not be an
element of the poset P in question, it may be a subset of P in general. However, the
elements of x — y are mutually incomparable. Hence, one cannot pick one of them
to be the preferable element. Now we are going to define our main concept, i.e.,
the operator — which formalizes the logical connective implication. As mentioned
above, for given entries x and y the result of x — y may be a subset of P. Due to
this, if we combine this operator in various formulas, we must define its value also
for entries which are subsets. We define:

Definition 4.1. Let P = (P,<,0,1) be a bounded poset satisfying the ACC,
a,b € P and A, B nonempty subsets of P. Then
() a = b:=Max{x € P: L(a,x) < b}, A — B:=Max{y € P: L(z,y) <1 B for
all z € A}.
(C) a®b:=MaxL(a,b), A® B :=Max A(A, B).

Of course, if P is a lattice, then a ©® b = a A b. It is evident that a — 0 = a° as
usual in intuitionistic logic. In order to estimate how reasonable our definition of
implication is, we can verify its relationship with conjunction. In the next proposition
we show that these two unsharp logical connectives are related as follows:
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(AD) z0y<zifandonlyifx <3y — 2
or, even more general,

Aoy<zifandonlyif A<y — 2

for every nonempty subset A of P.

This is a variant of adjointness of the operators ® and —. Hence, the connectives
introduced before seem to be sound. We list some of their properties. It is evident
that ® is commutativeand t © 1~ 10z ~ .

Moreover, from z — y = x — y we infer by (AD)

(x—>y)®x<1y,

which is a kind of the Modus Ponens derivation rule in intuitionistic logic. Namely,
it says that from x and * — y we can derive y despite the fact that z — y may
consist of a number of propositions.

For the operator — we prove the following result.

Proposition 4.2. Let P = (P,<,0,1) be a bounded poset satisfying the ACC,
a,b,c € P and A, B nonempty subsets of P. Then the following holds:
(i) a — b is an antichain,
(i) b<1a— b,
(iii) a <1 (a — b) — b,
(iv) a<bimpliessc—sa<ic—bandb—c<ia— g,
(v) Ala,a — b) = L(a,b),
(vi) Ala — b,b) =1 b,
(vil) 1 = A =MaxA, especially 1 — a = q,
(vili) A — B =1 if and only if A <3 B; especially a — b =1 if and only if a <
(ix) A®b< cifand only if A<y b— ¢,
(x) a®(a—=b)=a®d.

Proof. (i), (ii), (vii) and (ix) follow directly from the definition of —.
(iii) follows from L(z,a) = L(a,z) < b for all x € a — b.
(iv) holds since a < b implies

{zx € P: L(c,x)
{zx € P: L(b,x)

a} C{zx e P: L(c,x)
¢} C{zxeP: L(a,x)

b},
c}.
(v) If ¢ € A(a,a — b), then there exists some d € a — b with ¢ € L(a,d). Since

L(a,d) < b, we have ¢ € L(a,b). Conversely, assume ¢ € L(a,b). Since L(a,b) < b,
there exists some d € a — b with b < d. Now ¢ € L(a,d) C A(a,a — b).

< <
< <
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(vi) Since L(a,b) < b, there exists some ¢ € a — b with b < ¢. Now b € L(c,b) C
A(a — b,b) showing b <; A(a — b,b). Of course, A(a — b,b) <4 b.

(viii) The following are equivalent: A — B = 1, L(x,1) <; B for all z € A,
A<y B.

(x) According to (v) we have

a® (a —b) =MaxA(a,a — b) = Max L(a,b) =a®b.

O

We can see that our operator — shares a lot of properties with the intuitionistic
implication. In particular, our — is antitone in the first and monotone in the second
entry.

Example 4.3. Consider the bounded poset ({0,a,b,c,d,e,1},<,0,1) visual-
ized in Fig. 3:

Figure 3. Bounded poset with unsharp implication and conjunction.

The operator tables of — and ©® are as follows:

=1 0 a b ¢ d e 1 Ol 0abc d e 1
0 1 11 1 1 11 000000 OO
a | bc 1 bc be 1 1 1 a|l0a 00 a a a
b|lac ac 1 ac 1 1 1 bl0O0bO0 b b Db
c | de de de 1 de de 1 c|000c¢c 0 0 ¢
d c ac bc ¢ 1 ce 1 d{0a b0 d ab d
e c ac bc ¢ ecd 1 1 e| 0ab0ab e e
1 0 a b ¢ d e 1 110abc d e 1

Now we characterize the binary operator — in a similar way as it was done for
the unary operator © in Theorem 3.4.

Theorem 4.4. Let P = (P, <,0,1) be a bounded poset satisfying the ACC and —
a binary operator on P. Then the following conditions (1) and (2) are equivalent:
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(1) 2 >y =Max{z € P: L(z,2) <y} for all z,y € P,
(2) the operator —: 2F x 2P — 2F (restricted to P x P) satisfies the following
conditions for all x,y,z € P:
(R1) = — y is an antichain,
(R2) L(zx,z) <y implies z <1 ¢ — vy,
(R3) A(z,z — y) = L(z,y).

Proof. (1) = (2): This follows from Proposition 4.2.
(2) = (1): According to (R2) we have that L(z,z) < y implies z <1  — y.
Conversely, if z <1  — y, then by (R3) we obtain

L(z,z) C Mz, z = y) = L(z,y) <y

and hence L(z, z) < y. This shows that L(z, z) < y is equivalent to z <1 z — y. We
conclude

Max{z € S: L(z,z) <y} =Max{z € S: z<1z = y}=2—y.

The last equality can be seen as follows. Both Max{z € S: z <1 z — y} <4
x—yand z — y < Max{z € S: z <4 ¢ — y} follow immediately. This gives
Max{z € S: z <1 ¢ — y} =1 * — y. Since both sides are antichains, we find
Max{z € S: z <1 ¢ = y} = © — y according to (v) of Proposition 3.1. O

Let us note that using both (R2) and (R3) we can prove the adjointness (AD)
mentioned above.

Remark 4.5. It is of some interest that the unsharp operator — can be char-
acterized by three exact and simple conditions in the language of posets equipped
with the operator L of the lower cone.

5. DEDUCTIVE SYSTEMS

As mentioned in Section 4, we can derive the rule Modus Ponens. This rule is in
fact closely related to the concept of a deductive system. Recall that in a Heyting
algebra A = (A,V,A,*,0,1) a non-void subset D of A is called a deductive system
ifx € Dand  — y € D imply y € D. The connection to Modus Ponens rule
is evident. However, our unsharp connective implication is weaker than that in a
Heyting algebra and hence we define our concept as follows. We show that it satisfies
what is asked in a Heyting algebra and, moreover, this deductive system induces an
equivalence relation on the poset in question, which is compatible with the logical
connectives.
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Definition 5.1. Let P = (P, <,0,1) be a bounded poset satisfying the ACC and
let — be defined by (I) from Definition 4.1. A deductive system of P is a subset D
of 2\ {0} satisfying the following conditions:

(i) 1e D,

(ii) if z,y,z,u e P,z -y € D and (x —» y) = (z = u) € D, then z > u € D,

(iii) if z,y,2 € P and x — y,y — « € D, then (z —» 2) = (¢ — y) € D and
(x > 2) = (y—=2)€D.

In the following we make use of the identities t®1 ~ 10z ~ z and 1 — x ~ z (see
Section 4). (x ®1 &~ x means that © ® 1 = z for all z belonging to the corresponding
base set.)

Remark 5.2. Ifzx € D,y € P and 2 — y € D, then according to (vii) of
Proposition 4.2 we have 1l wx =z € Dand (1 5 z) = (1 > y) =2 —y € D and
hence because of (ii) of Definition 5.1 we get y =1 — y € D. Therefore, x € D and
x — y € D imply y € D which justifies the name “deductive system” and illuminates
the connection of such systems with the derivation rule Modus Ponens.

Example 5.3. Consider the bounded poset P = (P, <,0,1) depicted in Fig. 4:

1

0

Figure 4. Bounded non-lattice poset.

The operator table for — is as follows:

=1 0abcdel
0}]1111111
a|b1b1111
blcecleclll
c|bebll1lel
d|0abclel
e | 0cbcdll
11 0abdbcdel
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We want to show that D := {d,e, 1} is a deductive system of P. (The following
considerations make heavy use of the operation table for —.) In order to make the
proof of this statement short and clear we define two subsets A and B of P? as
follows:

A:={(c,a),(c,e)} UD* U{(z,y) € P*: = <y},
B :={a,c}*UD?*U{(z,x): z € P}.

Now let z,y,z € P. Then we have

x — y € D if and only if (z,y) € A,

x —y,y = x € D if and only if (z,y) € B,

1 € D according to the definition of D,

if x € D and (x,y) € A, then y € D,

if (z,y) € B, then (z = z,z2 > y),(x = 2,y > z) € B

completing the proof that D is a deductive system of P.

Since in posets we do not have everywhere defined lattice operations join and meet,
we formulate a certain kind of compatibility in the following way.

Definition 5.4. Let (P, <,0,1) be a bounded poset satisfying the ACC and ® be
an equivalence relation on 27\ {(}}. We say that ® satisfies the substitution property
with respect to @ if for all z,y € P we have

1Pz — yimpliesz©1®x0 (x— ).

We say that & satisfies the substitution property with respect to — if for all
z,y,z,u € P we have

x ®yimpliesx -z ®x — g,

x ®yimplies (z 5 z) > (z—>2) P (z > z) = (2 > y),

x @y implies (z = 2) = (r = 2) P (x — 2) = (y — 2),

1® 2 — yimplies1 = (z =2 u) ¢ (z = y) = (2 = ).
If an equivalence relation on 2\ {()} satisfies the substitution property with respect

to ® and —, then we can easily describe the relationship to its kernel.

In the following, if ® is an equivalence relation on a set A and a € A, then [a|®
denotes the equivalence class of a with respect to ®.

Lemma 5.5. Let (P,<,0,1) be a bounded poset satisfying the ACC, ® an equiv-
alence relation on 2F \ {()} satisfying the substitution property with respect to ®
and —, and a,b € P. Then (a,b) € ® if and only if a — b,b — a € [1]®.
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Proof. If (a,b) € ®, then
a—befa—a®=[1]P, b—acb—bd=]1]D.
If, conversely, a — b,b — a € [1]®, then according to (x) of Proposition 4.2 we have
a=a012a0(a—=b)=a0b=b0a=b00b—>a)Pbo1l=0.

O

When studying congruences in varieties of algebras, an important congruence
property is the so-called weak regularity. It means that if the algebra in question has
a constant 1 and if for two of its congruences ® and ¥ we have [1]® = [1]¥ then
® = U, see e.g. [5]. Surprisingly, we obtain a similar result for posets and equivalence
relations having the substitution property with respect to ® and —. In fact, this is
a consequence of Lemma, 5.5.

Corollary 5.6. If (P,<,0,1) is a bounded poset satisfying the ACC, ®, ¥ are
equivalence relations on 2 \ {()} satisfying the substitution property with respect
to ® and —, and [1]® = [1]¥, then ® N P? = ¥ N P2

For varieties of algebras, the mentioned weak regularity was characterized by
Csakany, see e.g. [5], by means of certain binary terms satisfying a simple condi-
tion. This is not possible for posets, but we can show such a term, see the following
proposition. Unfortunately, this term is not connected with the result presented in
Corollary 5.6.

Proposition 5.7. Let (P,<,0,1) be a bounded poset satisfying the ACC, put
t(z,y) == (r = y)©(y = ) for all z,y € P and let a,b € P. Then t(a,b) = 1 if and
only if a = b.

Proof. According to (viii) of Proposition 4.2 the following are equivalent:

t(a,b) =1,
(@a—=bob—a)=1,
MaxA(a — b,b = a) =1,
leAla—b,b—a),

there exists some z € a — b and some y € b — a with 1 € L(z,y),
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there exists some x € ¢ — b and some y € b - a with x =y =1,
le(a—=b)n((d—a),
a—b=b—a=1,
a<b<a,

a=nb.

O

We are going to show that the kernel of an equivalence relation satisfying the
substitution property with respect to ® and — is just a deductive system.

Theorem 5.8. Let P = (P, <,0,1) be a bounded poset satisfying the ACC and ®
an equivalence relation on 2F \ {()} satisfying the substitution property with respect
to ® and —. Then [1]® is a deductive system of P.

Proof. We check (i)-(iii) of Definition 5.1. Let a,b,c,d € P.

(i) This is clear.

(ii) If @ = b, (@ = b) — (¢ — d) € [1]P, then according to (vii) of Proposition 4.2
we have

c—d=1—(c—d)€lla—=b) = (c—d)]®=1]D.

(iii) If a = b,b — a € [1]®, then (a,b) € ® according to Lemma 5.5 and hence
(c—=a)—=(c—=b)e[(c—a)—= (c—a)®=[1]0,
(@a—=c)—=(b—c)ella—c)—= (a— )P =[1]D.

(]

The question if a given deductive system D on a bounded poset (P, <,0, 1) satis-
fying the ACC induces an equivalence relation on 27\ {(}} with kernel D N P having
a property similar to the substitution property with respect to —, is answered in the
next result. At first, we define the relation induced by D.

Definition 5.9. For every bounded poset (P, <,0,1) satisfying the ACC and
every subset E of 2\ {()} define a binary relation ©(E) on 2F \ {0} as follows:

(A,B)cO(F)ifand onlyif A—» B,B— A€ E

(A, B nonempty subsets of P). We call O(F) the relation induced by E.
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In Theorem 5.8 we proved that for every equivalence relation ® on 27\ {()} satisfy-
ing the substitution property with respect to ® and —, its kernel [1]® is a deductive
system of P. The next theorem shows that there holds a converse version of this
result if we consider the restriction of the relation induced by a deductive system
of P to the base set P.

Theorem 5.10. Let P = (P,<,0,1) be a bounded poset satistying the ACC
and D a deductive system of P. Then the following hold:
(i) ©(D) N P? is an equivalence relation on P,
(i) [1](©(D)NP%)=DNP,
(iii) if x,y,2 € P and (x,y) € ©(D), then (z — =,z = y) € O(D) and (x — z,
y — z) € O(D).

Proof. Leta,b,ce P.
(i) Evidently, ©(D) is reflexive and symmetric. If (a,b), (b, ¢) € ©(D), then

b—c,(b—¢c)—(a—c)c—b(c—>b)—(c—a)eD

and hence, a — ¢,¢ — a € D according to (ii) of Definition 5.1., i.e., (a,c) € ©(D).
This shows that ©(D) is transitive and therefore an equivalence relation on P.

(ii) The following are equivalent: a € [1}(0(D)); @ — 1,1 — a € D; 1,a € D;
acD.

(iii) follows from Definition 5.1. O

Example 5.11. For the deductive system D from Example 5.3 we have
O(D)N P? = D? U {a,c}> U {b}? U {0}>.
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