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Abstract. We introduce some geometric properties of a horizontally conformal quasi-hemi-
slant Riemannian submersion from a Sasakian manifold, normal to the characteristic vector
field, supported by an example. Under some conditions, we obtain geometric configurations
of fibres and the base manifold of such submersions. We also give a characterization theorem
for the proper horizontal conformal quasi-hemi-slant Riemannian submersions with totally
umbilical fibres.
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1. Introduction

In differential geometry, the concepts of immersion and submersion are special

tools and play important roles in Riemannian geometry and other related topics.

In [7], for instance, Fischer introduced Riemannian maps between Riemannian man-

ifolds as a unification and generalization of the notions of isometric immersions and

Riemannian submersions. The latter theory was initiated by Gray [8] and O’Neil [12].

Riemannian submersion is in fact the dual notion of isometric and this was defined

by O’Neill and he obtained fundamental equations such as Gauss, Codazzi, Ricci

equations, etc. Riemannian submersions have been studied by several authors (see

[1]–[21], for more details and references therein) from almost Hermitian, almost con-

tact manifolds, etc. Watson in [21] considered Riemannian submersions between

almost Hermitian manifolds, named almost Hermitian submersion, in which the un-

derlying submersion is an almost complex map.
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In this paper, we introduce and study a new class of conformal submersions includ-

ing the ones of invariant, anti-invariant and slant submersions. We particularly pay

attention to those from almost contact manifolds in which the characteristic vector

field is normal. This submersion generalizes the quasi-hemi-slant Riemannian sub-

mersion and was first introduced in [10] from almost Hermitian manifolds. In general,

conformal submersions are studied, for instance, in [1], [9], [11], [14] and [18] and

references therein. In [11], Mustafa obtained a characterization of totally geodesic

horizontally conformal maps via Bochner techniques for harmonic morphisms. This

result led to the existence of non-constant harmonic morphism from a compact Rie-

mannian manifold of non-negative Ricci curvature to a compact Riemannian.

The paper is organized as follows. Section 2 is devoted to some basic definitions

and properties to be used in the underlying submersions. In Section 3, we intro-

duce the new class of conformal Riemannian submersions. We also investigate the

geometry of leaves of the vertical and horizontal distributions of a conformal quasi-

hemi-slant Riemannian submersion, including the decomposition theorems of the

distributions. We finally give, in Section 5, a characterization theorem for such sub-

mersions being proper with totally umbilical fibres. We also prove that, under a cer-

tain condition, there exist no horizontal conformal quasi-hemi-slant ξ⊥-Riemannian

submersions with totally geodesic fibres.

2. Preliminaries

Let M be a (2n+1)-dimensional manifold endowed with an almost contact struc-

ture (φ, ξ, η), i.e., φ is a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form

satisfying

(2.1) φ2 = −I+ η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0.

Then (φ, ξ, η, g) is called an almost contact metric structure on M if (φ, ξ, η) is an

almost contact structure on M and g is a Riemannian metric on M such that for

any vector fields X and Y on M ,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

which implies that η(X) = g(ξ,X). Moreover, an almost contact metric manifold M

is said to be a Sasakian manifold if and only if [4], Theorem 6.3

(2.3) (∇Xφ)Y = g(X,Y )ξ − η(Y )X

for any vector fields X and Y on M , which implies ∇Xξ = −φX . Here ∇ is the
Levi-Civita connection on M with respect to g.
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Throughout this note, manifolds are assumed to be of class C∞ and connected,

and all tensor fields are of class C∞. We will denote the F(M) module of smooth

sections of a vector bundle Ξ with Γ(Ξ).

Let (M, g
M
) and (N, g

N
) be two smooth Riemannian manifolds, and F : M → N

be a surjective smooth map between the two manifolds. Then F is a smooth sub-

mersion if it has maximal rank at any point of M .

Let CF := {x ∈ M : rankF∗x < dimN} be its critical point set. The points of the
set M \CF are called regular points. For each x ∈ M \CF , the vertical space Vx at x

is defined as the kernel of the differential of F at x, i.e., Vx = kerF∗x. This leads

to an integrable distribution V , which is called vertical distribution and corresponds
to the foliation of M determined by the fibres of F . The horizontal distribution

H = (kerF∗)
⊥ is given by the orthogonal complement of V so that the tangent

bundles splits as TM = V ⊕ H. The smooth submersion F is called a Riemannian

submersion if, at each point x of M , F∗x preserves the length of the horizontal

vectors. A horizontal vector field X on M is said to be basic if X is F -related to

a vector field X ′ on N . It is clear that every vector field X ′ on N has a unique

horizontal lift X to M and X is basic.

It is well known that for a Riemannian submersion F : (M, g
M
) → (N, g

N
), there

are two (1, 2)-O’Neill tensors fields T and A on (M, g
M
) defined by the formulas

TEF = H∇VEVF + V∇VEHF,(2.4)

AEF = V∇HEHF +H∇HEVF(2.5)

for any vector fields E, F on M , where ∇ is the Levi-Civita connection of g
M
. It

is easy to see that TE and AE are skew-symmetric operators on the tangent bundle

of M reversing the vertical and the horizontal distributions. We summarize the

properties of the tensor fields T and A. From (2.4) and (2.5) we have

∇XY = TXY + V∇XY,(2.6)

∇XV = H∇XV + TXV,(2.7)

∇V X = AV X + V∇V X,(2.8)

∇V W = H∇V W +AV W(2.9)

for any X , Y ∈ Γ(kerF∗) and V , W ∈ Γ(kerF∗)
⊥, where H∇XV = AV X if V is

basic. The covariant derivatives of ϕ and ω in (3.7) are defined as

(∇Xϕ)Y = V∇XϕY − ϕV∇XY,(2.10)

(∇Xω)Y = H∇XωY − ωV∇XY,(2.11)

(∇V B)W = V∇V BW − BH∇V W,(2.12)

(∇V C)W = H∇V BW − CH∇V W(2.13)
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for any X , Y ∈ Γ(kerF∗) and V , W ∈ Γ(kerF∗)
⊥. The tensor T is symmetric on

the vertical distribution and TXY coincides with the second fundamental form of the

immersion of the fibre submanifolds. In particular, T = 0 if and only if any fibre

of F is a totally geodesic submanifold of M .

Let F : M → N be a smooth map between the two manifolds. Then the second

fundamental form of F is given by

(2.14) ∇F∗(X,Y ) = ∇F
XF∗(Y )− F∗(∇XY )

for any vector fieldsX and Y ∈ Γ(TM), where∇F is the pullback connection along F

and ∇ denotes conveniently the Levi-Civita connections of the metrics g
M
and g

N
.

It is known that the second fundamental form is symmetric (see [14] for more details

and reference therein), and F is a totally geodesic map if ∇F∗(X,Y ) = 0 for all

X,Y ∈ Γ(TM).

Definition 2.1 ([9]). Let F be a smooth submersion from a Riemannian mani-

fold (M, g
M
) to a Riemannian manifold (N, g

N
). Then F is called a horizontally

conformal submersion if there is a positive function λ : M \ CF → R+ such that

(2.15) λ2g
M
(X,Y ) = g

N
(F∗X,F∗Y )

for every X,Y ∈ Γ(H). The function λ is then extended to the whole of M by

putting λ|CF
≡ 0. The extended function λ : M → R+ 0 is called the dilation of F .

It is easy to see that every Riemannian submersion is a particular horizontally

conformal submersion with λ = 1. We recall the following.

Lemma 2.1 ([1]). Let F : (M, g
M
) → (N, g

N
) be a horizontally conformal sub-

mersion. Then for any horizontal vector fields U , V and vertical vector fields X , Y ,

we have

(i) ∇F∗(U, V ) = U(lnλ)F∗V + V (lnλ)F∗U − g
M
(U, V )F∗(grad lnλ),

(ii) ∇F∗(X,Y ) = −F∗(TXY ),

(iii) ∇F∗(U,X) = −F∗(∇UX) = −F∗(AUX).

If F : (M, g
M
) → (N, g

N
) is a horizontally conformal submersion, then the O’Neill

tensor A is given by

(2.16) AV W = −AWV =
1

2

{

V [V,W ]− λ2g(V,W )gradV

(

1

λ2

)}

for any V , W ∈ Γ((kerF∗)
⊥), where gradV(f) is the vertical component of the

gradient on M , contains a skew-symmetric part that measures the obstruction to

integrability of the horizontal distribution H, and also means that A is alternating
on the horizontal distribution (see [6] for more details).
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3. Quasi-hemi-slant ξ⊥-Riemannian submersions

In this section, we introduce and study a new Riemannian submersion which

is a generalization of the existing one, namely, the hemi-slant, semi-slant, semi-

invariant, etc. ξ⊥-Riemannian submersions from a Sasakian manifold onto a Rie-

mannian manifold.

Let F be a Riemannian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto

a Riemannian manifold (N, g
N
), i.e.,

F : (M,φ, ξ, η, g
M
) → (N, g

N
).

Then the Kernel of the tangent map F∗ is defined as

kerF∗ = {X ∈ Γ(TM) : F∗X = 0}.

This means that kerF∗ ⊆ TM and we therefore decompose the tangent space ofM as

TM = kerF∗ ⊕ (kerF∗)
⊥.

The distributions kerF∗ and (kerF∗)
⊥ are referred to as the vertical and horizontal

distributions, respectively.

Let us consider R2n+1 with its usual contact structure given by

η =
1

2

{

dz −
n
∑

i=1

yi dxi
}

, ξ = 2
∂

∂z
,(3.1)

g = η ⊗ η +
1

4

n
∑

i=1

{dxi ⊗ dxi + dyi ⊗ dyi},

φ

( n
∑

i=1

(

Xi

∂

∂xi
+ Yi

∂

∂yi

)

+ Z
∂

∂z

)

=

n
∑

i=1

(

Yi

∂

∂xi
−Xi

∂

∂yi

)

+

n
∑

i=1

Yiy
i ∂

∂z
,

where (x1, . . . , xn, y1, . . . , yn, z) denotes the Cartesian coordinates on R2n+1. Then

(R2n+1, φ, η, ξ, g) is a Sasakian manifold (see [4] for more details).

Let F : R
13 → R

6 be a Riemannian map defined by

F (x1, . . . , x6, y1, . . . , y6, z) = e2
(x1 − x2√

2
, x3, x5, y2, y4, z

)

.
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It is easy to see that its Jacobian matrix is of rank 6 and therefore F is a submersion.

The vector fields

(3.2) X1 =
1√
2

{

∂

∂x1
+

∂

∂x2

}

, X2 =
1√
2

{

∂

∂x1
− ∂

∂x2

}

,

X3 =
∂

∂x3
, X4 =

∂

∂x4
, X5 =

∂

∂x5
, X6 =

∂

∂x6
,

Y1 =
∂

∂y1
, Y2 =

∂

∂y2
, Y3 =

∂

∂x3
, Y4 =

∂

∂y4
,

Y5 =
∂

∂y5
, Y6 =

∂

∂y6
, ξ = 2

∂

∂z
,

are linearly independent. It is not difficult to show that F∗X1 = 0, F∗X4 = 0,

F∗X6 = 0, F∗Y1 = 0, F∗Y3 = 0, F∗Y5 = 0, F∗Y6 = 0, which means that

kerF∗ = span{X1, X4, X6, Y1, Y3, Y5, Y6}.

Also, since the vector fields X2, X3, X5, Y2, Y4 and ξ are orthogonal and we have

(kerF∗)
⊥ = span{X2, X3, X5, Y2, Y4, ξ}.

Let D = span{X6, Y6}, D⊥ = span{X4, Y3, Y5} and Dθ = span{X1, Y1}. Then using
the (1, 1)-tensor in (3.1), one has φD = D, φD⊥ ⊆ (kerF∗)

⊥, the angle between φDθ

and Dθ is constant, given by θ = π/4. Therefore, F is a conformal quasi-hemi-slant

Riemannian submersion with the quasi-hemi-slant angle θ = π/4 and dilation λ = e2

such that its fibre is decomposed as kerF∗ = D ⊕Dθ ⊕D⊥.

Therefore, we have the following result.

Theorem 3.1. Let (M,φ, ξ, η, gM ) be a (2n+1)-dimensional Sasakian manifold.

Then there is a conformal ξ⊥-Riemannian submersion F : (M,φ, η, ξ, g
M
) → (N, g

N
)

such that its vertical distribution kerF∗ admits three orthogonal distributions D,
Dθ, D⊥, i.e.,

(3.3) kerF∗ = D ⊕Dθ ⊕D⊥,

where the distribution D is invariant, i.e., φD = D, the distribution D⊥ is anti-

invariant, i.e., φD⊥ ⊆ (kerF∗)
⊥, Dθ is the slant distribution, and the angle between

φDθ and Dθ is a constant θ.

We observe that if we denote the dimensions of D, Dθ and D⊥ by m1, m2 and m3,

respectively, then we get the following cases:

(1) If m1 = 0, then F is a conformal hemi-slant ξ⊥-Riemannian submersion [19].

(2) If m2 = 0, then F is a conformal semi-invariant ξ⊥-Riemannian submersion [3].

(3) If m3 = 0, then F is a conformal semi-slant ξ⊥-Riemannian submersion [2].
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The above mentioned Riemannian submersion in Theorem (3.1) shall be called a Con-

formal quasi-hemi-slant ξ⊥-Riemannian submersion and the angle θ is called the

quasi-hemi-slant angle of the submersion. This submersion generalises hemi-slant,

semi-invariant and semi-slant ξ⊥-Riemannian submersions.

If D 6= {0}, D⊥ 6= {0} and the quasi-hemi-slant angle θ 6= 0, π/2, then the quasi-

hemi-slant ξ⊥-Riemannian submersion F : (M,φ, η, ξ, g
M
) → (N, g

N
) is proper.

Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian submersion

from a Sasakian manifold (M,φ, η, ξ, g
M
) onto a Riemannian manifold (N, gN ). Then

we have

(3.4) TM = kerF∗ ⊕ (kerF∗)
⊥.

Let us define the projections p and q on the tangent vectors TM of M by p : TM →
kerF∗ and q : TM → (kerF∗)

⊥, respectively. Now, for any X ∈ Γ(TM),

(3.5) X = pX + qX,

where pX ∈ Γ(kerF∗) and qX ∈ Γ((kerF∗)
⊥).

Now, for any X ∈ Γ(kerF∗), the vector field X can be written as

(3.6) X = PX +QX +RX,

where P , Q, R are projections of kerF∗ onto D, Dθ and D⊥, respectively. Put

(3.7) φX = ϕX + ωX,

where ϕX ∈ Γ(kerF∗) and ωX ∈ Γ((kerF∗)
⊥). From (3.6) and (3.7) we have

φX = ϕPX + ωPX + ϕQX + ωQX + ϕRX + ωRX.

Since φD = D and φD⊥ ⊆ (kerF∗)
⊥, we have ωPX = 0 and ϕRX = 0, and so

(3.8) φX = ϕPX + ϕQX + ωQX + ωRX.

This means that

(3.9) φ kerF∗ = D ⊕ ϕDθ ⊕ ωDθ ⊕ φD⊥,

where ⊕ is the orthogonal sum of bundles. Since ωDθ ⊆ (kerF∗)
⊥ and φD⊥ ⊆

(kerF∗)
⊥, one obtains

(3.10) (kerF∗)
⊥ = ωDθ ⊕ φD⊥ ⊕ ν,
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where ν is the orthogonal complement of ωDθ ⊕φD⊥ in (kerF∗)
⊥ and it is invariant

with respect to φ and contains ξ. The latter means

(3.11) ν = φν ⊕ Rξ,

where Rξ = span{ξ}.
Also, for any V ∈ (kerF∗)

⊥ we have

(3.12) φV = BV + CV,

where BV ∈ Γ(Dθ ⊕ D⊥) and CV ∈ Γ(ν). From (3.7) and (3.12), we have the

following lemma.

Lemma 3.1. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian

submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian manifold

(N, g
N
). Then we have

ϕ2 + Bω = −I, ωϕ+ Cω = 0,(3.13)

ϕB + BC = 0, C2 + ωB = −I+ η ⊗ ξ.(3.14)

By definition of underlying ξ⊥-Riemannian submersion and (3.10), we have the

following.

Lemma 3.2. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian

submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian manifold

(N, g
N
). Then we have

ϕD = D, ϕD⊥ = {0}, BωDθ = Dθ, B(ωD⊥) = D⊥, ϕDθ = Dθ.

Now, as the ξ⊥-Riemannian submersion from the Sasakian manifold (M,φ, η, ξ, g
M
)

onto a Riemannian manifold (N, gN ), one has, for any X , Y ∈ Γ(kerF∗),

(3.15) g(X,Y )ξ = TXϕY + V∇XϕY +H∇XωY + TXωY − BTXY

− CTXY − ϕV∇XY − ωV∇XY.

By comparing tangential and normal components of (3.15), one has

V∇XϕY + TXωY = BTXY + ϕV∇XY,

TXϕY +H∇XωY = CTXY + ωV∇XY + g(X,Y )ξ.
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For any X ∈ Γ(kerF∗) and V ∈ Γ(kerF∗)
⊥,

−η(V )X = (∇Xφ)V = TXBV + V∇XBV +H∇XCV + TXCV − ϕTXV

− ωTXV − BH∇XV − CH∇XV,

which leads to

(3.16) V∇XBV + TXCV = BH∇XV + ϕTXV − η(V )X,

TXBV +H∇XCV = ωTXV + CH∇XV.

Also, we have

0 = (∇V φ)V = AV ϕX + V∇V ϕX +H∇V ωX +AV ωX

− BAV X − CAV X − ϕV∇V X − ωV∇V X,

which implies that

V∇V ϕX +AV ωX = BAV X + ϕV∇V X,(3.17)

AV ϕX +H∇V ωX = CAV X + ωV∇V X.

For any V , W ∈ Γ(kerF∗)
⊥,

g(V,W )ξ − η(W )V = AV BW + V∇V BW +AV CW +H∇V CW
− BH∇VW − CH∇V W − ϕAV W − ωAV W,

which, by comparing tangential and normal components, gives

(3.18) V∇V BW +AV CW = BH∇V W + ϕAV W,

AV BW +H∇V CW = CH∇V W + ωAV W + g(V,W )ξ − η(W )V.

Therefore, from (3.15)–(3.18), we have the following.

Lemma 3.3. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian

submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian manifold

(N, g
N
). Then we have

(∇Xϕ)Y = BTXY − TXωY,(3.19)

(∇Xω)Y = CTXY − TXϕY + g
M
(X,Y )ξ,(3.20)

(∇V B)W = ϕAV W −AV CW,(3.21)

(∇V C)W = ωAV W −AV BW + g
M
(V,W )ξ − η(W )V(3.22)

for any X , Y ∈ Γ(kerF∗) and V , W ∈ Γ(kerF∗)
⊥.
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From relations (3.19), (3.20), (3.21) and (3.22), and using (2.16), we have

∇Y φX −∇XφY + φ[X,Y ] = TXφY − TY φX,(3.23)

∇WφV −∇V φW + φ[V,W ] = φ(AW V −AV W ) +AV φW(3.24)

−AWφV + η(W )V − η(V )W

for any X , Y ∈ Γ(kerF∗) and V , W ∈ Γ(kerF∗)
⊥.

Lemma 3.4. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian

submersion from a sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian manifold

(N, g
N
). Then for any X , Y ∈ Γ(D⊥) we have

(3.25) φ[X,Y ] = TXφY − TY φX.

P r o o f. The proof follows directly from (3.23). �

Now, if the tensors ϕ and ω are parallel with respect to the connection ∇ on M ,

respectively, then for any X , Y ∈ Γ(kerF∗),

(3.26) BTXY = TXωY and CTXY = TXϕY + g
M
(X,Y )ξ,

respectively. We also state the following lemma.

Lemma 3.5. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian

submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian manifold

(N, g
N
). Then we have

ϕ2X = −(cos2 θ)X,(3.27)

g
M
(ϕX,ϕY ) = cos2 θg

M
(X,Y ),(3.28)

g
N
(ωX, ωY ) = sin2 θg

M
(X,Y )(3.29)

for any X , Y ∈ Γ(Dθ).

P r o o f. The proof follows directly from the one given in [5]. �

From the first relation in (3.13) and Lemma 3.5, we deduce the following lemma.

Lemma 3.6. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian

submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian manifold

(N, g
N
). Then we have

(3.30) BωX = −(sin2 θ)X

for any X ∈ Γ(Dθ).
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Lemma 3.7. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riemannian

submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian manifold

(N, g
N
). If ω is parallel with respect to ∇ on Dθ, then we have

TϕXϕX = − cos2 θTXX

for any X ∈ Γ(Dθ).

P r o o f. If ω is parallel with respect to ∇ on Dθ, then by (3.20) and for any X ,

Y ∈ Γ(Dθ), CTXY = TXϕY − g
M
(X,Y )ξ. Interchanging X and Y in this relation

and using the symmetry of T , one has TϕXϕX = − cos2 θTXX. �

4. Integrability, geodesibility of distributions

and the decomposition theorems

In this section, we investigate the integrability and geodesibility conditions of

distributions in the decomposition of the tangent bundle.

We start by examining the integrability conditions for the slant, anti-invariant and

invariant distributions as well as the ones of the distributions kerF∗ and (kerF∗)
⊥.

Theorem 4.1. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
) with a quasi-hemi-slant angle θ. Then the slant distribution Dθ is inte-

grable if and only if

(4.1) g
M
(TXωϕY − TY ωϕX + ϕTXωY − ϕTY ωX,Z)

=
1

λ2
g
N
(∇F∗(Y, ωX)−∇F∗(X,ωY ), F∗(φZ))

+
1

λ2
g
N
(∇F

XF∗(ωY )−∇F
Y F∗(ωX), F∗(φZ))

for any X , Y ∈ Γ(Dθ) and Z ∈ Γ(D ⊕D⊥).

P r o o f. Note that Dθ is integrable if and only if for any X , Y ∈ Γ(Dθ),

g
M
([X,Y ], Z) = 0 and g

M
([X,Y ],W ) = 0 for any Z ∈ Γ(D ⊕ D⊥) and W ∈

Γ(kerF∗)
⊥. The distribution kerF∗ being always integrable, gM

([X,Y ],W ) = 0.

So, Dθ is integrable if and only if g
M
([X,Y ], Z) = 0. Now, using the identities in

Lemma 3.2, Lemma 3.5 and the fact that D is an invariant distribution, we get

(4.2) g
M
([X,Y ], Z) = g

M
(φ∇XY, φZ)− g

M
(φ∇Y X,φZ)

= cos2 θg
M
([X,Y ], Z) + g

M
(TY ωϕX − TXωϕY,Z)

+ g
M
(TXωY − TY ωX, φZ)

+ g
M
(H∇XωY −H∇Y ωX, φZ).
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Since F is horizontally conformal submersion, using (2.15), one obtains

(4.3) sin2 θg
M
([X,Y ], Z) = g

M
(TY ωϕX − TXωϕY + ϕTY ωX − ϕTXωY, Z)

+
1

λ2
g
N
(F∗(∇XωY )− F∗(∇Y ωX), F∗(φZ)),

which completes the proof, using (2.15). �

Theorem 4.2. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the anti-invariant distribution D⊥ is integrable if and only if

(4.4) TXφY = TY φX

for any X , Y ∈ Γ(D⊥).

P r o o f. The proof follows from Lemma 3.4. �

Theorem 4.3. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the invariant distribution D is integrable if and only if

g
M
(TXφY − TY φX, ωZ) = g

M
(V∇Y φX − V∇XφY, ϕZ)

for any X , Y ∈ Γ(D) and Z ∈ Γ(D ⊕D⊥).

P r o o f. The invariant distribution D is integrable if and only if for any X ,

Y ∈ Γ(D), g
M
([X,Y ], Z) = 0 and g

M
([X,Y ],W ) = 0 for any Z ∈ Γ(D⊕D⊥) andW ∈

Γ(kerF∗)
⊥. The distribution kerF∗ being always integrable, gM

([X,Y ],W ) = 0.

So,D is integrable if and only if g
M
([X,Y ], Z) = 0. Therefor we have g

M
([X,Y ], Z) =

g
M
(TXφY −TY φX, ωZ)+g

M
(V∇XφY −V∇Y φX,ϕZ), and this completes the proof.

�

Let V and W be two vector fields on (kerF∗)
⊥. The horizontal distribution

(kerF∗)
⊥ is integrable if and only if g

M
([V,W ], Z) = 0 and g

M
([V,W ],W ) = 0

for any Z ∈ Γ(kerF∗). Using the fact that F is horizontally conformal submersion,

we have

g
M
([V,W ], Z) = g

M
(V∇V BW − V∇WBV +AV CW −AW CV, ϕZ)

+
1

λ2
g
N
(∇F

V F∗(CW )−∇F
WF∗(CV ), F∗(ωZ))

+
1

λ2
g
N
(∇F∗(W, CV )−∇F∗(V, CW ), F∗(ωZ))

+ g
M
(AV BW −AWBV, ωZ) + η(W )g(V, ωZ)− η(V )g(W,ωZ).
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Using Lemma 2.1, we obtain

(4.5) ∇F∗(W, CV )−∇F∗(V, CW )

= W (lnλ)F∗CV + CV (lnλ)F∗W − V (lnλ)F∗CW
− CW (lnλ)F∗V + 2g

M
(V, CW )F∗(grad lnλ),

which leads to

(4.6)
1

λ2
g
N
(∇F∗(W, CV )−∇F∗(V, CW ), F∗(ωZ))

= g
M
(W (ln λ)CV + CV (lnλ)W

− V (lnλ)CW − CW (lnλ)V + 2g
M
(V, CW )grad lnλ, ωZ).

From (4.5) we get

(4.7) g
M
([V,W ], Z) = g

M
(V∇V BW − V∇WBV +AV CW −AWCV, ϕZ)

+
1

λ2
g
N
(∇F

V F∗(CW )−∇F
WF∗(CV ), F∗(ωZ))

+ g
M
(W (ln λ)CV + CV (lnλ)W − V (lnλ)CW − CW (lnλ)V

+ 2g
M
(V, CW )grad lnλ, ωZ) + g

M
(AV BW −AWBV, ωZ)

+ η(W )g(V, ωZ)− η(V )g(W,ωZ).

Therefore, we have the following.

Theorem 4.4. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then distribution (kerF∗)

⊥ is integrable if and only if

1

λ2
g
N
(∇F

WF∗(CV )−∇F
V F∗(CW ), F∗(ωZ))

= g
M
(V∇V BW − V∇WBV +AV CW

−AW CV, ϕZ) + g
M
(AV BW −AWBV +W (lnλ)CV

+ CV (ln λ)W − V (lnλ)CW − CW (lnλ)V

+ 2g
M
(V, CW )grad lnλ, ωZ) + η(W )g(V, ωZ)− η(V )g(W,ωZ)

for any V , W ∈ Γ((kerF∗)
⊥) and Z ∈ Γ(kerF∗).

Next, we investigate the geometry of leaves of the distributions by starting with the

one of the invariant, slant distribution and anti-invariantD, Dθ and D⊥, respectively.
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For any X , Y ∈ Γ(D), Z = QZ +RZ ∈ Γ(Dθ ⊕D⊥) and V ∈ Γ((kerF∗)
⊥),

g
M
(∇XY, Z) = g

M
(φ∇XY, φQZ) + g

M
(φ∇XY, φRZ)

= cos2 θg
M
(∇XY,QZ)− g

M
(TXY, ωϕQZ) + g

M
(TXφY, ωZ).

That is,

(4.8) sin2 θg
M
(∇XY,QZ) + g

M
(∇XY,RZ) = −g

M
(TXY, ωϕQZ) + g

M
(TXφY, ωZ).

Also,

(4.9) g
M
(∇XY, V ) = g

M
(TXY, V ).

Therefore, we have the following.

Theorem 4.5. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the invariant distribution D defines a totally geodesic foliation

on M if and only if

(4.10) TXY = 0 ∀X, Y ∈ Γ(D).

P r o o f. The proof follows from a straightforward calculation using (4.8) and

(4.9). �

For any X , Y ∈ Γ(kerF∗) and using the second relation in (3.26), when the

tensors ϕ and ω given in (3.7) are parallel, we have

(4.11) CTXY = TXϕY + g
M
(X,Y )ξ.

Now, if D defines a totally geodesic foliation on M , then for any vector fields X

and Y in D, together with the hypotheses of Theorem 4.5, TXY = 0. This also

implies that TXφY = 0 as the distribution D is invariant with respect to φ. In this
context, and using (4.7), we have g

M
(X,Y )ξ = 0, a contradiction. Therefore, we

have the following.

Theorem 4.6. There is no horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
) such that the invariant distribution D given in (3.3) is totally geodesic

and tensor ω is parallel.

526



For any X , Y ∈ Γ(Dθ), Z = PZ +RZ ∈ Γ(D ⊕D⊥) and V ∈ Γ((kerF∗)
⊥),

g
M
(∇XY, Z) = cos2 θg

M
(∇XY, Z)− g

M
(TXωϕY,Z)

+ g
M
(H∇XωY, φZ) + g

M
(TXωY, φZ).

That is,

sin2 θg
M
(∇XY, Z) = −g

M
(TXωϕY,Z) + g

M
(H∇XωY, φZ) + g

M
(TXωY, φZ).

Since F is a horizontally conformal submersion, using Lemma 2.1 we have

(4.12) sin2 θg
M
(∇XY, Z) = g

M
(TXωY, φPZ)− g

M
(TXωϕY,Z)

+
1

λ2
g
N
(∇F

XF∗(ωY ), F∗(φRZ))

− 1

λ2
g
N
(∇F∗(X,ωY ), F∗(φRZ))

= g
M
(TXωY, φPZ)− g

M
(TXωϕY,Z)

+
1

λ2
g
N
(∇F

XF∗(ωY ), F∗(φRZ)) + g
M
(AωY X,φRZ).

Also,

(4.13) g
M
(∇XY, V ) = cos2 θg

M
(∇XY, V )− g

M
(H∇XωϕY, V )

+ g
M
(H∇XωY, CV ) + g

M
(TXωY,BV ).

That is,

(4.14) sin2 θg
M
(∇XY, V ) = g

M
(TXωY +AωY X,BV + CV )− g

M
(AωϕY X,V )

+
1

λ2
g
N
(∇F

XF∗(ωY ), F∗(CV ))

− 1

λ2
g
N
(∇F

XF∗(ωϕY ), F∗(V )).

Therefore, we have the following result.

Theorem 4.7. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the slant distribution Dθ defines a totally geodesic foliation on

M if and only if

(4.15)
1

λ2
g
N
(∇F

XF∗(ωY ), F∗(φRZ)) = −g
M
(TXωY +AωY X,φZ)+g

M
(TXωϕY,Z),
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and

(4.16)
1

λ2
g
N
(∇F

XF∗(ωϕY ), F∗(V ))− 1

λ2
g
N
(∇F

XF∗(ωY ), F∗(CV ))

= g
M
(TXωY +AωY X,φV )− g

M
(AωϕY X,V )

for any X , Y ∈ Γ(Dθ), Z ∈ Γ(D ⊕D⊥) and V ∈ Γ((kerF∗)
⊥).

Theorem 4.8. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the anti-invariant distribution D⊥ defines a totally geodesic foli-

ation on M if and only if

1

λ2
g
N
(∇F

XF∗(φY ), F∗(ωZ)) = g
M
(TXY, ωϕZ)− g

M
(AφY X,ωZ),(4.17)

1

λ2
g
N
(∇F

XF∗(φY ), F∗(CV )) = g
M
(TXφY +AφY X,φV )(4.18)

for any X , Y ∈ Γ(D⊥), Z ∈ Γ(D ⊕Dθ) and V ∈ Γ((kerF∗)
⊥).

P r o o f. For any X , Y ∈ Γ(D⊥), Z = PZ + QZ ∈ Γ(D ⊕ Dθ) and V ∈
Γ((kerF∗)

⊥),

(4.19) g
M
(∇XY, Z) = cos2 θg

M
(∇XY, Z)− g

M
(∇XY, ωϕZ) + g

M
(∇XφY, ωZ)

= cos2 θg
M
(∇XY, Z)− g

M
(TXY, ωϕZ) + g

M
(H∇XφY, ωZ).

That is,

sin2 θg
M
(∇XY, Z) = −g

M
(TXY, ωϕZ) + g

M
(H∇XφY, ωZ).

From F being a horizontally conformal submersion and Lemma 2.1, we have

(4.20) sin2 θg
M
(∇XY, Z) = − g

M
(TXY, ωϕZ)

+
1

λ2
g
N
(∇F

XF∗(φY ), F∗(ωZ)) + g
M
(AφY X,ωZ).

Since F is a horizontally conformal submersion, from Lemma 2.1 we have

(4.21) g
M
(∇XY, V ) = g

M
(∇XφY, φV ) = g

M
(TXφY,BV ) + g

M
(H∇XφY, CV )

= g
M
(TXφY +AφY X,BV + CV )

+
1

λ2
g
N
(∇F

XF∗(φY ), F∗(CV )),

which completes the proof. �
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From Theorem 4.5, Theorem 4.7 and Theorem 4.8, we have the following decom-

position result.

Theorem 4.9. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the fibres of F are local product Riemannian manifold of the form

MD ×MDθ ×MD⊥ ,

where MD, MDθ and MD⊥ are leaves of D, Dθ and D⊥, respectively, if and only if

conditions (4.10), (4.15), (4.16), (4.17) and (4.18) are satisfied.

For any V , W ∈ Γ((kerF∗)
⊥) and Z ∈ Γ(kerF∗) and using (3.6) one has

(4.22) g
M
(∇V W,Z) = g

M
(∇V φW, φPZ) + g

M
(∇V φW, φQZ)

+ g
M
(∇V φW, φRZ) − g

M
((∇V φ)W,φZ)

= η(W )g
M
(V, ωZ) + g

M
(∇V φW, φPZ) + g

M
(φ∇V W,ϕQZ)

+ g
M
(∇V φW,ωQZ) + g

M
(∇V φW, φRZ)

= η(W )g
M
(V, ωZ) + g

M
(∇V φW, φPZ)

+ cos2 θg
M
(AV W,QZ)

− g
M
(H∇V W,ωϕQZ) + g

M
(∇V φW,ωQZ + φRZ).

Since F is a horizontally conformal submersion, ωZ = ωQZ+φRZ and the fact that

g
M
(∇V φW, φPZ) = g

M
(AV W,Z), we have

(4.23) g
M
(∇V W,Z) = η(W )g

M
(V, ωZ) + g

M
(AV W,Z)

+ cos2 θg
M
(AV W,QZ) + g

M
(H∇V CW,ωZ)

− g
M
(H∇V W,ωϕQZ) + g

M
(AV BW,ωZ)

= η(W )g
M
(V, ωZ) + g

M
(AV W,Z) + cos2 θg

M
(AV W,QZ)

+
1

λ2
g
N
(∇F

V F∗(CW ), F∗(ωZ))

− 1

λ2
g
N
(∇F

V F∗(W ), F∗(ωϕQZ))

− 1

λ2
g
N
(∇F∗(V, CW ), F∗(ωZ))

+
1

λ2
g
N
(∇F∗(V,W ), F∗(ωϕQZ)) + g

M
(AV BW,ωZ).
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Now, using Lemma 2.1, one gets

g
M
(∇V W,Z)(4.24)

= η(W )g
M
(V, ωZ) + g

M
(AV W,Z) + cos2 θg

M
(AV W,QZ)

+
1

λ2
g
N
(∇F

V F∗(CW ), F∗(ωZ))− 1

λ2
g
N
(∇F

V F∗(W ), F∗(ωϕQZ))

− g(V, grad lnλ)g
M
(CW,ωZ)− g(CW, grad lnλ)g

M
(V, ωZ)

+ g
M
(V, CW )g

M
(grad lnλ, ωZ) + g(V, grad lnλ)g

M
(W,ωϕQZ)

+ g(W, grad lnλ)g
M
(V, ωϕQZ)− g

M
(V,W )g

M
(grad lnλ, ωϕQZ)

+ g
M
(AV BW,ωZ).

Therefore, we have the following.

Theorem 4.10. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the distribution (kerF∗)

⊥ defines a totally geodesic foliation onM

if and only if

(4.25)
1

λ2
g
N
(∇F

V F∗(W ), F∗(ωϕQZ))− 1

λ2
g
N
(∇F

V F∗(CW ), F∗(ωZ))

= η(W )g
M
(V, ωZ) + g

M
(AV W,Z) + cos2 θg

M
(AV W,QZ)

− g(V, grad lnλ)g
M
(CW,ωZ)− g(CW, grad lnλ)g

M
(V, ωZ)

+ g
M
(V, CW )g

M
(grad lnλ, ωZ) + g(V, grad lnλ)g

M
(W,ωϕQZ)

+ g(W, grad lnλ)g
M
(V, ωϕQZ)− g

M
(V,W )g

M
(grad ln λ, ωϕQZ)

+ g
M
(AV BW,ωZ)

for any V , W ∈ Γ((kerF∗)
⊥) and Z ∈ Γ(kerF∗).

Theorem 4.11. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the distribution kerF∗ defines a totally geodesic foliation on M

if and only if

(4.26)
1

λ2
g
N
(∇F

XF∗(ωϕQY ), F∗(V ))− 1

λ2
g
N
(∇F

XF∗(ωY ), F∗(CV ))

= g
M
(TXPY, V )− g

M
(ϕX,PY )η(V ) + cos2 θg

M
(TXQY, V )

+ g
M
(TXωY,BV ) + g

M
(AωϕQY X,V ) + g

M
(AωY X, CV )

for any X , Y ∈ Γ(kerF∗) and V ∈ Γ((kerF∗)
⊥).
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P r o o f. For any X , Y ∈ Γ(kerF∗) and V ∈ Γ((kerF∗)
⊥),

g
M
(∇XY, V )− η(∇XY )η(V ) = g

M
(∇XφY, φV ) = g

M
(∇XφPY, φV )

+ cos2 θg
M
(∇XQY, V )− g

M
(∇XωϕQY, V )

+ g
M
(∇XωQY, φV ) + g

M
(∇XφRY, φV )

= g
M
(TXPY, V )− g

M
(ϕX,PY )η(V ) + cos2 θg

M
(∇XQY, V )

− g
M
(H∇XωϕQY, V ) + g

M
(∇X(ωQY +∇XφRY ),BV )

+ g
M
(∇X(ωQY + φRY ), CV ).

Since ωY = ωQY + φRY and using Lemma 2.1, we have

g
M
(∇XY − η(∇Xξ, V ) = g

M
(TXPY, V )− g

M
(ϕX,PY )η(V ) + cos2 θg

M
(TXQY, V )

+ g
M
(TXωY,BV )− 1

λ2
g
N
(∇F

XF∗(ωϕQY ), F∗(V ))

+
1

λ2
g
N
(∇F

XF∗(ωY ), F∗(CV ))

+ g
M
(AωϕQY X,V ) + g

M
(AωY X, CV ),

which completes the proof. �

From Theorem 4.10 and Theorem 4.11, we have the following decomposition result.

Theorem 4.12. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then the total space M is a local product Riemannian manifold of the

form

M(kerF∗)⊥ ×MkerF∗
,

where M(kerF∗)⊥ and MkerF∗
are leaves of the distributions (kerF∗)

⊥ and kerF∗,

respectively, if and only if conditions (4.25) and (4.26) are satisfied.

5. Conformal quasi-hemi-slant ξ⊥-Riemannian submersions

with totally umbilical or geodesic fibres

Now, we study the geometry of the conformal quasi-hemi-slant ξ⊥-Riemannian

submersions with totally umbilical and geodesic fibres.

Note that a fibre of a conformal Riemannian submersion F is totally umbilical if

(5.1) TXY = g(X,Y )H
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for any X , Y ∈ Γ(kerF∗), where H is the mean curvature vector field of the fibre

in M . When H = 0, the fibre is called minimal.

Let F be a proper horizontally conformal quasi-hemi-slant ξ⊥-Riemannian submer-

sion from a Sasakian manifold (M,φ, η, ξ, g
M
) onto a Riemannian manifold (N, gN ).

Then D 6= {0}, D⊥ 6= {0}. This means that the dimensions of D and D⊥ is ei-

ther 2 and 1, respectively, that is, dimD = 2 and dimD⊥ = 1 or dimD > 2 and

dimD⊥ > 1.

(i) Case 1: dimD = 2 and dimD⊥ = 1, it is obvious.

(ii) Case 2: dimD > 2 and dimD⊥ > 1. Choose X , Y ∈ Γ(D⊥) such that

g
N
(X,Y ) = 0. Using (3.7), (3.12) and (2.7), one has

H∇XφY + TXφY = ∇XφY = g
M
(X,Y )ξ + φ∇XY

= g
M
(X,Y )ξ + ϕV∇XY + ωV∇XY + BTXY + CTXY.

Taking the g
M
with X , we obtain

(5.2) g
M
(TXφY,X) = g

M
(BTXY,X) = g

M
(TXY, φX).

If the fibres are totally umbilical, then from (5.1) and (5.2) we have

(5.3) 0 = g
M
(X,φY )g

M
(H,X) = g

M
(TXφY,X)

= g
M
(TXY, φX) = g

M
(X,Y )g

M
(H,φX).

That is, g
M
(H,φX) = 0. Thus, we deduce that

(5.4) H ⊥ φD⊥.

This means that the mean curvature vector H is perpendicular to D⊥. For

Z ∈ Γ(Dθ), one gets

(5.5) g
M
(X,Y )g

M
(H,ωZ) = −g

M
(Y, TXωZ) = g

M
(Y, (∇Xϕ)Z).

Also, for any V ∈ Γ(ν) such that V ⊥ ξ, and using ϕD⊥ = {0} and (3.20), we have

(5.6) g
M
(X,Y )g

M
(H,φV ) = −g

M
(CTXY, V ) = −g

M
((∇Xω)Y, V ),

and for the characteristic vector field ξ ∈ ν we have

(5.7) g
M
(X,Y )g

M
(H, ξ) = g

M
(TXY, ξ) 6= 0,

as TXY ∈ (kerF∗)
⊥.
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For any X1, X2 ∈ Γ(D) and X ∈ Γ(D⊥) and using (3.19), we obtain

(5.8) g
M
(X1, X2)gM

(H,φX) = −g
M
(X2, TX1

ωX) = g
M
(X2, (∇X1

ϕ)X).

Now, for any Z ∈ Γ(Dθ),

(5.9) g
M
(X1, X2)gM

(H,ωZ) = −g
M
(X2, TX1

ωZ) = g
M
(X2, (∇X1

ϕ)Z).

For any V ∈ Γ(ν) such that V ⊥ ξ,

(5.10) g
M
(X1, X2)gM

(H,φV ) = −g
M
(CTX1

X2, V )

= −g
M
((∇X1

ω)X2, V )− g
M
(X1, ϕX2)gM

(H,V ),

and also, for the characteristic vector field ξ ∈ ν we have

(5.11) g
M
(X1, X2)gM

(H, ξ) = g
M
(TX1

X2, ξ) 6= 0.

Moreover, if the tensor ϕ is parallel, then

(5.12) H ⊥ ωD⊥.

From (5.4) and (5.12), and using (3.10) we deduce that the mean curvature vector

H ∈ ν. If ω is parallel, using (5.6), then H ⊥ φν, and since g
M
(H, ξ) 6= 0, by virtue

of (5.7), H ∈ Rξ, where Rξ = span{ξ} defined in (3.11). Therefore, we have the
following.

Theorem 5.1. Let F be a proper horizontally conformal quasi-hemi-slant

ξ⊥-Riemannian submersion with totally umbilical fibres from a Sasakian manifold

(M,φ, ξ, η, g
M
) onto a Riemannian manifold (N, g

N
). Then either

(i) the invariant and anti-invariant distributions D and D⊥ are of dimension 2

and 1, respectively, or

(ii) the mean curvature vector field H of any fibre F−1(y), y ∈ N is perpendicular

φD⊥.

Moreover, if φ is parallel, then H ∈ ν. Furthermore, if ω is parallel, then H ∈ Rξ.

The O’Neill tensor fields A and T , defined in (2.4) and (2.5), and their covariant
derivatives play a fundamental role in expressing the Riemannian curvature R of

(M, g
M
).
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Let RV , R and RN be the Riemannian curvature tensors of the fibre kerF∗ = V ,
M and N , respectively. The curvature tensors R and RV are related as (see [6] for

more details)

(5.13) g
M
(R(X,Y )Z,W ) = g

M
(RV(X,Y )Z,W ) + g

M
(TXZ, TY W )

− g
M
(TY Z, TXW )

for any X , Y , Z, W ∈ Γ(kerF∗).

A plane section in TM is called a φ-section if there exists a vector X ∈ TM or-

thogonal to ξ such that {X,φX} span the section. The sectional curvature K(X,φ),

denoted H(X), is called φ-sectional curvature (see [4] for more details and references

therein). Then we have

(5.14) g
M
(R(X,φX)φX,X) = g

M
(RV(X,φX)φX,X) + g

M
(TXφX, TφXX)

− g
M
(TφXφX, TXX),

which implies that

(5.15) H(X) = HV(X) + ‖TXφX‖2
M

− g
M
(TφXφX, TXX),

where H(X) = g
M
(R(X,φX)φX,X) and HV(X) = g

M
(RV(X,φX)φX,X) are the

φ-sectional curvatures ofM and kerF∗, respectively, and ‖·‖2
M

:= g
M
(·, ·). Therefore,

we have the following result.

Theorem 5.2. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
) with integrable anti-invariant distribution D⊥. Then the holomorphic

sectional curvatures H and HV of M and kerF∗, respectively, satisfy the inequality

(5.16) H(X) > HV(X) ∀X ∈ Γ(D⊥), ‖X‖
M

= 1,

and the equality holds if and only if the fibre kerF∗ is D⊥-totally geodesic and mixed

(D⊥, φD⊥)-totally geodesic.

P r o o f. Note that if D⊥ is integrable, then, by Theorem 4.2, TφXφX = −TXX

and the first assertion follows. The equality holds if and only if TXX = 0 and

TXφX = 0, ∀X ∈ Γ(D⊥) and ‖X‖
M

= 1. By linearity of T it is easy to see that
TXY = 0, for any X , Y ∈ Γ(D⊥) and TXV = 0, V ∈ Γ(φD⊥). �
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Mustafa in [11], page 49, achieved a wonderful characterization of totally geodesic

horizontally conformal maps between Riemannian manifolds. Its conformal quasi-

hemi-slant version states as follows.

Theorem 5.3. Let F be a horizontally conformal quasi-hemi-slant ξ⊥-Riema-

nnian submersion from a Sasakian manifold (M,φ, ξ, η, g
M
) onto a Riemannian mani-

fold (N, g
N
). Then F is totally geodesic if and only if F has constant dilation, totally

geodesic fibres and integrable horizontal distribution.

P r o o f. The proof is similar to the one given in [11], Theorem 2.3. �

Now, using relation (3.26) and Theorem 5.3, we have the following existence

theorem.

Theorem 5.4. There exist no horizontally conformal quasi-hemi-slant ξ⊥-

Riemannian submersions with totally geodesic fibres from a Sasakian manifold

(M,φ, ξ, η, g
M
) onto a Riemannian manifold (N, g

N
) such that the tensor ω is parallel.

A c k n ow l e d gm e n t s. This work is partially supported by the National Re-

search Foundation of South Africa.
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