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Abstract. We introduce some geometric properties of a horizontally conformal quasi-hemi-
slant Riemannian submersion from a Sasakian manifold, normal to the characteristic vector
field, supported by an example. Under some conditions, we obtain geometric configurations
of fibres and the base manifold of such submersions. We also give a characterization theorem
for the proper horizontal conformal quasi-hemi-slant Riemannian submersions with totally
umbilical fibres.
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1. INTRODUCTION

In differential geometry, the concepts of immersion and submersion are special
tools and play important roles in Riemannian geometry and other related topics.
In [7], for instance, Fischer introduced Riemannian maps between Riemannian man-
ifolds as a unification and generalization of the notions of isometric immersions and
Riemannian submersions. The latter theory was initiated by Gray [8] and O’Neil [12].
Riemannian submersion is in fact the dual notion of isometric and this was defined
by O’Neill and he obtained fundamental equations such as Gauss, Codazzi, Ricci
equations, etc. Riemannian submersions have been studied by several authors (see
[1]-[21], for more details and references therein) from almost Hermitian, almost con-
tact manifolds, etc. Watson in [21] considered Riemannian submersions between
almost Hermitian manifolds, named almost Hermitian submersion, in which the un-

derlying submersion is an almost complex map.
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In this paper, we introduce and study a new class of conformal submersions includ-
ing the ones of invariant, anti-invariant and slant submersions. We particularly pay
attention to those from almost contact manifolds in which the characteristic vector
field is normal. This submersion generalizes the quasi-hemi-slant Riemannian sub-
mersion and was first introduced in [10] from almost Hermitian manifolds. In general,
conformal submersions are studied, for instance, in [1], [9], [11], [14] and [18] and
references therein. In [11], Mustafa obtained a characterization of totally geodesic
horizontally conformal maps via Bochner techniques for harmonic morphisms. This
result led to the existence of non-constant harmonic morphism from a compact Rie-
mannian manifold of non-negative Ricci curvature to a compact Riemannian.

The paper is organized as follows. Section 2 is devoted to some basic definitions
and properties to be used in the underlying submersions. In Section 3, we intro-
duce the new class of conformal Riemannian submersions. We also investigate the
geometry of leaves of the vertical and horizontal distributions of a conformal quasi-
hemi-slant Riemannian submersion, including the decomposition theorems of the
distributions. We finally give, in Section 5, a characterization theorem for such sub-
mersions being proper with totally umbilical fibres. We also prove that, under a cer-
tain condition, there exist no horizontal conformal quasi-hemi-slant £*-Riemannian

submersions with totally geodesic fibres.

2. PRELIMINARIES

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact struc-
ture (4, &,n), i.e., ¢ is a tensor field of type (1, 1), € is a vector field, and 7 is a 1-form
satisfying

(2.1) > =-14+n®¢ nE) =1, nogp=0 and ¢£=0.

Then (¢,&,7n,g) is called an almost contact metric structure on M if (4,£,7) is an
almost contact structure on M and g is a Riemannian metric on M such that for
any vector fields X and Y on M,

(2.2) 9(¢X,9Y) = g(X,Y) = n(X)n(Y),

which implies that 7(X) = g(&, X). Moreover, an almost contact metric manifold M
is said to be a Sasakian manifold if and only if [4], Theorem 6.3

(2.3) (Vx@)Y = g(X,Y)§ —n(Y)X

for any vector fields X and Y on M, which implies Vx¢& = —¢X. Here V is the
Levi-Civita connection on M with respect to g.
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Throughout this note, manifolds are assumed to be of class C°° and connected,
and all tensor fields are of class C*°. We will denote the F(M) module of smooth
sections of a vector bundle = with I'(E).

Let (M,g,,) and (N, g, ) be two smooth Riemannian manifolds, and F': M — N
be a surjective smooth map between the two manifolds. Then F' is a smooth sub-
mersion if it has maximal rank at any point of M.

Let Cp := {x € M: rank F,, < dim N} be its critical point set. The points of the
set M \ Cr are called regular points. For each € M \ Cp, the vertical space V, at x
is defined as the kernel of the differential of F' at z, i.e., V, = ker F,. This leads
to an integrable distribution V), which is called vertical distribution and corresponds
to the foliation of M determined by the fibres of F. The horizontal distribution
H = (ker F,)* is given by the orthogonal complement of V so that the tangent
bundles splits as TM =V & H. The smooth submersion F' is called a Riemannian
submersion if, at each point = of M, F,, preserves the length of the horizontal
vectors. A horizontal vector field X on M is said to be basic if X is F-related to
a vector field X’ on N. It is clear that every vector field X’ on N has a unique
horizontal lift X to M and X is basic.

It is well known that for a Riemannian submersion F': (M,g,,) — (N, g, ), there
are two (1,2)-O’Neill tensors fields 7 and A on (M, g,,) defined by the formulas

(2.4) TeF = HVyeVF + VVyeHF,
(2.5) AgF = VVygHF + HVygVF
for any vector fields £/, F' on M, where V is the Levi-Civita connection of g,,. It
is easy to see that Tg and Ag are skew-symmetric operators on the tangent bundle

of M reversing the vertical and the horizontal distributions. We summarize the
properties of the tensor fields 7 and A. From (2.4) and (2.5) we have

(2.6) VxY = TxY + VVyY,
(2.7) VxV =HVxV + TxV,
(2.8) VyX = Ay X + VVy X,
(2.9) VyW =HVyW + Ay W

for any X, Y € I'(ker F,) and V, W € T'(ker F.)*, where HVxV = Ay X if V is
basic. The covariant derivatives of ¢ and w in (3.7) are defined as

(2.10) (Vxp)Y =VVxpY — pVVxY,

(2.11) (Vxw)Y = HVxwY —wVVxY,

(2.12) (VvB)W = VVyBW — BHVy W,

(2.13) (VvCOOW = HVyBW — CHVyW
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for any X, Y € I'(ker F,.) and V, W € I'(ker F,)-. The tensor 7 is symmetric on
the vertical distribution and 7xY coincides with the second fundamental form of the
immersion of the fibre submanifolds. In particular, 7 = 0 if and only if any fibre
of F'is a totally geodesic submanifold of M.

Let F': M — N be a smooth map between the two manifolds. Then the second
fundamental form of F' is given by

(2.14) VE.(X,Y)=VEF.(Y) - F.(VxY)

for any vector fields X and Y € T'(T M), where V' is the pullback connection along F'
and V denotes conveniently the Levi-Civita connections of the metrics g,, and g, .
It is known that the second fundamental form is symmetric (see [14] for more details
and reference therein), and F' is a totally geodesic map if VF,(X,Y) = 0 for all
X, Y eT(TM).

Definition 2.1 ([9]). Let F' be a smooth submersion from a Riemannian mani-
fold (M,g,,) to a Riemannian manifold (N,g,). Then F is called a horizontally
conformal submersion if there is a positive function A\: M \ Cp — R™ such that

(2.15) Mg, (X,Y) =g, (F.X,F.Y)

for every X,Y € I'(H). The function A is then extended to the whole of M by
putting A¢, = 0. The extended function A\: M — R™ 0 is called the dilation of F.

It is easy to see that every Riemannian submersion is a particular horizontally
conformal submersion with A = 1. We recall the following.

Lemma 2.1 ([1]). Let F': (M,g,,) — (N,g,) be a horizontally conformal sub-
mersion. Then for any horizontal vector fields U, V and vertical vector fields X, Y,
we have

(i) VE.(U,V)=U(mNE.V +V(In N E.U — g,,(U,V)Fy(gradIn \),
(ii) VF.(X,Y) = —F.(TxY),
(ili) VF,(U,X) = —F,(VyX) = —F,(AyX).

If F: (M,g,,) — (N,g,) is a horizontally conformal submersion, then the O’Neill
tensor A is given by

(2.16) AvW = —AwV = %{Vﬂﬂ W] = Xg(V,W)grad,, (%) }

for any V, W € T'((ker F,)1), where grad,,(f) is the vertical component of the
gradient on M, contains a skew-symmetric part that measures the obstruction to
integrability of the horizontal distribution #, and also means that A is alternating
on the horizontal distribution (see [6] for more details).
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3. QUASI-HEMI-SLANT ¢ -RIEMANNIAN SUBMERSIONS

In this section, we introduce and study a new Riemannian submersion which
is a generalization of the existing one, namely, the hemi-slant, semi-slant, semi-
invariant, etc. ¢*-Riemannian submersions from a Sasakian manifold onto a Rie-

mannian manifold.
Let F be a Riemannian submersion from a Sasakian manifold (M, ¢, &, 1, g,,) onto
a Riemannian manifold (N, g, ), i.e.,

F: (M, $,6,1,9,) = (N, gy)-
Then the Kernel of the tangent map F, is defined as
ker F, ={X e T'(TM): F.X =0}.
This means that ker F,, C T'M and we therefore decompose the tangent space of M as
TM =ker F, @ (ker F,)*.

The distributions ker F, and (ker F,)* are referred to as the vertical and horizontal
distributions, respectively.

Let us consider R?"*! with its usual contact structure given by
1 S d
(3.1) nz—{dz—Zy’dm’}, E=2—,
2 pat 0z
1 < , , , .
g=n@n+7) {d'® d’+ dy'® dy'},

i=1

¢><§n: (Xiaii +E‘a(zi) + Z%) - ﬁ: (Yi% —Xia‘;

i=1 i=1

where (21,...,%n,Y1,---,Yn,2) denotes the Cartesian coordinates on R?"*!. Then
(R2"+1 6 7, &, g) is a Sasakian manifold (see [4] for more details).
Let F': R — RS be a Riemannian map defined by

1 — T2
F(xlv"'vxﬁaylv"'vyﬁaz):62< \/§ ,$3,$5,y2,y472).
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It is easy to see that its Jacobian matrix is of rank 6 and therefore F' is a submersion.
The vector fields

62 M= e % e )
X3:8ia:3’ X4:8ix4’ X5:8ia:5’ Xﬁzaia:g’
Nimgl Yam gl Yam gl Yim g
%2%7%2%,522%a

are linearly independent. It is not difficult to show that F.X; = 0, F.Xy = 0,
F,.Xe=0, F.Y1 =0, F.Ys =0, F.Y; =0, F.Ys = 0, which means that

ker F, = span{ Xy, X4, X¢,Y1,Y3, Y5, Y5}.
Also, since the vector fields X5, X3, X5, Y5, Y; and £ are orthogonal and we have
(kelrF*)L = span{ X, X3, X5, Y5, Yy, &}

Let D = span{ X, Y5}, D+ = span{ Xy, Y3,Y5} and DY = span{X;,Y;}. Then using
the (1,1)-tensor in (3.1), one has ¢D = D, ¢D+ C (ker F,)*, the angle between ¢D?
and DY is constant, given by § = 1/4. Therefore, F' is a conformal quasi-hemi-slant
Riemannian submersion with the quasi-hemi-slant angle # = /4 and dilation \ = e?
such that its fibre is decomposed as ker F\, = D & D? @ D+.

Therefore, we have the following result.

Theorem 3.1. Let (M, ¢,£,m, gn) be a (2n+ 1)-dimensional Sasakian manifold.
Then there is a conformal £+ -Riemannian submersion F: (M, $,1,¢,9,,) — (N, g,)
such that its vertical distribution ker I, admits three orthogonal distributions D,
DY DL, je.,

(3.3) ker F, = D @ D’ @ D,

where the distribution D is invariant, i.e., D = D, the distribution D+ is anti-
invariant, i.e., D+ C (ker F.)*, DY is the slant distribution, and the angle between
¢DY and DY is a constant 6.

We observe that if we denote the dimensions of D, D and D+ by m;, mo and ms,
respectively, then we get the following cases:

(1) If my = 0, then F is a conformal hemi-slant ¢{*-Riemannian submersion [19].
(2) If ma = 0, then F is a conformal semi-invariant ¢&--Riemannian submersion [3].
(3) If m3 = 0, then F is a conformal semi-slant {--Riemannian submersion [2].
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The above mentioned Riemannian submersion in Theorem (3.1) shall be called a Con-
formal quasi-hemi-slant ¢+ -Riemannian submersion and the angle 6 is called the
quasi-hemi-slant angle of the submersion. This submersion generalises hemi-slant,
semi-invariant and semi-slant £---Riemannian submersions.

If D # {0}, D+ # {0} and the quasi-hemi-slant angle 6 # 0, ©/2, then the quasi-
hemi-slant ¢*-Riemannian submersion F': (M, ¢,7,¢,g,,) — (N, g, ) is proper.

Let F be a horizontally conformal quasi-hemi-slant £*--Riemannian submersion
from a Sasakian manifold (M, ¢,7,&, g,,) onto a Riemannian manifold (N, gn). Then

we have
(3.4) TM =ker F, @ (ker F,)*.

Let us define the projections p and ¢ on the tangent vectors TM of M by p: TM —
ker F, and q: TM — (ker F,)*, respectively. Now, for any X € I'(T M),

(3.5) X =pX +¢X,

where pX € I'(ker F,) and ¢X € I'((ker F,)1).
Now, for any X € I'(ker F.), the vector field X can be written as

(3.6) X =PX+OX +RX,

where P, Q, R are projections of ker F, onto D, DY and D, respectively. Put

(3.7) X = pX + wX,

where ¢ X € I'(ker F,) and wX € I'((ker F,)1). From (3.6) and (3.7) we have
X = PX + wPX + pOX +wQX + pRX + wRX.

Since ¢D = D and ¢D* C (ker F,)*, we have wPX = 0 and pRX = 0, and so

(3.8) ¢X = pPX + pQX +wQX +wRX.

This means that

(3.9) pker F, = D@ ¢D? & wD? @ ¢D+,

where @ is the orthogonal sum of bundles. Since wD? C (ker F,)* and ¢D+ C
(ker F,)*, one obtains

(3.10) (ker F,)* = wD? @ ¢D+ @ v,
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where v is the orthogonal complement of wD? @ ¢D+ in (ker F.)* and it is invariant
with respect to ¢ and contains £&. The latter means

(3.11) v =¢v @ RE,

where RE = span{¢}.
Also, for any V € (ker F.)* we have

(3.12) oV =BV +CV,

where BV € I'(D? @ DY) and CV € I'(v). From (3.7) and (3.12), we have the
following lemma.

Lemma 3.1. Let F be a horizontally conformal quasi-hemi-slant £ -Riemannian
submersion from a Sasakian manifold (M, $,&,n,g,,) onto a Riemannian manifold
(N,g,). Then we have

(3.13) 0?4+ Bw=—1, wp+Cw=0,
(3.14) B+BC=0, C’4wB=—-1+1nQE¢.

By definition of underlying ¢*-Riemannian submersion and (3.10), we have the
following.

Lemma 3.2. Let F be a horizontally conformal quasi-hemi-slant ¢ -Riemannian
submersion from a Sasakian manifold (M, $,&,n,g,,) onto a Riemannian manifold
(N, g,). Then we have

¢D =D, ¢D*+={0}, BwD’=D’ BwD") =D+ D’="7"

Now, as the {--Riemannian submersion from the Sasakian manifold (M, ¢, 7, ¢, g,,)
onto a Riemannian manifold (N, gx), one has, for any X, Y € I'(ker F}),

(3.15) g( X, V) =TxpY + VVxoY + HVxwY + TxwY — BTxY
—CTxY — pVVxY — wVVyY.

By comparing tangential and normal components of (3.15), one has

VVxoY + TxwY = BTxY + pVVyY,
Tx Y + HVxwY = CTxY +wVVxY + g(X,Y)CE.
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For any X € I'(ker F,) and V € I'(ker F,)*,

—n(V)X =(Vxd)V =TxBV + VVxBV + HVxCV + TxCV — oTxV
—wTxV —BHVxV —CHV XV,

which leads to

(3.16) VVxBV 4+ TxCV = BHVxV 4+ ¢TxV —n(V)X,
TxBV + HV xCV = wTxV +CHV xV.

Also, we have

0= (Vqu)V = .AngX +VWyeX +HVywX + AvwX
- BAvX — CAvX — (pVVvX — OJVVVX,

which implies that

(3.17) VWX + AvywX = BAy X + pVVy X,
AvpX + HVywX =CAy X + wVVy X.

For any V, W € I'(ker F,)*,

g(V, W) —n(W)V = Ay BW + VVyBW + AyCW + HVyCW
- BHV\/W - CHVVW - @Avw — wAvW,

which, by comparing tangential and normal components, gives

(3.18) VYV BW + AyCW = BHV W + oAy W,
AyBW + HVyCW = CHV YW + wAyW + g(V, W)E — n(W)V.

Therefore, from (3.15)—(3.18), we have the following.

Lemma 3.3. Let F be a horizontally conformal quasi-hemi-slant {*-Riemannian
submersion from a Sasakian manifold (M, $,&,n,g,,) onto a Riemannian manifold
(N,gy). Then we have

(3.19) (Vx@)Y = BTxY — TxwY,

(3.20) (Vxw)Y =CTxY — TxeY +g,,(X,Y)E,

(3.21) (VvB)W = oAy W — AyCW,

(3.22) (VvOW = wAyW — Ay BW + g, (V, W)€ — n(W)V

for any X,Y € I'(ker F,) and V, W € T'(ker F,)*.
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From relations (3.19), (3.20), (3.21) and (3.22), and using (2.16), we have

(3.23) VyodX —VxoY + o[ X, Y] = Tx oY — Ty oX,
(3.24) Vw oV — VyoW + (b[V7 W] = (b(.AWv — Ay W) + Ay oW
—Aw oV +n(W)V — (V)W

for any X, Y € I'(ker F},) and V, W € T'(ker F,)".

Lemma 3.4. Let F be a horizontally conformal quasi-hemi-slant £ -Riemannian
submersion from a sasakian manifold (M, ¢,&,1n,g,,) onto a Riemannian manifold
(N,gy). Then for any X,Y € I'(D*) we have

(3.25) O[X,Y] = Tx oY — Ty ¢X.

Proof. The proof follows directly from (3.23). d

Now, if the tensors ¢ and w are parallel with respect to the connection V on M,
respectively, then for any X, Y € T'(ker Fy),

(3.26) BTxY =TxwY and CTxY =Tx¢Y +g¢,,(X,Y)E,
respectively. We also state the following lemma.

Lemma 3.5. Let F be a horizontally conformal quasi-hemi-slant £ -Riemannian
submersion from a Sasakian manifold (M, ¢,&,1,qg,,) onto a Riemannian manifold
(N,gy). Then we have

(3.27) ©*X = —(cos®H) X,
(328) I (SDXa SDY) = cos® 09, (Xa Y)v
(3.29) gx (WX, wY) =sin?fg,, (X,Y)

for any X,Y € I'(DY).
Proof. The proof follows directly from the one given in [5]. (]

From the first relation in (3.13) and Lemma 3.5, we deduce the following lemma.

Lemma 3.6. Let F be a horizontally conformal quasi-hemi-slant {*-Riemannian
submersion from a Sasakian manifold (M, ¢,&,1,qg,,) onto a Riemannian manifold
(N,gy). Then we have

(3.30) BwX = —(sin?0) X
for any X € T'(D?).
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Lemma 3.7. Let F be a horizontally conformal quasi-hemi-slant {*-Riemannian
submersion from a Sasakian manifold (M, ¢,&,1,9g,,) onto a Riemannian manifold
(N, gy). If w is parallel with respect to V on D?, then we have

ToxeX = —cos?0Tx X
for any X € I'(D?).

Proof. Ifw is parallel with respect to V on DY, then by (3.20) and for any X,
Y € I(DY), CTxY = TxpY — g,,(X,Y)E. Interchanging X and Y in this relation
and using the symmetry of T, one has T,xpX = —cos? 0Tx X. O

4. INTEGRABILITY, GEODESIBILITY OF DISTRIBUTIONS
AND THE DECOMPOSITION THEOREMS

In this section, we investigate the integrability and geodesibility conditions of
distributions in the decomposition of the tangent bundle.

We start by examining the integrability conditions for the slant, anti-invariant and
invariant distributions as well as the ones of the distributions ker F, and (ker F*)J-.

Theorem 4.1. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,&,n,g,,) onto a Riemannian mani-
fold (N, g, ) with a quasi-hemi-slant angle . Then the slant distribution DY is inte-
grable if and only if

(4.1) 9 (TxweY — TyweX + pTxwY — oTywX, Z)

= 50 (VE.(Y,0X) = VE.(X,0Y), F.(62))

+ 139 (VER(Y) = VIR (0X), F.(62))

for any X,Y € I'(D?) and Z € T(D @ D).

Proof. Note that DY is integrable if and only if for any X, Y € T'(D?),
9,([X,Y],Z) =0 and g¢,(X,Y],W) =0 for any Z € T(D® D+) and W €
I'(ker F,)*. The distribution ker F, being always integrable, g, ([X,Y],W) = 0.
So, DY is integrable if and only if g,, ([X,Y],Z) = 0. Now, using the identities in
Lemma 3.2, Lemma 3.5 and the fact that D is an invariant distribution, we get
(42) 9, (X,Y],2) =9, (#VxY,0Z) - g,,(¢Vy X, $Z)

= cos?0g,,([X,Y],Z2) + g,,(TywpX — TxweY, Z)
+ 9, (TxwY — TywX, ¢Z)
+9,,(HVxwY — HVywX, ¢Z).
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Since F' is horizontally conformal submersion, using (2.15), one obtains

(4.3) sin?fg,, ((X,Y],2) = g, (TyweX — TxweY + ¢TywX — pTxwY, Z)

+ 3303 (F (V) = F(VywX), F(62)),

which completes the proof, using (2.15). O

Theorem 4.2. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,n, g,,) onto a Riemannian mani-
fold (N, g,). Then the anti-invariant distribution D~ is integrable if and only if

(4.4) TxdY = Ty dX

for any X, Y € (D).

Proof. The proof follows from Lemma 3.4. U

Theorem 4.3. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,n, g,,) onto a Riemannian mani-
fold (N, g, ). Then the invariant distribution D is integrable if and only if

9 (TxY — Ty dX,wZ) =g,,(VVydpX — VV Y, pZ)

for any X, Y € I'(D) and Z € T'(D @ D1).

Proof. The invariant distribution D is integrable if and only if for any X,
Y €T(D), g,,([X,Y],Z) =0and g,,([X,Y],W) = 0 forany Z € T(DHD+) and W €
I(ker F,)*. The distribution ker F. being always integrable, g,,([X,Y],W) = 0.
So, D is integrable if and only if g,, ([X, Y], Z) = 0. Therefor we have g,, ([X,Y],Z) =
9y (Tx Y =Ty o X, wZ)+g,,(VVxoY —VVydX, vZ), and this completes the proof.

(Il

Let V and W be two vector fields on (ker F.)*. The horizontal distribution
(ker Fy,)* is integrable if and only if g, ([V,W],Z) = 0 and g, ([V,W],W) =0
for any Z € I'(ker F.). Using the fact that F' is horizontally conformal submersion,
we have

gM([Va W]a Z) =9u (VVVBW - VWVWwBV + AyCW — AWCV; SOZ)

1
+ FgN(vf;F* (CW) - VE F.(CV), F.(wZ))

1
+ pgN(VF*(W,CV) —VE(V,CW),F.(wZ))
+ 9 (AVBW - AWBV, WZ) + U(W)Q(Va WZ) - U(V)Q(W, WZ)
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Using Lemma 2.1, we obtain

(4.5) VE.(W,CV) = VE.(V,CW)
= W(In A\ ECV +CV(In N)EW — V(In \)E.CW
— CW(n\)F,.V +2g,,(V,CW)F,(gradln \),

which leads to

1
(46) 395 (VE-(W.CV) = VE.(V.CW), F.(wZ))
=g, (W(InA)CV +CV(Iln )W
—V({InANCW — CW (In \)V + 2¢,,(V,CW)gradln \,wZ).

From (4.5) we get

4.7) g, ([V,W],Z) = g,, (Vv BW — VW BV + AyCW — AwCV, pZ)
1
+ 3295 (VU E(CW) = Viy F.(CV), F.(wZ))
+ g, (W(InA)CV 4 CV(In )W — V(In A\)CW — CW (In \)V/
+2g,,(V,CW)gradln \,wZ) + g,, (AyBW — AwBV,wZ)
+n(W)g(V,wZ) —=n(V)g(W,wZ).

Therefore, we have the following.

Theorem 4.4. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,&,n,g,,) onto a Riemannian mani-
fold (N, g, ). Then distribution (ker F,)" is integrable if and only if

%gN (VEF.(CV) = VEF.(CW), F.(wZ))
=g, Vv BW — VW BV + Ay,CW
—AwCV,pZ) 4+ g,,(AyBW — Aw BV + W (ln \)CV
+CV(In AW — V(In A)CW — CW (ln \)V
+2g,,(V,CW)gradln \,wZ) + n(W)g(V,wZ) — n(V)g(W,wZ)

for any V, W € T'((ker F.)1) and Z € T'(ker F,).

Next, we investigate the geometry of leaves of the distributions by starting with the
one of the invariant, slant distribution and anti-invariant D, D? and D+, respectively.
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For any X, Y € I'(D), Z = QZ + RZ € T(D? @ D*) and V € T'((ker F,)™1),

3Y; (VXYa Z) =9u ((bVXK (bQZ) + Gur (¢VXY5 ¢RZ)
= COSQ HgM (VXK QZ) —9u (TXKWWQZ) + G (TX¢Ya wZ)'

That is,

(4.8) sin®fg,,(VxY,02) 4+ g,,(VxY,RZ) = —g,,(TxY,wpQZ) + g,,(Tx ¢Y,wZ).
Also,

(4.9) 9, (VxY, V) =g, (TxY,V).

Therefore, we have the following.

Theorem 4.5. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,n, g,,) onto a Riemannian mani-
fold (N, g, ). Then the invariant distribution D defines a totally geodesic foliation
on M if and only if

(4.10) TxY =0 VX, Y eI(D).

Proof. The proof follows from a straightforward calculation using (4.8) and
(4.9). O

For any X, Y € I'(ker F}) and using the second relation in (3.26), when the
tensors ¢ and w given in (3.7) are parallel, we have

(4.11) CTxY =TxpY +g,(X,Y)E

Now, if D defines a totally geodesic foliation on M, then for any vector fields X
and Y in D, together with the hypotheses of Theorem 4.5, TxY = 0. This also
implies that Tx¢Y = 0 as the distribution D is invariant with respect to ¢. In this
context, and using (4.7), we have g,,(X,Y)¢ = 0, a contradiction. Therefore, we
have the following.

Theorem 4.6. There is no horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,&,n,g,,) onto a Riemannian mani-
fold (N, g, ) such that the invariant distribution D given in (3.3) is totally geodesic
and tensor w is parallel.
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For any X,Y € (DY), Z=PZ +RZ c T(D @ D*) and V € T'((ker F,)"1),

Im (VXYa Z) = cos’ 991\4 (VXK Z) —9u (TXWSOYa Z)
+ 9u (HVXOJY, ¢Z) + 9 (TXWY, ¢Z)

That is,
sin” ggM (ny, Z) = —9u (TXWSOYa Z) + Gur (HVXWY, ¢Z) + Gur (TX‘JJYv ¢Z)
Since F' is a horizontally conformal submersion, using Lemma 2.1 we have

(412) sin® ggM (vXY, Z) =9u (TX‘JJYv ¢PZ) —9u (TXWSOYa Z)

+ 159x (VER(Y), F.(6R2))

— 5395 (VE.(X,0Y), F.(6RZ)
= 9u (TXWK (bPZ) —9u (TXWSOYa Z)
+ 3593 (VEE(Y), FL(6RZ) + g, (Auy X, 6RZ).

Also,

(413) 9u (VXY, V) = cos’ ggM (ny, V) —9u (HVXWSDYa V)
+9u (,HVXWK CV) + Gur (TXWK BV)

That is,

(4.14)  sin?0g,,(VxY,V) = g,,(TxwY + Ay X, BV +CV) — g,, (Auwoy X, V)

1
+ EgN(vg“}F* (wY), F.(CV))

1
— S (VEE(wpY), (V).
Therefore, we have the following result.

Theorem 4.7. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,n, g,,) onto a Riemannian mani-
fold (N, g, ). Then the slant distribution DY defines a totally geodesic foliation on
M if and only if

1
(4'15) EQN (vf(F*(wy)a Fi (¢RZ)) = —9u (TX(UY—F.Awa, ¢Z)+9M (TX(‘USOY; Z),
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and

1 1
(4.16)  59n (VX F(wpY), Fu(V)) = 1505 (Vi Fa(wY), . (CV))
=09y (TX‘J‘)Y + AwYX; ¢V) —9u (AwLPYXv V)

for any X, Y € I'(D?%), Z e T(D @ D*) and V € T'((ker F,)™).

Theorem 4.8. Let F' be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,n, g,,) onto a Riemannian mani-
fold (N, g,). Then the anti-invariant distribution D+ defines a totally geodesic foli-
ation on M if and only if

1
(417) ﬁgz\r (vffF* ((by)a F, (MZ)) =9u (TXK (UQOZ) ~9u (‘A¢YX5 wZ)v

(118) 550, (VEF.(6Y), F(CV) = 9, (TxoY + Auy X, 0V)

for any X, Y € [(D+), Z e (D @ DY) and V € T'((ker F,)").
Proof. Forany X, Y € (D), Z = PZ+QZ ¢ T(D@® DY) and V €
P((ker F.)b),
(419) 9u (nyv Z) = 0052 ggM (ny, Z) —9u (VXYMSOZ) +9u (de)Y,wZ)
= 0052 ggM (ny, Z) —9u (TXYWUSDZ) +9u (HVX¢Ya WZ)

That is,
Sin2 09M (nyv Z) = —9u (TXY, WSDZ) +9u (HVX¢Y7 WZ)

From F' being a horizontally conformal submersion and Lemma 2.1, we have
(4.20)  sin?0g,,(VxY,2) = —g,,(TxY,wpZ)

¥ 1508 (VER(6Y), F(02)) + g, (Agy X, 07).
Since F' is a horizontally conformal submersion, from Lemma 2.1 we have
(4.21) g, (VxY,V) =g, (Vx9Y,0V) = g, (Tx¢Y, BV) + g,,(HV x¢Y,CV)

=9u (TX¢Y + .A¢yX, BV —l—CV)

+ %QN (VEF.(6Y), Fu(CV)),

which completes the proof. (I
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From Theorem 4.5, Theorem 4.7 and Theorem 4.8, we have the following decom-
position result.

Theorem 4.9. Let F' be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,&,n,g,,) onto a Riemannian mani-
fold (N, g, ). Then the fibres of F' are local product Riemannian manifold of the form

MD X M'DB X M/DL,

where Mp, Mpe and Mp. are leaves of D, D? and D+, respectively, if and only if
conditions (4.10), (4.15), (4.16), (4.17) and (4.18) are satisfied.

For any V, W € I'((ker F,)*) and Z € T'(ker F,) and using (3.6) one has

(4.22) g, (VvW,Z) = g,,(VvoW,¢PZ) + g,,(Vv oW, 9pQZ)
+ 9 (VvoW, 9RZ) — g,, (Vv o)W, ¢Z)
=n(W)g,,(V,wZ) + g, (Vv oW, ¢PZ) + g,,(oVv W, pQZ)
+ 90 (Vv oW, wQ7) + g,, (Vv oW, ¢RZ)
=n(W)g, (V.wZ) + g,,(VvoW,$PZ)
+ cos? 0g,, (AvW, QZ)
= 9 (HVy W, wpQZ) + g,,(VvoW,wQZ + ¢RZ).

Since F' is a horizontally conformal submersion, wZ = wQZ + ¢RZ and the fact that
9y (Vv oW, ¢PZ) = g,,(Av W, Z), we have

(423) g, (VvW,Z) =n(W)g,,(V,wZ) + g, (AvW, Z)
+ cos? g, (Ay W, QZ) + g,, (HVyCW,wZ)
— 9y HVy W, wpQZ) + g,,(AvBW,wZ)
=n(W)g,, (V,wZ) + g,,(Ay W, Z) 4 cos® bg,, (Ay W, QZ)

N %QN (VEF.(CW), Fu(wZ))

_ %QN (VEE(W), F.(wpQZ))

_ %gN(vF*(MCW),F*(wZ))

n %QN (VE(V,W), Fu(wpQZ)) + g,,(Ay BW,wZ).
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Now, using Lemma 2.1, one gets

(4.24) ¢,,(VyvW,2)
= n(W)g,, (V.wZ) + g,, (Av W, Z) + cos® 0g,, (Av W, QZ)
+ %gN (VEF.(CW), F.(wZ)) — %gN (VEF.(W), F.(wpQZ))
—g(V,grad In \)g,, (CW,wZ) — g(CW,grad In X)g,, (V,wZ)
+ 9, (V.CW)g,,(grad In \,wZ) + ¢g(V, grad In \)g,, (W,wpQZ)
+9(W, grad In A)g,, (V,wpQZ) — g,,(V, W)g,, (grad In A, wpQZ)
+ g, (AyBW,wZ).

Therefore, we have the following.

Theorem 4.10. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,&,n,g,,) onto a Riemannian mani-
fold (N, g, ). Then the distribution (ker F,)* defines a totally geodesic foliation on M
if and only if

(4.25) %g,v (VEF.(W), Fu(wpQZ)) — %g,v (VEF.(CW), F.(wZ))
=n(W)g,, (V,wZ) + g, (Av W, Z) + cos® bg,, (Ay W, QZ)
—g(V,grad In \)g,, (CW,wZ) — g(CW, grad In \)g,, (V,wZ)
+ 9, (V,CW)g,, (grad In \,wZ) + g(V, grad In \)g,, (W,wpQZ)
+ g(W, grad In \)g,, (V.wpQZ) — g,,(V,W)g,, (grad In A, wpQZ)
+ g, (AvBW,wZ)

for any V, W € T'((ker F.)1) and Z € T'(ker F,).

Theorem 4.11. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,m, g,,) onto a Riemannian mani-
fold (N, g, ). Then the distribution ker F, defines a totally geodesic foliation on M
if and only if

1
(4.26) (VX Fu(wpQY), Fu(V)) — pgw(vch*(WY)v F.(CV))
=9u (TXPY, V) —9u (SDXa PY)U(V) + COSQ ggJ\l (TX QYa V)

+ Gur (TX‘JJYv BV) + 9 (AWLPQYXa V) + G (AwYXa CV)

Egz\f

for any X,Y € I'(ker F,) and V € I'((ker F},)1).
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Proof. Forany X,Y € I'(ker F,) and V € I'((ker F,)"),

Iu (VXY V) =n(VxY)n(V) = g,,(Vx Y, 0V) = g,,(Vx ¢PY, ¢V)
+ cos?0g,, (Vx QY,V) — g,, (VxweQY, V)
+ 9, (VxwQY, V) + g,,(VxdRY, ¢pV)
= 9, (TXPY. V) = 9, (¢ X, PY)(V) + cos® g, (Vx QY. V)
— g,y HVxwpQY, V) + g, (Vx(wQY + Vx¢RY),BV)
+ 9, (Vx(wQY + ¢RY),CV).

Since wY = wQY + ¢RY and using Lemma 2.1, we have

Im (VXY - U(VX& V) = 9u (TX,PY, V) —9u (SOX, PY)U(V) + cos” 991\4 (TX Y, V)
1
+9u (TXwYa BV) - ﬁgz\r (vf(F* (WQPQY)a F (V))

1
+ 139 (VEF.(wY), F.(CV))

+ 9u (AW<PQYXa V) + 9y ('AWYXa CV))
which completes the proof. O
From Theorem 4.10 and Theorem 4.11, we have the following decomposition result.
Theorem 4.12. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,&,n,g,,) onto a Riemannian mani-
fold (N, g, ). Then the total space M is a local product Riemannian manifold of the

form

M(ker F)+ X Myer F.»

where My )+ and Myer r, are leaves of the distributions (ker F.)* and ker F,,
respectively, if and only if conditions (4.25) and (4.26) are satisfied.

5. CONFORMAL QUASI-HEMI-SLANT fJ‘—RIEMANNIAN SUBMERSIONS
WITH TOTALLY UMBILICAL OR GEODESIC FIBRES

Now, we study the geometry of the conformal quasi-hemi-slant ¢*-Riemannian
submersions with totally umbilical and geodesic fibres.
Note that a fibre of a conformal Riemannian submersion F' is totally umbilical if

(5.1) TxY =g(X,Y)H
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for any X, Y € I'(ker Fy), where H is the mean curvature vector field of the fibre
in M. When H = 0, the fibre is called minimal.

Let F be a proper horizontally conformal quasi-hemi-slant £--Riemannian submer-
sion from a Sasakian manifold (M, ¢,n,&, g,,) onto a Riemannian manifold (N, gn).
Then D # {0}, Dt # {0}. This means that the dimensions of D and D= is ei-
ther 2 and 1, respectively, that is, dimD = 2 and dim D+ = 1 or dimD > 2 and
dim D+ > 1.

(i) Case 1: dimD = 2 and dim D+ = 1, it is obvious.

(ii) Case 2: dimD > 2 and dimD+ > 1. Choose X, Y € I'(D1) such that
gx(X,Y) =0. Using (3.7), (3.12) and (2.7), one has

HVx QY + TxdY = VxoY =g, (X, V)¢ + ¢VxY
=g, (X, V)6 +oVVxY +wVVxY + BTxY + CTxY.

Taking the g,, with X, we obtain
(5'2) gM(Tx(bY,X) :gM(BTXY’X) :gA/I(TXY’ ¢X)
If the fibres are totally umbilical, then from (5.1) and (5.2) we have

(53) 0= 9m (Xa ¢Y)9M (Ha X) =9u (TX¢Ya X)
=9u (TXY, ¢X) =9u (Xv Y)gM (Ha ¢X)

That is, g,, (H,$X) = 0. Thus, we deduce that
(5.4) H | ¢D*.

This means that the mean curvature vector H is perpendicular to D+. For
Z € T(DY), one gets

(5.5) 9 (X;Y)gy (H,wZ) = =g, (Y, TxwZ) = g, (Y, (Vx ) Z).

Also, for any V € I'(v) such that V L &, and using D+ = {0} and (3.20), we have
(5.6) 9 (X, V)9, (H, 0V) = =g, (CTxY, V) = =g, (Vxw)Y, V),

and for the characteristic vector field £ € v we have

(5.7) 91 (X5 Y)g,, (H,€) = 9, (TxY,€) # 0,

as TxY € (ker F,)*.
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For any X1, X2 € I'(D) and X € I'(D}) and using (3.19), we obtain
(5.8) 9r (X1, X2)g,, (H, 9X) = =g, (X2, Tx,wX) = g,, (X2, (Vx, ) X).
Now, for any Z € T'(D?),
(5.9) 9. (X1, X2)g,, (H,wZ) = —g,, (X2, Tx,wZ) = g, (X2, (Vx,0)2).
For any V € I'(v) such that V' L &,

(5'10) 9u (Xl’XQ)gAl (Ha ¢V) = —9u (CTX1X2’V)
= —9u ((VX1W)X27 V) — 9y (Xla QOXQ)QM (H7 V)7

and also, for the characteristic vector field £ € v we have

(5'11) 5Y; (Xla XQ)QM (Ha E) =9u (TX1X27§) 7& 0.

Moreover, if the tensor ¢ is parallel, then
(5.12) H 1 wDt.

From (5.4) and (5.12), and using (3.10) we deduce that the mean curvature vector
H € v. If w is parallel, using (5.6), then H L ¢v, and since g,, (H,§) # 0, by virtue
of (5.7), H € RE, where R¢ = span{¢} defined in (3.11). Therefore, we have the
following.

Theorem 5.1. Let F' be a proper horizontally conformal quasi-hemi-slant
¢*-Riemannian submersion with totally umbilical fibres from a Sasakian manifold
(M,¢,&,n,9,,) onto a Riemannian manifold (N, g, ). Then either

(i) the invariant and anti-invariant distributions D and D+ are of dimension 2
and 1, respectively, or
(i) the mean curvature vector field H of any fibre F~1(y), y € N is perpendicular
¢D+.
Moreover, if ¢ is parallel, then H € v. Furthermore, if w is parallel, then H € RE.

The O’Neill tensor fields A and 7, defined in (2.4) and (2.5), and their covariant
derivatives play a fundamental role in expressing the Riemannian curvature R of

(M,g,,)
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Let RY, R and R" be the Riemannian curvature tensors of the fibre ker F, = V),
M and N, respectively. The curvature tensors R and RY are related as (see [6] for
more details)

(513) 9u (R(Xa Y)Za W) =9u (Rv(Xa Y)Zv W) + Gy (TXZ, TYW)
- gM(TYZa wa)

for any X, Y, Z, W € I'(ker F.).

A plane section in T'M is called a ¢-section if there exists a vector X € T'M or-
thogonal to £ such that {X, X} span the section. The sectional curvature K (X, ¢),
denoted H(X), is called ¢-sectional curvature (see [4] for more details and references
therein). Then we have

(5.14) g, (R(X,0X)pX,X) = g,,(RV(X,$X)oX,X) + g, (Tx o X, Tyx X)
—9u (%XQSXv TXX)v

which implies that
(5.15) H(X) = HY(X) + | Tx X |13, — 91 (Tox X, Tx X),

where H(X) = g,,(R(X,$X)¢X,X) and HY(X) = g,,(RV(X,¢X)pX, X) are the
¢-sectional curvatures of M and ker F\, respectively, and ||-||?, := g,, (-, ). Therefore,
we have the following result.

Theorem 5.2. Let F' be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,m, g,,) onto a Riemannian mani-
fold (N, g, ) with integrable anti-invariant distribution D+. Then the holomorphic
sectional curvatures H and HY of M and ker F,, respectively, satisfy the inequality

(5.16) H(X)>HY(X) VX eDl(D), [IX],=1,
and the equality holds if and only if the fibre ker F, is D*-totally geodesic and mixed
(D+, ¢D+)-totally geodesic.

Proof. Note that if D' is integrable, then, by Theorem 4.2, Tyx¢X = —Tx X
and the first assertion follows. The equality holds if and only if 7x X = 0 and
Tx¢X =0, VX € T(D4) and || X|,, = 1. By linearity of T it is easy to see that
TxY =0, for any X, Y € I'(D*) and TxV =0, V € T'(¢D). O
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Mustafa in [11], page 49, achieved a wonderful characterization of totally geodesic
horizontally conformal maps between Riemannian manifolds. Its conformal quasi-
hemi-slant version states as follows.

Theorem 5.3. Let F be a horizontally conformal quasi-hemi-slant ¢*-Riema-
nnian submersion from a Sasakian manifold (M, ¢,£,n, g,,) onto a Riemannian mani-
fold (N, g, ). Then F is totally geodesic if and only if F' has constant dilation, totally
geodesic fibres and integrable horizontal distribution.

Proof. The proof is similar to the one given in [11], Theorem 2.3. (]
Now, using relation (3.26) and Theorem 5.3, we have the following existence

theorem.

Theorem 5.4. There exist no horizontally conformal quasi-hemi-slant &*-
Riemannian submersions with totally geodesic fibres from a Sasakian manifold
(M, $,&,1,9,,) onto a Riemannian manifold (N, g,,) such that the tensor w is parallel.
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