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Abstract. In this study, we consider the concept of Bertrand partner trajectories related to
Positional Adapted Frame on Regular Surfaces (shortly PAFORS) for the particles moving
on the different regular surfaces in Euclidean 3-space. The relations between the PAFORS
elements of the aforesaid trajectories are given. Also, the relations between Darboux basis
vectors of them are found. Furthermore, some characterizations are given for some special
cases of these trajectories with the aid of their PAFORS elements.
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1. Introduction

In classical differential geometry, the theory of surfaces plays quite an important

role. It has several applications in different types of disciplines such as differential

geometry, computer graphics, architecture, and engineering. The concept of moving

frames, which is a part of these working areas of differential geometry, has attracted

several researchers from the past to the present.

The Serret-Frenet frame, which is studied independently of each other by re-

searchers Serret [22] and Frenet [10], is the most popular moving frame. With

a similar logic, Darboux frame was constructed on regular surfaces by Darboux [4].

In the existing literature, many different types of other moving frames were studied

such as Bishop frame (type-1, type-2, type-3) [2], [24], [28], N -Bishop frame [14],

q-frame [7], Flc-frame [5] and N-C-W frame [21]. Recently, a new type of moving

frame called Positional Adapted Frame (shortly PAF) has been investigated by Özen

and Tosun [17] in Euclidean 3-space E3. They have presented this frame for the tra-

jectories having nonvanishing angular momentum. Also, inspired by the concept of

Darboux frame, Özen and Tosun obtained the other new type of moving frame on
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regular surfaces in E
3 for the trajectories with nonvanishing angular momentum.

They called this frame Positional Adapted Frame on Regular Surfaces (PAFORS).

Also, the characterizations on geodesic asymptotic and slant helical trajectories with

respect to PAFORS were given in [18]. Then, Ertuğ Gürbüz introduced the frames

PAF and PAFORS in the Minkowski 3-space [9]. In [19] and [25], Smarandache

curves with respect to PAF were studied.

On the other hand, constructing new types of special curves has been one of the

most interesting working areas of the theory of curves for a long time. Various

studies have been done in the existing literature to create new types of curves and

curve couples (pairs, mates). One of the most popular of them is the Bertrand curve

couple. Bertrand curve couple is characterized as follows: the principal normal

line of one of these partner curves coincides with the principal normal line of the

other partner curve at the corresponding points of these curves. This definition was

presented by French mathematician Joseph Louis François Bertrand in 1850 [1]. This

study includes the characterization of these curves according to their curvatures and

torsions. Several researchers studied the Bertrand curve couples according to various

moving frames. Yerlikaya et al. [27] examined the Bertrand curves with respect to

the type-2-Bishop frame. Also, Kazaz et al. [13] determined this special curve couple

related to Darboux frame. Then, Dede et al. investigated the Bertrand curve couples

with respect to the q-frame [6]. Additionally, several mathematicians studied the

notion of the Bertrand curve couple with different perspectives. The studies can be

recommended for readers [3], [11], [12], [20], [26]. At the beginning of this study,

we started with the following question and the results aroused our curiosity: “What

kind of results and geometric interpretations do we get if we combine Bertrand curve

couples, which is a basic geometric concept, and PAFORS, which is a new type

of special attracted moving frame on a regular surface?”. In order to answer this

question, we want to discuss this topic.

This study is organized as follows. In Section 2, we remind some required in-

formation, notions, and notations in order to understand the ensuing section. In

Section 3, Bertrand partner trajectories related to PAFORS in Euclidean 3-space

are introduced. We obtain and scrutinize the relations between the PAFORS ele-

ments of the aforesaid partners. Then, we give the relations between the Darboux

basis vectors of Bertrand partner trajectories related to PAFORS. Afterward, to

be an asymptotic curve and geodesic curve of one of these partners, we give the

necessary conditions with respect to the PAFORS curvatures of the other partner.
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2. Preliminaries

In this section, we remind some basic notions and notations that are required and

used from the beginning to the end of this study.

In Euclidean 3-space E3, let ρ = (ρ1, ρ2, ρ3), ̺ = (̺1, ̺2, ̺3) ∈ R
3 be considered.

The standard dot product of these vectors and the norm of ρ are presented as

〈ρ,̺〉 = ρ1̺1 + ρ2̺2 + ρ3̺3 and ‖ρ‖ =
√

〈ρ,ρ〉, respectively. A differentiable curve

α = α(s) : I ⊂ R → E
3 is called a unit speed curve if ‖dα/ds‖ = 1 is satisfied for all

s ∈ I. Then, s is called the arc-length parameter of the curve α. If the derivative of a

differentiable curve never vanishes along this curve, it is called a regular curve. Any

regular curve always has a parameterization such that it is a unit speed curve [23].

Throughout this study, we will care to show the differentiation according to the

arc-length parameter s with the symbol prime “′”.

Suppose that a point particle P of constant mass moves on the regular surface M

in the Euclidean 3-space and along the trajectory α = α(s) which is a unit speed

curve. Thus, we can write α : I ⊂ R → M ⊂ E
3. For α, the unit tangent vector

is calculated as T(s) = α′(s). Also, the system of the Darboux base vectors of α is

given as {T(s),Y(s),U(s)} along the curve α, where T is the unit tangent vector as

mentioned earlier. On the other hand, U is the unit normal vector of the surfaceM ,

and Y is the unit vector determined by Y = U×T. It should be indicated that the

curves considered in this paper have nonzero second-order derivatives (that is, α′′(s)

is always nonzero). The derivative formulas of the Darboux frame are given as





T
′(s)

Y
′(s)

U
′(s)



 =





0 kg(s) kn(s)

−kg(s) 0 τg(s)

−kn(s) −τg(s) 0









T(s)

Y(s)

U(s)



 ,

where kg is a geodesic curvature, kn is a normal curvature, and τg is a geodesic

torsion of the curve α [8], [15], [23].

Suppose that the angular momentum vector of the aforesaid particle P about the

origin is equal to zero nowhere. Then, PAFORS {T(s),G(s),H(s)} is well defined

during the motion along α = α(s). The basis vectors of PAFORS are calculated as

in the following:

T(s) = T(s),

G(s) =
〈α(s),U(s)〉

√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s)

+
〈α(s),Y(s)〉

√

〈α(s),Y(s)〉
2
+ 〈α(s),U(s)〉

2

U(s),
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H(s) =
〈−α(s),Y(s)〉

√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s)

+
〈α(s),U(s)〉

√

〈α(s),Y(s)〉
2
+ 〈α(s),U(s)〉

2

U(s).

The relation between the Darboux frame and PAFORS can be given as

(2.1)





T(s)

G(s)

H(s)



 =





1 0 0

0 cosφ(s) − sinφ(s)

0 sinφ(s) cosφ(s)









T(s)

Y(s)

U(s)



 ,

where φ(s) is the angle between the vector U(s) and the vector H(s) which is posi-

tively oriented from the vector U(s) to the vector H(s). Additionally, the derivative

formulas of PAFORS can be written as [16]

(2.2)





T
′(s)

G
′(s)

H
′(s)



 =





0 k1(s) k2(s)

−k1(s) 0 k3(s)

−k2(s) −k3(s) 0









T(s)

G(s)

H(s)



 ,

where










k1(s) = kg(s) cosφ(s) − kn(s) sinφ(s),

k2(s) = kg(s) sinφ(s) + kn(s) cosφ(s),

k3(s) = τg(s)− φ′(s).

Also, the rotation angle φ(s) is expressed with the help of the following equation [16]:

φ(s) =



















































arctan
(

−
〈α(s),Y(s)〉

〈α(s),U(s)〉

)

if 〈α(s),U(s)〉 > 0,

arctan
(

−
〈α(s),Y(s)〉

〈α(s),U(s)〉

)

+ π if 〈α(s),U(s)〉 < 0,

−
π

2
if 〈α(s),U(s)〉 = 0, 〈α(s),Y(s)〉 > 0,

π

2
if 〈α(s),U(s)〉 = 0, 〈α(s),Y(s)〉 < 0.

The elements of the set {T(s),G(s),H(s), k1(s), k2(s), k3(s)} are called PAFORS

apparatuses of α = α(s) [16].

Let us remind the conditions of being an asymptotic curve and geodesic curve in

Euclidean 3-space [15]:

⊲ α = α(s) is an asymptotic curve if and only if kn = 0,

⊲ α = α(s) is a geodesic curve if and only if kg = 0.
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Theorem 2.1 ([18]). Suppose that α = α(s) is an asymptotic curve on the regular

surface M with the condition kg 6= 0. Then α = α(s) is a trajectory whose position

vector lies in the corresponding plane Sp{T(s),Y(s)} if and only if k1 = 0.

Theorem 2.2 ([18]). Assume that α = α(s) is a geodesic curve on the regular

surface M with the condition kn 6= 0. Then, α = α(s) is a trajectory whose position

vector lies in the corresponding plane Sp{T(s),U(s)} if and only if k1 = 0.

For more detailed information with respect to this new type of special and attrac-

tive frame PAFORS, we can refer to the studies [9], [16], [18].

3. Bertrand partner trajectories related to PAFORS lying

on different regular surfaces

Bertrand partner trajectories related to PAFORS are defined and some character-

izations are given for them in this section.

Definition 3.1. Let R and R be the moving point particles on regular surfaces

M and M in 3-dimensional Euclidean space. Show the unit speed parameterization

of the trajectories of R and R with α = α(s) and α = α(s), respectively. Let

{T,G,H, k1, k2, k3} and {T,G,H, k1, k2, k3} represent the PAFORS apparatus of

the trajectories α and α, respectively. If the PAFORS base vector G coincides with

the PAFORS base vectorG at the corresponding points of the trajectories α and α, α

is said to be a Bertrand partner trajectory of α related to PAFORS. Furthermore,

the pair {α, α} is called a Bertrand pair related to PAFORS.

                                         
(α) 

G 

H 

α(s) 

T 

O 

M 

))) R 

 

 

 

 

 

 

 

Figure 1. Bertrand partner trajectories related to PAFORS.

Thanks to the definition of Bertrand pair related to PAFORS, we can write the

equation

(3.1)





T

G

H



 =





cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ









T

G

H



 ,

where γ is the angle between the tangent vectors T and T.
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Theorem 3.1. Suppose that {α = α(s), α = α(s)} is any Bertrand pair related

to PAFORS. In this case, the distance between the corresponding points of α and α

is constant.

P r o o f. With the aid of the definition of Bertrand trajectories related to

PAFORS, the equation

(3.2) α(s) = α(s) + λ(s)G(s)

can be written, where λ is a real valued smooth function of s (see Figure 1). If we

differentiate equation (3.2) with respect to s and use equation (2.2), we obtain:

(3.3) T
ds

ds
= (1− λk1)T+ λ′

G+ λk3H.

Because the scalar products of the vectors T, T and H with the vector G equal

to zero, we find λ′ = 0. Thus, λ is a nonzero constant and equation (3.3) can be

rewritten as:

(3.4) T
ds

ds
= (1− λk1)T+ λk3H.

Lastly, the distance between the corresponding points of α and α can be given as

d(α(s), α(s)) = ‖α(s)− α(s)‖ = ‖λG‖ = |λ| = constant

since λ(6= 0) is constant. �

Theorem 3.2. Assume that {α = α(s), α = α(s)} is a Bertrand pair related to

PAFORS. Then the equation below holds:

(3.5)





T

G

H



 =









(1− λk1)
ds

ds
0 λk3

ds

ds
0 1 0

−λk3
ds

ds
0 (1− λk1)

ds

ds













T

G

H



 .

P r o o f. Let {α, α} be a Bertrand pair related to PAFORS. If we use the equa-

tions (3.1) and (3.4), we find:

cos γ
ds

ds
T− sin γ

ds

ds
H = (1− λk1)T+ λk̄3H.

The last equation yields:

(3.6)















cos γ = (1− λk1)
ds

ds
,

sin γ = −λk3
ds

ds
.

If equation (3.6) is substituted into equation (3.1), the desired result is obtained. �
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Corollary 3.1. The tangent of the angle between the unit tangent vectors of

the Bertrand partner trajectories (related to PAFORS) α = α(s) and α = α(s) is

expressed as

(3.7) tan γ =
−λk3

1− λk1

.

Theorem 3.3. Let {α = α(s), α = α(s)} be a Bertrand pair related to PAFORS

and their Darboux frame be denoted by {T,Y,U} and {T,Y,U}, respectively. In

this case, the relations between the Darboux base vectors of this pair are given by:

T = (1 − λk1)
ds

ds
T− λk3 sinΩ

ds

ds
Y − λk3 cosΩ

ds

ds
U,

Y = λk3 sinΩ
ds

ds
T+

(

cosΩ cosΩ + (1− λk1) sinΩ sinΩ
ds

ds

)

Y

+

(

− cosΩ sinΩ + (1 − λk1) sinΩ cosΩ
ds

ds

)

U,

U = λk3 cosΩ
ds

ds
T+

(

− sinΩ cosΩ + (1− λk1) cosΩ sinΩ
ds

ds

)

Y

+

(

sinΩ sinΩ + (1− λk1) cosΩ cosΩ
ds

ds

)

U.

Here Ω is the angle between the vectors U and H and also, Ω is the angle between

the vectors U and H.

P r o o f. Taking into account equation (2.1), the equations

(3.8)





T

G

H



 =





1 0 0

0 cosΩ − sinΩ

0 sinΩ cosΩ









T

Y

U





and

(3.9)





T

Y

U



 =





1 0 0

0 cosΩ sinΩ

0 − sinΩ cosΩ









T

G

H





can be written. On the other hand, it is not difficult to see

(3.10)





T

G

H



 =









(1− λk1)
ds

ds
0 −λk3

ds

ds
0 1 0

λk3

ds

ds
0 (1 − λk1)

ds

ds













T

G

H




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from (3.5). If equation (3.10) is used in equation (3.9),

(3.11)





T

Y

U



 =















(1− λk1)
ds

ds
0 −λk3

ds

ds

λk3 sinΩ
ds

ds
cosΩ (1− λk1) sinΩ

ds

ds

λk3 cosΩ
ds

ds
− sinΩ (1− λk1) cosΩ

ds

ds



















T

G

H





is obtained. Substituting equation (3.8) into equation (3.11) finishes the proof. �

Theorem 3.4. Let {α = α(s), α = α(s)} be a Bertrand pair related to PAFORS.

Then the following relations hold:

(1) k1 = (k1 − λk2
1
− λk2

3
)/(1− 2λk1 + λ2(k2

1
+ k2

3
)),

(2) k1 = (k1 − ζk2
1
− ζk2

3
)/(1− 2ζk1 + ζ2(k2

1
+ k2

3
)),

where ζ is a constant satisfying |ζ| = |λ|.

P r o o f. (1) Let {α, α} be a Bertrand pair related to PAFORS. By means of the

equality cos2γ + sin2γ = 1 and equation (3.6), we find

(3.12)

(

ds

ds

)2

= 1− 2λk1 + λ2(k2
1
+ k2

3
).

If equation (3.4) is differentiated with respect to s and equation (2.2) is utilized,

(3.13)
d2s

ds2
T+ k1

(

ds

ds

)2

G+ k2

(

ds

ds

)2

H

= (−λk′
1
− λk2k3)T+ (k1(1− λk1)− λk2

3
)G+ (k2(1− λk1) + λk′

3
)H

is obtained. Thus, we get

(3.14) k1

(

ds

ds

)2

= (1− λk1)k1 − λk2

3

using the inner product in equation (3.13). Substituting equation (3.12) into equa-

tion (3.14) finishes the proof.

(2) Thanks to the definition of the Bertrand pair related to PAFORS, we can write

α(s) = α(s) + ζG(s),

where ζ is a constant which satisfies the equality |ζ| = |λ| (see Figure 1). Let us

differentiate the last equation with respect to s twice. In this case, we get:

(3.15) T
ds

ds
= (1− ζk1)T+ ζk3H
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and

(3.16)
d2s

ds2
T+ k1

(

ds

ds

)2

G+ k2

(

ds

ds

)2

H

= (−ζk′
1
− ζk2k3)T+ (k1(1− ζk1)− ζk2

3
)G+ (k2(1− ζk1) + ζk′

3
)H.

On the other hand, T = cos γT+sin γH can be written with the aid of equation (3.1).

In that case, we get

cos γ
ds

ds
T+ sin γ

ds

ds
H = (1− ζk1)T+ ζk3H

by utilizing equation (3.15). From here we find

cos γ
ds

ds
= 1− ζk1 and sin γ

ds

ds
= ζk3.

These equations yield the following:

(3.17)

(

ds

ds

)2

= 1− 2ζk1 + ζ2(k2
1
+ k2

3
).

Also, the inner product with G in equation (3.16) gives us

(3.18) k1

(

ds

ds

)2

= k1 − ζk2
1
− ζk2

3
.

Thus, we get the desired result taking into consideration equation (3.17). �

By means of Theorem 2.1, Theorem 2.2 and Theorem 3.4, we can state the next

corollaries.

Corollary 3.2. Let {α = α(s), α = α(s)} be a Bertrand pair related to PAFORS.

In that case, the following expressions hold:

(1) Assume that the geodesic curvature of α never equals to zero. Then α = α(s) is

an asymptotic trajectory whose position vector always lies in the corresponding

plane Sp{T(s),Y(s)} if and only if

k1 − λk2

1
− λk2

3

1− 2λk1 + λ2(k2
1
+ k2

3
)
= 0.

(2) Assume that the geodesic curvature of α never equals to zero. Then α = α(s) is

an asymptotic trajectory whose position vector always lies in the corresponding

plane Sp{T(s),Y(s)} if and only if

k1 − ζk2
1
− ζk2

3

1− 2ζk1 + ζ2(k2
1
+ k2

3
)
= 0.

569



Corollary 3.3. Let {α = α(s), α = α(s)} be a Bertrand pair related to PAFORS.

In that case, the following expressions hold:

(1) Suppose that the normal curvature of α never equals to zero. Then α = α(s)

is a geodesic trajectory whose position vector always lies in the corresponding

plane Sp{T(s),U(s)} if and only if

k1 − λk2

1
− λk2

3

1− 2λk1 + λ2(k2
1
+ k2

3
)
= 0.

(2) Suppose that the normal curvature of α never equals to zero. Then α = α(s)

is a geodesic trajectory whose position vector always lies in the corresponding

plane Sp{T(s),U(s)} if and only if

k1 − ζk2
1
− ζk2

3

1− 2ζk1 + ζ2(k2
1
+ k2

3
)
= 0.

4. Conclusions

In this paper, we introduced the Bertrand partner trajectories related to PAFORS

for the particles moving on the different regular surfaces in Euclidean 3-space. Also,

we obtain the relations between the PAFORS elements of the aforesaid trajecto-

ries. Then the relations between Darboux basis vectors of them were investigated.

Additionally, some characterizations were presented for some special cases of these

trajectories by their PAFORS elements.
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