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Abstract. In this study, we consider the concept of Bertrand partner trajectories related to
Positional Adapted Frame on Regular Surfaces (shortly PAFORS) for the particles moving
on the different regular surfaces in Euclidean 3-space. The relations between the PAFORS
elements of the aforesaid trajectories are given. Also, the relations between Darboux basis
vectors of them are found. Furthermore, some characterizations are given for some special
cases of these trajectories with the aid of their PAFORS elements.
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1. INTRODUCTION

In classical differential geometry, the theory of surfaces plays quite an important
role. It has several applications in different types of disciplines such as differential
geometry, computer graphics, architecture, and engineering. The concept of moving
frames, which is a part of these working areas of differential geometry, has attracted
several researchers from the past to the present.

The Serret-Frenet frame, which is studied independently of each other by re-
searchers Serret [22] and Frenet [10], is the most popular moving frame. With
a similar logic, Darboux frame was constructed on regular surfaces by Darboux [4].
In the existing literature, many different types of other moving frames were studied
such as Bishop frame (type-1, type-2, type-3) [2], [24], [28], N-Bishop frame [14],
g-frame [7], Flc-frame [5] and N-C-W frame [21]. Recently, a new type of moving
frame called Positional Adapted Frame (shortly PAF) has been investigated by Ozen
and Tosun [17] in Euclidean 3-space E3. They have presented this frame for the tra-
jectories having nonvanishing angular momentum. Also, inspired by the concept of
Darboux frame, Ozen and Tosun obtained the other new type of moving frame on
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regular surfaces in E3 for the trajectories with nonvanishing angular momentum.
They called this frame Positional Adapted Frame on Regular Surfaces (PAFORS).
Also, the characterizations on geodesic asymptotic and slant helical trajectories with
respect to PAFORS were given in [18]. Then, Ertug Giirbiiz introduced the frames
PAF and PAFORS in the Minkowski 3-space [9]. In [19] and [25], Smarandache
curves with respect to PAF were studied.

On the other hand, constructing new types of special curves has been one of the
most interesting working areas of the theory of curves for a long time. Various
studies have been done in the existing literature to create new types of curves and
curve couples (pairs, mates). One of the most popular of them is the Bertrand curve
couple. Bertrand curve couple is characterized as follows: the principal normal
line of one of these partner curves coincides with the principal normal line of the
other partner curve at the corresponding points of these curves. This definition was
presented by French mathematician Joseph Louis Francois Bertrand in 1850 [1]. This
study includes the characterization of these curves according to their curvatures and
torsions. Several researchers studied the Bertrand curve couples according to various
moving frames. Yerlikaya et al. [27] examined the Bertrand curves with respect to
the type-2-Bishop frame. Also, Kazaz et al. [13] determined this special curve couple
related to Darboux frame. Then, Dede et al. investigated the Bertrand curve couples
with respect to the g-frame [6]. Additionally, several mathematicians studied the
notion of the Bertrand curve couple with different perspectives. The studies can be
recommended for readers [3], [11], [12], [20], [26]. At the beginning of this study,
we started with the following question and the results aroused our curiosity: “What
kind of results and geometric interpretations do we get if we combine Bertrand curve
couples, which is a basic geometric concept, and PAFORS, which is a new type
of special attracted moving frame on a regular surface?”. In order to answer this
question, we want to discuss this topic.

This study is organized as follows. In Section 2, we remind some required in-
formation, notions, and notations in order to understand the ensuing section. In
Section 3, Bertrand partner trajectories related to PAFORS in Euclidean 3-space
are introduced. We obtain and scrutinize the relations between the PAFORS ele-
ments of the aforesaid partners. Then, we give the relations between the Darboux
basis vectors of Bertrand partner trajectories related to PAFORS. Afterward, to
be an asymptotic curve and geodesic curve of one of these partners, we give the
necessary conditions with respect to the PAFORS curvatures of the other partner.
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2. PRELIMINARIES

In this section, we remind some basic notions and notations that are required and
used from the beginning to the end of this study.

In Euclidean 3-space E3, let p = (p1,p2,p3), @ = (01,02, 03) € R3 be considered.
The standard dot product of these vectors and the norm of p are presented as
(p,0) = p1o1 + p202 + p3os and || p|| = \/{p, p), respectively. A differentiable curve
a=a(s): I C R — E3is called a unit speed curve if ||da/ds|| = 1 is satisfied for all
s € I. Then, s is called the arc-length parameter of the curve . If the derivative of a
differentiable curve never vanishes along this curve, it is called a regular curve. Any
regular curve always has a parameterization such that it is a unit speed curve [23].
Throughout this study, we will care to show the differentiation according to the
arc-length parameter s with the symbol prime “/”.

Suppose that a point particle P of constant mass moves on the regular surface M
in the Euclidean 3-space and along the trajectory a = «(s) which is a unit speed
curve. Thus, we can write a: I C R — M C E?. For o, the unit tangent vector
is calculated as T(s) = o/(s). Also, the system of the Darboux base vectors of « is
given as {T(s), Y (s), U(s)} along the curve o, where T is the unit tangent vector as
mentioned earlier. On the other hand, U is the unit normal vector of the surface M,
and Y is the unit vector determined by Y = U x T. It should be indicated that the
curves considered in this paper have nonzero second-order derivatives (that is, o’ (s)
is always nonzero). The derivative formulas of the Darboux frame are given as

T'(s) 0 ko(s)  kn(s)\ [ T(s)
Y'(s) | = | —kels) 0 7(s) ) | Y(s) |,
U'(s) —kn(s) —7g(s) 0O U(s)

where k, is a geodesic curvature, k, is a normal curvature, and 7, is a geodesic
torsion of the curve « [8], [15], [23].

Suppose that the angular momentum vector of the aforesaid particle P about the
origin is equal to zero nowhere. Then, PAFORS {T(s), G(s), H(s)} is well defined
during the motion along o = «(s). The basis vectors of PAFORS are calculated as
in the following;:

T(s) = T(s),
Gl (of6). Ute) vy
V{a(s), Y(s))? + (a(s), U(s))
. (a(s), Y (s)) )
V{a(s), Y () + (a(s), U(s))?
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The relation between the Darboux frame and PAFORS can be given as

T(s) 1 0 0 T(s)
(2.1) (G(s)) = (0 cos ¢(s) —sind)(s)) (Y(s)) ,
H(s) 0 sing(s) cosd(s) U(s)

where ¢(s) is the angle between the vector U(s) and the vector H(s) which is posi-
tively oriented from the vector U(s) to the vector H(s). Additionally, the derivative
formulas of PAFORS can be written as [16]

T (s) 0 ki(s)  ka(s) T(s)
(2.2) (G'@)) - (—k1<s> 0 k3<s>> (G<s>),
H'(s) —ko(s) —ks(s) O H(s)
e b ) = Ky () 03 0(s) — b () sin (),
Ea(5) = Fiy () sin §(s) + o (5) 05 0(5),
ka(s) = 7g(s) — ¢'(s).

Also, the rotation angle ¢(s) is expressed with the help of the following equation [16]:

@ YE
arctan( (a(s),U(s)>) f (a(s),U(s)) >0,
arctan( — o(s), Y () n if {a(s s
- tan(— o TGy) T (@), Us) <0
_g if (a(s),U(s)) =0, (a(s),Y(s)) >0,
g if (a(s),U(s)) =0, {(a(s), Y(s)) <0

The elements of the set {T(s), G(s), H(s), k1(s), k2(s), ks(s)} are called PAFORS
apparatuses of o = a(s) [16].

Let us remind the conditions of being an asymptotic curve and geodesic curve in
Euclidean 3-space [15]:

> a = «a(s) is an asymptotic curve if and only if &, = 0,

> a = as) is a geodesic curve if and only if k; = 0.
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Theorem 2.1 ([18]). Suppose that o = a(s) is an asymptotic curve on the regular
surface M with the condition kg # 0. Then a = a(s) is a trajectory whose position
vector lies in the corresponding plane Sp{T(s),Y(s)} if and only if k; = 0.

Theorem 2.2 ([18]). Assume that o = a(s) is a geodesic curve on the regular
surface M with the condition k,, # 0. Then, a = «(s) is a trajectory whose position
vector lies in the corresponding plane Sp{T(s), U(s)} if and only if k; = 0.

For more detailed information with respect to this new type of special and attrac-
tive frame PAFORS, we can refer to the studies [9], [16], [18].

3. BERTRAND PARTNER TRAJECTORIES RELATED TO PAFORS LYING
ON DIFFERENT REGULAR SURFACES

Bertrand partner trajectories related to PAFORS are defined and some character-

izations are given for them in this section.

Definition 3.1. Let R and R be the moving point particles on regular surfaces
M and M in 3-dimensional Euclidean space. Show the unit speed parameterization
of the trajectories of R and R with a = a(s) and @ = @(3), respectively. Let
{T,G,H, ky, ko, k3} and {T,G,H, ky, ko, k3} represent the PAFORS apparatus of
the trajectories o and @, respectively. If the PAFORS base vector G coincides with
the PAFORS base vector G at the corresponding points of the trajectories o and @, @
is said to be a Bertrand partner trajectory of « related to PAFORS. Furthermore,
the pair {a, @} is called a Bertrand pair related to PAFORS.

Figure 1. Bertrand partner trajectories related to PAFORS.

Thanks to the definition of Bertrand pair related to PAFORS, we can write the
equation

T cosy 0 —sinvy T
(3.1) G|=[ o 1 0 G |,
H siny 0 cosvy H

where 7 is the angle between the tangent vectors T and T.
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Theorem 3.1. Suppose that {oa = a(s),@ = @(35)} is any Bertrand pair related
to PAFORS. In this case, the distance between the corresponding points of @ and «

is constant.

Proof. With the aid of the definition of Bertrand trajectories related to
PAFORS, the equation

(3.2) a(s) =a(3s) + A(3)G(3)
can be written, where A is a real valued smooth function of s (see Figure 1). If we
differentiate equation (3.2) with respect to 5 and use equation (2.2), we obtain:

d R — _

(3.3) Td—f = (1 - Me1)T + NG + \G;H.
S
Because the scalar products of the vectors T, T and H with the vector G equal
to zero, we find M = 0. Thus, )\ is a nonzero constant and equation (3.3) can be
rewritten as:
d o
(3.4) Td—; = (1 — Ne1)T + \EsH.
Lastly, the distance between the corresponding points of @ and « can be given as
d(a(s),a(3)) = [|a(s) — @(3)|| = [ING| = |A] = constant

since A(# 0) is constant. O

Theorem 3.2. Assume that {a = «a(s),a@ = @(5)} is a Bertrand pair related to
PAFORS. Then the equation below holds:

— . ds — ds
1—Xe)— ks — T
T ( 1)ds 0 3 ds I
(3.5) G| = 0 1 0o G
H Y 1-26)<S | \H
3 ds 0 ( 1)ds

Proof. Let {o,@} be a Bertrand pair related to PAFORS. If we use the equa-
tions (3.1) and (3.4), we find:

COSVET — sin ’)/Eﬁ = (]. — )\El)T + )\k_gﬁ
S S

The last equation yields:

— . ds

cosy = (1-— )\kl)—s,

ds
(3.6) _
siny = —\k: ds
i *ds’

If equation (3.6) is substituted into equation (3.1), the desired result is obtained. O
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Corollary 3.1. The tangent of the angle between the unit tangent vectors of
the Bertrand partner trajectories (related to PAFORS) o = a(s) and @ = @(3) is
expressed as

(3.7) tany =

Theorem 3.3. Let {o = a(s),a@ =a(3)} be a Bertrand pair related to PAFORS
and their Darboux frame be denoted by {T,Y,U} and {T,Y, U}, respectively. In
this case, the relations between the Darboux base vectors of this pair are given by:

= — . ds — . . ds — ds

T=1- )\kl)ET — Mks SIDQEY — Mks3 cos QEU’

= .- . =ds — - . = . ds

Y:)\k'gstd—T—i— COSQCOSQ-I—(1—>\/€1)SanSHle— Y
s s

+ (— cosQsinQ + (1 — )\EﬂSiHﬁCOSQ?)U,
s

U =Mk COSQ%T + (— sinQcos Q + (1 — k1) cosﬁsinQ%)Y

+ (sinﬁsinQ + (1 — Mky) cos Qcos QE)U

Here Q is the angle between the vectors U and H and also, (0 is the angle between
the vectors U and H.

Proof. Taking into account equation (2.1), the equations

T 1 0 0 T
(3.8) G|=[0 cosQ —sinQ Y

H 0 sinQ2 cos® U
and

T 1 0 0 T
(3.9) Y|=[0 cosQ sinQ G

U 0 —sinQ cosQ H

can be written. On the other hand, it is not difficult to see

—_ . ds _ ds
_ {— ds g ds
E ( /\kl)ds O )\k?gds T
(3.10) G| = 0 1 0 G
= —ds — . ds
H Mo — 1—Mkp)— H
SdS 0 ( 1)d5
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from (3.5). If equation (3.10) is used in equation (3.9),

B (1— AEl)% 0 _AE?,%

T C _ T
(3.11) Y | = | Mes sinﬁ% cosQ (1 —Mky) sinﬁg G

T ds ds H

— —ds — — —d
Aks cost—z —sinQ  (1-— )\kl)cosﬂd—z
is obtained. Substituting equation (3.8) into equation (3.11) finishes the proof. O

Theorem 3.4. Let {a = a(s),@ = @(3)} be a Bertrand pair related to PAFORS.
Then the following relations hold:

(1) by = (k1 = AR§ = AE3)/(1 — 2Xk1 + N*(kT + £3)),
(2) kv = (k= Ckf — Ck3)/(1 — 2Cky + C2(kf + K3)),
where ( is a constant satisfying || = |\|.

Proof. (1) Let {a, @} be a Bertrand pair related to PAFORS. By means of the
equality cos?y + sin?y = 1 and equation (3.6), we find

ds )’ - -
(3.12) (d_§> =1—2)F; + A\2(B2 + R2).
If equation (3.4) is differentiated with respect to § and equation (2.2) is utilized,

d?s ds\? ds\?
1 —T — — | H
313)  FZT+h (d§> G+ kQ(dE)
= (=AE] — Mkok3)T + (k1 (1 — Mey) — AE2)G + (ko(1 — Mey) + \kp)H
is obtained. Thus, we get

ds\? -
(3.14) k1<d—§> = (1 NE)ky — MR2

using the inner product in equation (3.13). Substituting equation (3.12) into equa-
tion (3.14) finishes the proof.
(2) Thanks to the definition of the Bertrand pair related to PAFORS, we can write

a(s) = a(s) + (G(s),
where ( is a constant which satisfies the equality |¢| = |A| (see Figure 1). Let us
differentiate the last equation with respect to s twice. In this case, we get:

(3.15) T% = (1—Ck1)T + CksH
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and
316) LF d_ Gin(®\
' ds? ! 2\ ds
= (—Cky — Cksz)T + (k1 (1 = Cky) — Ck3)G + (ko(1 — Cky) + Cky)H

On the other hand, T = cosyT +sin YH can be written with the aid of equation (3.1).
In that case, we get

cosvj—T—l—sm’yj =(1-Ck1)T + CksH

by utilizing equation (3.15). From here we find
ds ds
COS’)/—S =1—-Ck and Sin’y—s = (Cks.
ds ds
These equations yield the following:

—\ 2
(3.17) (j—) 1= 20k + G+ B,

Also, the inner product with G in equation (3.16) gives us

_ /ds\?
(3.18) kl(d—z> = k1 — Ck{ — Ck3.

Thus, we get the desired result taking into consideration equation (3.17). O

By means of Theorem 2.1, Theorem 2.2 and Theorem 3.4, we can state the next

corollaries.

Corollary 3.2. Let {a = a(s),a@ = @(5)} be a Bertrand pair related to PAFORS.

In that case, the following expressions hold:
(1) Assume that the geodesic curvature of o never equals to zero. Then o = «(s) is
an asymptotic trajectory whose position vector always lies in the corresponding

plane Sp{T(s), Y(s)} if and only if
k1 — Ak3 — \kZ B
1—2Mey + N2(R2 +k2)

(2) Assume that the geodesic curvature of @ never equals to zero. Then & = a(3) is

an asymptotic trajectory whose position vector always lies in the corresponding
plane Sp{T(s), Y(s)} if and only if

— Cki — (k3
1—2Cky + C2(k? + k32)

=0.
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Corollary 3.3. Let {a = a(s),@ = @(5)} be a Bertrand pair related to PAFORS.

In that case, the following expressions hold:
(1) Suppose that the normal curvature of o never equals to zero. Then a = «(s)
is a geodesic trajectory whose position vector always lies in the corresponding

plane Sp{T(s), U(s)} if and only if
k1 — Ak3 — \kZ B
1—2Mey + N2(R2 + k3)

(2) Suppose that the normal curvature of @ never equals to zero. Then @ = @(3)

is a geodesic trajectory whose position vector always lies in the corresponding
plane Sp{T(s), U(s)} if and only if

Fy — Gk — (K3

=0.
1—2Cky + C2(k? + k2)

4. CONCLUSIONS

In this paper, we introduced the Bertrand partner trajectories related to PAFORS
for the particles moving on the different regular surfaces in Euclidean 3-space. Also,
we obtain the relations between the PAFORS elements of the aforesaid trajecto-
ries. Then the relations between Darboux basis vectors of them were investigated.
Additionally, some characterizations were presented for some special cases of these
trajectories by their PAFORS elements.

Acknowledgements. We thank the anonymous referees for their careful
reading and invaluable comments.
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