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Abstract. Let R be a ring with nonzero identity. A graph GId(R) of R with respect to
idempotents of R has elements of R as vertices and distinct vertices x, y are adjacent if
and only if x + y is an idempotent of R. In this paper, we prove that GId(R) is weakly
perfect and provide a condition for the perfectness of the same. Further, we characterize
finite abelian rings for which the complement of GId(R) is connected.
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1. Introduction

The rings in this paper are associative and having unity; and all graphs are simple.

An element h of a ring R such that h2 = h is an idempotent. Clearly, in any ring

with unity, 0 and 1 are idempotents, called trivial idempotents. Two idempotents h

and k are orthogonal if hk = kh = 0. Let Id(R) be the set of idempotents in R. For

a, b ∈ R, we use the notation a 6 b if a = ab = ba. Observe that this relation is

transitive and antisymmetric on R, and it is reflexive only when restricted to Id(R).

Thus, (Id(R),6) is a poset and h′ = 1 − h is the complementary idempotent of h

in Id(R). Abian [1] extended this partial order to all the elements of a reduced

ring and Anderson et al. [4] used Abian’s partial order to determine the annihilator

classes in a reduced commutative ring.

We color the vertices of a simple graph G such that any two adjacent vertices have

distinct colors. The minimum number of colors required to color the vertices of G is

the chromatic number χ(G) of G. A graph with every pair of distinct vertices adja-

cent is a complete graph. A clique inG is a complete subgraph ofG, and the size of the
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maximal clique in G is the clique number ω(G) of G. Clearly χ(G) > ω(G). A graph

is weakly perfect if its chromatic number and clique number are the same. In 1988,

Beck [6] introduced the zero-divisor graph for commutative rings. The zero-divisor

graph Γ(R) of a commutative ring R is a graph with elements of R as vertices and two

vertices x and y are adjacent if xy = 0. Beck conjectured that Γ(R) is weakly perfect

whenever ω(Γ(R)) < ∞. He proved that reduced rings and principal ideal rings are

the classes of rings for which the conjecture is true. However, Anderson et al. [5] gave

a counterexample of a commutative local ring for which the conjecture is not true.

Cvetko-Vah et al. [8] assigned a simple graph G(R) to R whose vertex set is Id(R),

and two vertices e and f are adjacent if and only if (1) ef = fe = 0, and (2) eRf 6= 0

or fRe 6= 0. It is evident from the second condition that if the idempotents of R

are central, then G(R) has no edges. Anderson et al. [3] defined and studied the

zero-divisor graph Γ(Idem(R)) of the idempotents of a commutative ring R. Later

Akbari et al. [2] introduced the idempotent graph I(R) of a ring R as the graph

whose vertices are the nontrivial idempotents of R, and two distinct vertices h and k

are adjacent if and only if hk = kh = 0. Observe that h + k is an idempotent of R

whenever h and k are orthogonal idempotents, which is a notable algebraic property.

Clearly, for a commutative ring, I(R) is a subgraph of Γ(R). The interplay between

the algebraic properties of R and graph-theoretic properties of I(R) has been studied

in [2], [8]. Patil et al. [10] studied the weak perfectness of the idempotent graph of

a ring. Recently, Razaghi et al. [12] defined a graph GId(R) of R with respect to

idempotents of R. The graph GId(R) has the elements of R as vertices and distinct

vertices x, y are adjacent if and only if x + y is an idempotent of R. Some basic

properties such as connectedness, diameter and girth of GId(R) were studied in [12].

In the present paper, we study GId(R) in view of the coloring. We prove that

GId(R) is weakly perfect. A graph is perfect if each of its induced subgraphs is

weakly perfect. We provide a condition for the GId(R) to be perfect. For a graph G,

the complement Gc is a graph with vertex set the same as G and two vertices are

adjacent inGc if and only if they are nonadjacent inG. We conclude by characterizing

finite abelian rings for which the complement of GId(R) is connected. Examples are

provided to delimit the results. We use x ∼ y to denote that the vertices x and y

are adjacent.

2. Weak perfectness and some properties of GId(R)

Recall that the idempotent graph I(R) of a ring R is the graph whose vertices are

the nontrivial idempotents of R, and two distinct vertices h and k are adjacent if

and only if hk = kh = 0 (see Akbari et al. [2]).
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Lemma 2.1. The idempotent graph of R is a subgraph of GId(R).

P r o o f. For the nontrivial idempotents e, f ∈ R, e+f is an idempotent whenever

ef = fe = 0. Hence, e and f are adjacent in GId(R) whenever they are adjacent

in I(R). Therefore the idempotent graph of R is a subgraph of GId(R). �

Corollary 2.2. Let R be a ring with unity. If ω(GId(R)) < ∞, then the poset

(Id(R),6) does not contain an infinite chain.

P r o o f. Suppose that ω(GId(R)) < ∞. Since I(R) is a subgraph of GId(R),

ω(I(R)) < ∞. Then the result follows from Patil et al. [10], Lemma 4. �

An idempotent in a ring is primitive if it cannot be written as a sum of two

nonzero orthogonal idempotents. An element p of a poset P is an atom if 0 is the

only element below p.

Corollary 2.3. Let R be a ring with unity such that ω(GId(R)) < ∞. Then

(1) every set of pairwise orthogonal idempotents in R is finite,

(2) every nonzero idempotent in R contains a primitive idempotent.

P r o o f. It follows from Corollary 2.2 and from Patil et al. [10], Corollary 1. �

Lemma 2.4. Let R be a ring with unity such that ω(GId(R)) < ∞. Then every

maximal set S of pairwise orthogonal idempotents in R has the following properties.

(1) S is finite and contains zero.

(2)
∑

x∈S

x = 1.

(3) For any nonzero x ∈ R there exists s ∈ S such that xs 6= 0.

(4) If S is a maximal set of pairwise orthogonal idempotents in R with largest

cardinality, then every nonzero element of S is a primitive idempotent.

P r o o f. (1) Since ω(GId(R)) < ∞, by Corollary 2.3, R contains only finitely

many pairwise orthogonal idempotents; hence S is finite. Also, the maximality of S

clearly gives 0 ∈ S.

(2) Let S = {0, s1, s2, . . . , sn}. We claim that
n
∑

i=1

si = 1. Let e =
n
∑

i=1

si. On

the contrary, if e 6= 1, then 1 − e 6= 0. By Corollary 2.3, there exists a primitive

idempotent, say f , such that f 6 1− e. Observe that fsi = sif = 0. Then S ∪ {f}

is a set of pairwise orthogonal idempotents which contains S, a contradiction to the

maximality of S. Therefore
n
∑

i=1

si = 1.

(3) For any nonzero element x ∈ R we have x =
n
∑

i=1

six. Hence, there exists an i

such that six 6= 0.
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(4) Suppose S is a maximal set of pairwise orthogonal idempotents in R with

largest cardinality. Let g 6 si for a nonzero si ∈ S. If g 6= 0, then {g, si−g}∪(S\{si})

is a set of pairwise orthogonal idempotents in R having cardinality greater than S,

a contradiction to choice of S. Hence g = 0, consequently, si is an atom in the poset

(Id(R),6). Then by Patil et al. [10], Lemma 3, si is a primitive idempotent. �

R em a r k 2.5. Han et al. [9], Theorem 2.3 and Remark 1 essentially proved that

ch(R) = 2 if and only if 1 + e ∈ Id(R) for all nonzero e ∈ Id(R).

Lemma 2.6. Let R be a ring with unity and ch(R) 6= 2, where ch(R) is the

characteristic of the ring R. Then there exists a primitive idempotent e ∈ R such

that 1 + e /∈ Id(R).

P r o o f. Since ch(R) 6= 2, by Remark 2.5, there is a nonzero e ∈ Id(R) such that

1 + e /∈ Id(R). We assume that e is minimal such, i.e., for any idempotent f 6 e,

1 + f ∈ Id(R). We claim that e is an atom in the poset Id(R). If not, there exists

nonzero e1 < e, i.e., e1 = ee1 = e1e. Then e − e1 < e, i.e., e − e1 = (e − e1)e =

e(e − e1). By assumption, both 1 + e1 and 1 + e − e1 are in Id(R). Observe that

(1+ e1)(1+ e− e1) = 1+ e− e1+ e1+ e1e− e2
1
= 1+ e− e1+ e1+ e1− e1 = 1+ e and

(1+e−e1)(1+e1) = 1+e, i.e., 1+e1 and 1+e−e1 commute with each other. Hence,

(1+e)2 = [(1+e1)(1+e−e1)]
2 = (1+e1)

2(1+e−e1)
2 = (1+e1)(1+e−e1) = 1+e,

i.e., 1+ e ∈ Id(R), a contradiction. Therefore e must be an atom in the poset Id(R).

By Patil et al. [10], Lemma 3, e is a primitive idempotent. �

A ring is said to be abelian if its every idempotent is central. Now we prove that

the graph of an abelian ring with respect to idempotents is weakly perfect.

Theorem 2.7. Let R be an abelian ring with unity such that ω(GId(R)) < ∞.

Then GId(R) is weakly perfect.

P r o o f. Since ω(GId(R)) < ∞, by Lemma 2.4, every maximal set of pairwise

orthogonal idempotents in R is finite, contains zero and the sum of all the elements

of that set is equal to 1. If R contains no nontrivial idempotent, then by Razaghi et

al. [12], Theorem 3.2, GId(R) is a bipartite graph, hence χ(GId(R)) = ω(GId(R)) = 2;

and we are through. Suppose that R contains at least one nontrivial idempotent.

If R is a Boolean ring, then GId(R) is a complete graph, which yields χ(GId(R)) =

ω(GId(R)) = |R|, and we are done again. Now suppose that R is not a Boolean ring,

i.e., there exists x ∈ R such that x2 6= x. Let S = {s1, s2, . . . , sn} be a maximal set

of pairwise orthogonal idempotents in R of largest cardinality. Clearly 1 /∈ S. By

Lemma 2.4,
n
∑

i=1

si = 1 and for any nonzero element x ∈ R, there exists an i such that

six 6= 0. Since R is abelian, si + sj is an idempotent in R for any i, j with i 6= j.

Consequently, the elements of S form a clique in GId(R), hence n 6 ω(GId(R)).
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Now let x ∈ R \ (S ∪ {1}). If x is nonidempotent, then 0 is nonadjacent to x. If x

is idempotent, then by maximality of S, x is nonadjacent to a nonzero element in S.

Thus, any x ∈ R \ (S ∪ {1}) is nonadjacent to an element of S.

Next, we assign n different colors to s1, s2, . . . , sn. Let x and y be any two adjacent

vertices in GId(R) that are not in S. From the above paragraph there is an si
nonadjacent to x. Without loss of generality, assume that s1 is nonadjacent to x.

Let sj be nonadjacent to y. We claim that j 6= 1, i.e., there are distinct elements

(among the si’s) nonadjacent to x and y. On the contrary assume that s1 is the only

(among the si’s) nonadjacent to both x and y, i.e., x+sj and y+sj are idempotents

for j = 2, 3, . . . , n. If s1 = 0, then x and y are nonidempotents (because 0 is adjacent

to idempotent). Then sj 6= 0 for j ∈ {2, . . . , n}. Let sk be such that xsk 6= 0. Then

(x + sj)sk is an idempotent 6 sk, which yields (x + sj)sk = 0 or (x + sj)sk = sk.

Since xsk 6= 0, we have xsk = sk. Now x is adjacent to sk, x+ sk is an idempotent,

i.e., (x + sk)
2 = x + sk, which gives x

2 + 2sk = x. Then multiplication by sk gives

x2sk + 2sk = xsk, which yields (using xsk = sk) 2sk = 0. Therefore x2 + 2sk = x

gives x2 = x, giving x and s1 adjacent, a contradiction. Therefore s1 6= 0. Hence

sj = 0 for some j ∈ {2, . . . , n}. Without loss of generality, suppose that s2 = 0. Then

sj 6= 0 for each j ∈ {3, . . . n}. Since x and y are adjacent to s2 = 0, both x and y are

idempotents. Also, s1 is a primitive idempotent such that xs1 6 s1. If xs1 = 0, then

x+ s1 is an idempotent making x and s1 adjacent, a contradiction. Hence xs1 6= 0.

Therefore xs1 = s1. Similarly ys1 = s1. Then s1 = xs1 = xys1, hence xy 6= 0. Since

x and y are adjacent, x+ y is an idempotent which gives 2xy = 0. From Lemma 2.4

we have
n
∑

j=1

sj = 1. Hence

x = x

( n
∑

j=1

sj

)

= xs1 +

n
∑

j 6=1,
xsj 6=0

xsj ,

but xsj = sj , whenever xsj 6= 0 (sj being primitive idempotent). Thus, we get

x = s1 +

n
∑

j 6=1,
xsj 6=0

sj .

Let

t =
n
∑

j 6=1,
xsj 6=0

sj .

Hence x = s1 + t. Recall that x + sj is idempotent for each j 6= 1. Consequently,

(x + sj)
2 = x + sj , i.e., x + xsj + xsj + sj = x + sj , which gives 2sj = 0 (since
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xsj = sj), hence sj = −sj whenever xsj 6= 0. This also gives t = −t, which leads to

x+ t = s1. Then adding y to both sides we get y+x+ t = y+s1. Now (y+x+ t)2 =

(y+x+t)(y+x+t) = y2+xy+yt+xy+x2+xt+yt+xt+t2 = y+2xy+2yt+2xt+t.

Using x2 = x, y2 = y, 2t = 0 and t2 = t (since sj ’s are pairwise orthogonal), we

get (y + x + t)2 = (y + x + t), i.e., y + s1 is an idempotent, which makes y and s1
adjacent, a contradiction.

Thus, there exists sj (j 6= 1) such that y is nonadjacent to sj . Hence, we can

assign the color of s1 to x and the color of sj to y.

Now there are two cases.

Case I. Suppose that ch(R) 6= 2. Then by Lemma 2.6, there exists a primitive

idempotent sk such that 1 + sk /∈ Id(R), i.e., 1 is not adjacent to sk in GId(R).

Hence, we can assign the color of sk to 1. Thus, χ(GId(R)) 6 n. Therefore n 6

ω(GId(R)) 6 χ(GId(R)) 6 n. Thus ω(GId(R)) = χ(GId(R)) = n.

Case II. Suppose that ch(R) = 2. Then by Remark 2.5, 1 + e ∈ Id(R), for any

nonzero e ∈ Id(R). Recall that we are assuming R is non-Boolean ring containing

a nontrivial idempotent. Let S1 = S ∪ {1}. Then the elements of S1 form a clique

in GId(R). We assign different colors to elements of S1. Observe that for any two

adjacent vertices x and y there exist different elements of S that are non adjacent to x

and y, respectively. Consequently, |S1| 6 ω(GId(R)) 6 χ(GId(R)) 6 |S1|. Therefore

ω(GId(R)) = χ(GId(R)) = |S1|.

Thus in any case, GId(R) is weakly perfect. �

We illustrate Theorem 2.7 with the following example.

E x am p l e 2.8. Let R1 = Z10. Then Id(R1) = {0, 1, 5, 6}, the maximal set of

pairwise orthogonal idempotents in R1 is S = {0, 5, 6} and GId(R1) is depicted in

Figure 1. Observe that ω(GId(R1)) = χ(GId(R1)) = 3.

5 6

0

9 2

1 4 7 3

8

Figure 1. GId(Z10).

Let R2 = (Z2 × Z2)[x]/〈x
2〉 = {e0 = (0, 0), e1 = (1, 0), e2 = (0, 1), e3 = (1, 1), e1x,

e2x, e3x, e1x + e1, e1x + e2, e1x + e3, e2x + e1, e2x + e2, e2x + e3, e3x + e1, e3x +

e2, e3x+ e3}. Then S = {e0, e1, e2} is a maximal set of pairwise idempotents in R2,

S1 = S ∪ {e3} and GId(R2) is depicted in Figure 2. Observe that ω(GId(R2)) =

χ(GId(R2)) = 4.
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e0

e1 e2

e3 e1x

e1x+ e1 e1x+ e2

e1x+ e3 e2x

e2x+ e1 e2x+ e2

e2x+ e3 e3x

e3x+ e1 e3x+ e2

e3x+ e3

Figure 2. GId((Z2 × Z2)[x]/〈x
2〉).

The following example shows that the condition ‘abelian’ in Theorem 2.7 is suffi-

cient but not necessary.

E x am p l e 2.9. Let

R = M2(Z2) =

{

1 =

[

0 0

0 0

]

,2 =

[

1 0

0 0

]

,3 =

[

0 1

0 0

]

,4 =

[

0 0

1 0

]

,

5 =

[

0 0

0 1

]

,6 =

[

1 1

0 0

]

,7 =

[

1 0

1 0

]

,8 =

[

1 0

0 1

]

,

9 =

[

0 1

1 0

]

,10 =

[

0 1

0 1

]

,11 =

[

0 0

1 1

]

,12 =

[

1 1

1 0

]

,

13 =

[

1 1

0 1

]

,14 =

[

1 0

1 1

]

,15 =

[

0 1

1 1

]

,16 =

[

1 1

1 1

]}

(here bold numbers are used to denote matrices), with usual addition of matrices

and matrix multiplication.

Here Id(R) = {1,2,5,6,7,8,10,11} and GId(R) is as depicted (using Sage) in

Figure 3. Observe that ω(GId(R)) = χ(GId(R)) = 4. Here R is not abelian but still

GId(R) is weakly perfect.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 3. GId(M2(Z2).
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Recall that a graph G is a perfect graph if the clique number ω(H) is the same

as the chromatic number χ(H) for every induced subgraph H of G. Chudnovsky et

al. [7] characterized perfect graphs as follows.

Theorem 2.10 (Strong perfect graph theorem [7]). A graph G is perfect if and

only if it has no induced subgraph isomorphic either to a cycle of odd length at

least 5, or to the complement of such a cycle.

Next we provide a condition for GId(R) to be perfect.

Theorem 2.11. Let R be a ring with unity. If GId(R) is perfect, then R has at

most four primitive idempotents.

P r o o f. Suppose that GId(R) is perfect. On the contrary, assume that R con-

tains more than four primitive idempotents. Let e1, e2, e3, e4 and e5 be distinct prim-

itive idempotents in R. Then (e1+e2) ∼ (e3+e4) ∼ (e1+e5) ∼ (e2+e3) ∼ (e4+e5)

is an induced 5-cycle in GId(R), a contradiction to the fact that GId(R) is perfect

(by Theorem 2.10). This completes the proof. �

For the zero-divisor graph Γ(R) of a finite reduced commutative semiring R, Patil

et al. [11], Corollary 2.5 proved that if ω(Γ(R)) 6 4, then Γ(R) is perfect. The

analogous result is not true for GId(R) (see example below). We provide rings with

exactly two and three primitive idempotents for which GId(R) is not perfect.

E x am p l e 2.12. LetR1 = Z3×Z5. Then Id(R1) = {e1 = (0, 0), e2 = (1, 0), e3 =

(0, 1), e4 = (1, 1)}, and S = {e1, e2, e3} is a maximal set of pairwise orthogonal

idempotents in R1. Hence, by Theorem 2.7, ω(GId(R1)) = 3. Here e2, e3 are the

only primitive idempotents in R1. Let a1 = (2, 0), a2 = (0, 4) ∈ R1. Then e2 ∼ e3 ∼

a2 ∼ e4 ∼ a1 ∼ e2 is an induced 5-cycle in GId(R1) which has no chord, hence, by

Theorem 2.10, GId(R1) is not perfect.

Let R2 = Z3 × Z3 × Z3. Then Id(R2) = {f1 = (0, 0, 0), f2 = (1, 0, 0), f3 =

(0, 1, 0), f4 = (0, 0, 1), f5 = (1, 1, 0), f6 = (1, 0, 1), f7 = (0, 1, 1), f8 = (1, 1, 1)} and

S = {f1, f2, f3, f4} is a maximal set of pairwise orthogonal idempotents in R2. Hence,

by Theorem 2.7, ω(GId(R2)) = 4. Here f2, f3, f4 are the only primitive idempotents

in R2. Let b1 = (2, 2, 2), b2 = (1, 2, 2) ∈ R2. Then f1 ∼ f8 ∼ b1 ∼ b2 ∼ f7 ∼ f1 is an

induced 5-cycle in GId(R2) which has no chord, hence by Theorem 2.10, GId(R2) is

not perfect.

We conclude by characterizing finite abelian rings with unity for which GId(R)c is

connected.
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Theorem 2.13. Let R be a finite abelian ring. Then the complement of GId(R)

is connected if and only if R is not isomorphic to a Boolean ring or to Z3 or to

Z2 × Z3.

P r o o f. If R is a Boolean ring, then GId(R) is a complete graph, hence, its

complement is a null graph. The graphs GId(Z2 ×Z3)
c and GId(Z3)

c are as depicted

in Figure 4, which are disconnected graphs.

(1, 0) (1, 2)

(0, 0) (0, 1) (0, 1)

(1, 1)

GId(Z2 × Z3)
c

0

2

1

GId(Z3)
c

Figure 4. GId(R)
c disconnected.

Suppose that R is not a Boolean ring. If R has exactly two idempotents, then by

Razaghi et al. [12], GId(R) is either disconnected or is a path. Hence, its complement

is disconnected only if |R| = 2 or 3, i.e., R = Z2 or R = Z3. Suppose that R has

exactly four idempotents, say, Id(R) = {0, 1, e, 1− e}. Suppose that ch(R) = 2. If

the additive group R is not generated by Id(R), then by Razaghi et al. [12], GId(R)

is disconnected, hence, its complement is connected. If the additive group R is

generated by Id(R), then R is a Boolean ring (as we are considering ch(R) = 2),

which is a contradiction, since we are considering non-Boolean rings. Suppose that

ch(R) 6= 2. Then R = eR × (1 − e)R, where eR and (1 − e)R both contain exactly

two idempotents. Then Id(R) = {(0, 0), (e, 0), (0, 1 − e), (e, 1 − e)}. If |eR| = 2

and |(1 − e)R| = 3 (since R is not Boolean), then R = Z2 × Z3, which yields that

GId(R)c is disconnected. Suppose |eR| = 2 and |(1 − e)R| > 3. Then 2e = 0 and

2(1 − e) 6= 0, hence there exists x ∈ (1 − e)R such that x 6= −x and x 6= 1 − e.

Then (e, 1 − e) and (0, 1 − e) are adjacent in GId(R)c, which gives a path (0, 0) ∼

(0, x) ∼ (0, 1 − e) in GId(R)c. Similarly, there are paths (0, 0) ∼ (e, x) ∼ (e, 1 − e)

and (0, 0) ∼ (e, x) ∼ (e, 0) in GId(R)c. Thus, (0, 0) is connected to every other vertex

in GId(R)c through a path. Consequently, GId(R)c is connected. Similarly, GId(R)c

is connected if |eR| > 3 and/or |(1 − e)R| > 3.

Next, suppose that |Id(R)| > 6. By Patil et al. [10], Theorem 4, there is a path in

GId(R)c connecting any two nontrivial idempotents of R. Since R is a non-Boolean

ring, there exists x ∈ R which is not an idempotent. Then x is adjacent to 0 in

GId(R)c. We claim that there is a nonzero idempotent in R that is adjacent to x

in GId(R)c. Let S be a maximal set of pairwise idempotents in R. If there is an
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element in S which is adjacent to x in GId(R)c, then we are done. Suppose that x

is nonadjacent to every element of S in GId(R)c, i.e., x + e is an idempotent in R

for each e ∈ S. Observe that x + e1 6= x + e2 for distinct e1, e2 ∈ S. Let f be

a nonzero idempotent in S. Then by assumption x is nonadjacent to f in GId(R)c,

i.e., x+ f is an idempotent in R. Then as shown in the proof of Theorem 2.7, there

exists an element g ∈ S such that x+ f + g is not an idempotent in R (clearly g 6= 0,

as x+ f is idempotent). Then f + g is a nonzero idempotent in R that is adjacent

to x in GId(R)c. Thus, 0 ∼ x ∼ f + g is a path in GId(R)c. Hence, in GId(R)c, 0

is connected to every idempotent and to every nonidempotent element of R through

a path. Thus, GId(R)c is connected in this case. �
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