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Abstract. Let R be a ring with nonzero identity. A graph Giq(R) of R with respect to
idempotents of R has elements of R as vertices and distinct vertices x, y are adjacent if
and only if x 4+ y is an idempotent of R. In this paper, we prove that Giq(R) is weakly
perfect and provide a condition for the perfectness of the same. Further, we characterize
finite abelian rings for which the complement of G1q(R) is connected.
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1. INTRODUCTION

The rings in this paper are associative and having unity; and all graphs are simple.
An element h of a ring R such that h? = h is an idempotent. Clearly, in any ring
with unity, 0 and 1 are idempotents, called trivial idempotents. Two idempotents h
and k are orthogonal if hk = kh = 0. Let Id(R) be the set of idempotents in R. For
a,b € R, we use the notation a < b if a = ab = ba. Observe that this relation is
transitive and antisymmetric on R, and it is reflexive only when restricted to Id(R).
Thus, (Id(R),<) is a poset and A’ = 1 — h is the complementary idempotent of h
in Id(R). Abian [1] extended this partial order to all the elements of a reduced
ring and Anderson et al. [4] used Abian’s partial order to determine the annihilator
classes in a reduced commutative ring.

We color the vertices of a simple graph G such that any two adjacent vertices have
distinct colors. The minimum number of colors required to color the vertices of G is
the chromatic number x(G) of G. A graph with every pair of distinct vertices adja-
cent is a complete graph. A clique in G is a complete subgraph of GG, and the size of the
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maximal clique in G is the cliqgue number w(G) of G. Clearly x(G) > w(G). A graph
is weakly perfect if its chromatic number and clique number are the same. In 1988,
Beck [6] introduced the zero-divisor graph for commutative rings. The zero-divisor
graph T'(R) of a commutative ring R is a graph with elements of R as vertices and two
vertices z and y are adjacent if zy = 0. Beck conjectured that I'(R) is weakly perfect
whenever w(I'(R)) < co. He proved that reduced rings and principal ideal rings are
the classes of rings for which the conjecture is true. However, Anderson et al. [5] gave
a counterexample of a commutative local ring for which the conjecture is not true.

Cvetko-Vah et al. [8] assigned a simple graph G(R) to R whose vertex set is Id(R),
and two vertices e and f are adjacent if and only if (1) ef = fe =0, and (2) eRf # 0
or fRe # 0. It is evident from the second condition that if the idempotents of R
are central, then G(R) has no edges. Anderson et al. [3] defined and studied the
zero-divisor graph I'(Idem(R)) of the idempotents of a commutative ring R. Later
Akbari et al. [2] introduced the idempotent graph I(R) of a ring R as the graph
whose vertices are the nontrivial idempotents of R, and two distinct vertices h and k
are adjacent if and only if hk = kh = 0. Observe that h + k is an idempotent of R
whenever h and k are orthogonal idempotents, which is a notable algebraic property.
Clearly, for a commutative ring, I(R) is a subgraph of I'(R). The interplay between
the algebraic properties of R and graph-theoretic properties of I(R) has been studied
in [2], [8]. Patil et al. [10] studied the weak perfectness of the idempotent graph of
a ring. Recently, Razaghi et al. [12] defined a graph Giq(R) of R with respect to
idempotents of R. The graph G14(R) has the elements of R as vertices and distinct
vertices z,y are adjacent if and only if z + y is an idempotent of R. Some basic
properties such as connectedness, diameter and girth of Giq(R) were studied in [12].

In the present paper, we study Giq(R) in view of the coloring. We prove that
Gra(R) is weakly perfect. A graph is perfect if each of its induced subgraphs is
weakly perfect. We provide a condition for the Gi4(R) to be perfect. For a graph G,
the complement G€ is a graph with vertex set the same as G and two vertices are
adjacent in G if and only if they are nonadjacent in G. We conclude by characterizing
finite abelian rings for which the complement of G14(R) is connected. Examples are
provided to delimit the results. We use z ~ y to denote that the vertices x and y
are adjacent.

2. WEAK PERFECTNESS AND SOME PROPERTIES OF Giq(R)

Recall that the idempotent graph I(R) of a ring R is the graph whose vertices are
the nontrivial idempotents of R, and two distinct vertices h and k are adjacent if
and only if hk = kh = 0 (see Akbari et al. [2]).
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Lemma 2.1. The idempotent graph of R is a subgraph of Giq(R).

Proof. For the nontrivial idempotents e, f € R, e+ f is an idempotent whenever
ef = fe = 0. Hence, e and f are adjacent in G1q(R) whenever they are adjacent
in I(R). Therefore the idempotent graph of R is a subgraph of Gi4(R). O

Corollary 2.2. Let R be a ring with unity. If w(G1q(R)) < oo, then the poset
(Id(R), <) does not contain an infinite chain.

Proof. Suppose that w(G(R)) < oco. Since I(R) is a subgraph of Gia(R),
w(I(R)) < co. Then the result follows from Patil et al. [10], Lemma 4. O

An idempotent in a ring is primitive if it cannot be written as a sum of two
nonzero orthogonal idempotents. An element p of a poset P is an atom if 0 is the
only element below p.

Corollary 2.3. Let R be a ring with unity such that w(Ga(R)) < co. Then

(1) every set of pairwise orthogonal idempotents in R is finite,
(2) every nonzero idempotent in R contains a primitive idempotent.

Proof. It follows from Corollary 2.2 and from Patil et al. [10], Corollary 1. O

Lemma 2.4. Let R be a ring with unity such that w(G14(R)) < co. Then every
maximal set S of pairwise orthogonal idempotents in R has the following properties.

(1) S is finite and contains zero.

2) Yax=1.
z€eS

(2)
(3) For any nonzero x € R there exists s € S such that xs # 0.
(4) If S is a maximal set of pairwise orthogonal idempotents in R with largest

cardinality, then every nonzero element of S is a primitive idempotent.

Proof. (1) Since w(Gr(R)) < oo, by Corollary 2.3, R contains only finitely
many pairwise orthogonal idempotents; hence S is finite. Also, the maximality of S
clearly gives 0 € S.

(2) Let S = {0,s1,52,...,8,}. We claim that zn: si =1. Let e = zn: s;. On
the contrary, if e # 1, then 1 — e # 0. By Corollza}; 2.3, there exists e:igrimitive
idempotent, say f, such that f < 1—e. Observe that fs; = s;f = 0. Then SU{f}
is a set of pairwise orthogonal idempotents which contains .S, a contradiction to the
maximality of S. Therefore isz =1

i=1 n
(3) For any nonzero element © € R we have x = ) s;x. Hence, there exists an 4
such that s;x # 0. =1
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(4) Suppose S is a maximal set of pairwise orthogonal idempotents in R with
largest cardinality. Let g < s; for anonzeros; € S. If g # 0, then {g, s;,—g}U(S\{s:})
is a set of pairwise orthogonal idempotents in R having cardinality greater than S,
a contradiction to choice of S. Hence g = 0, consequently, s; is an atom in the poset
(Id(R),<). Then by Patil et al. [10], Lemma 3, s; is a primitive idempotent. O

Remark 2.5. Han et al. [9], Theorem 2.3 and Remark 1 essentially proved that
ch(R) =2 if and only if 1 + e € Id(R) for all nonzero e € Id(R).

Lemma 2.6. Let R be a ring with unity and ch(R) # 2, where ch(R) is the
characteristic of the ring R. Then there exists a primitive idempotent e € R such
that 1 + e ¢ Id(R).

Proof. Since ch(R) # 2, by Remark 2.5, there is a nonzero e € Id(R) such that
1+ e ¢ Id(R). We assume that e is minimal such, i.e., for any idempotent f < e,
1+ f € Id(R). We claim that e is an atom in the poset Id(R). If not, there exists
nonzero e¢; < e, i.e., e = ee; = eje. Thene —e; < e, e, e—e; = (e —e1)e =
e(e — e1). By assumption, both 1+ e; and 1+ e — ey are in Id(R). Observe that
(1+e))(1+e—e))=1+e—ej+e+eje—er=1+e—ej+e;+e;—e; =1+eand
(I1+e—e1)(1+e1) =1+e,ie., 14+e; and 14+ e—e; commute with each other. Hence,
(I+e)? =[1+e1)(1+e—e1))?=(1+e1)?)(1+e—e1)?=(1+e1)(l+e—e1) = 1+e,
ie., 14+e € Id(R), a contradiction. Therefore e must be an atom in the poset Id(R).
By Patil et al. [10], Lemma 3, e is a primitive idempotent. O

A ring is said to be abelian if its every idempotent is central. Now we prove that
the graph of an abelian ring with respect to idempotents is weakly perfect.

Theorem 2.7. Let R be an abelian ring with unity such that w(Gia(R)) < oc.
Then Gr1q(R) is weakly perfect.

Proof. Since w(Gu(R)) < oo, by Lemma 2.4, every maximal set of pairwise
orthogonal idempotents in R is finite, contains zero and the sum of all the elements
of that set is equal to 1. If R contains no nontrivial idempotent, then by Razaghi et
al. [12], Theorem 3.2, G14(R) is a bipartite graph, hence x(G14(R)) = w(G1a(R)) = 2;
and we are through. Suppose that R contains at least one nontrivial idempotent.
If R is a Boolean ring, then G1q(R) is a complete graph, which yields x(Gqa(R)) =
w(G14(R)) = |R|, and we are done again. Now suppose that R is not a Boolean ring,
i.e., there exists x € R such that 22 # x. Let S = {s1,s2,...,5,} be a maximal set
of pairwise orthogonal idempotents in R of largest cardinality. Clearly 1 ¢ S. By

n

Lemma 2.4, > s; = 1 and for any nonzero element x € R, there exists an ¢ such that
i=1
s;x # 0. Since R is abelian, s; 4+ s; is an idempotent in R for any 7, j with i # j.

Consequently, the elements of S form a clique in Giq(R), hence n < w(Gia(R)).
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Now let z € R\ (SU{1}). If = is nonidempotent, then 0 is nonadjacent to z. If =
is idempotent, then by maximality of .S, x is nonadjacent to a nonzero element in S.
Thus, any « € R\ (S U{1}) is nonadjacent to an element of S.

Next, we assign n different colors to si, so, ..., s,. Let x and y be any two adjacent
vertices in Giq(R) that are not in S. From the above paragraph there is an s;
nonadjacent to x. Without loss of generality, assume that s; is nonadjacent to z.
Let s; be nonadjacent to y. We claim that j # 1, i.e., there are distinct elements
(among the s;’s) nonadjacent to x and y. On the contrary assume that s; is the only
(among the s;’s) nonadjacent to both  and y, i.e., x+s; and y+ s; are idempotents
for j =2,3,...,n. If sy =0, then x and y are nonidempotents (because 0 is adjacent
to idempotent). Then s; # 0 for j € {2,...,n}. Let s be such that xzs; # 0. Then
(x + s;)sk is an idempotent < sz, which yields (z + s;)sp = 0 or (x + s;j)sK = sk.
Since zsy, # 0, we have xsy, = s,. Now x is adjacent to s,  + si is an idempotent,
ie., (x + sk)? = x + sy, which gives 22 + 2s;, = . Then multiplication by s gives
228y + 28 = xSk, which yields (using zs, = si) 2s; = 0. Therefore 22 + 25, = x

2 = x, giving = and s; adjacent, a contradiction. Therefore s; # 0. Hence

gives x
s; = 0 for some j € {2,...,n}. Without loss of generality, suppose that s, = 0. Then
sj # 0 for each j € {3,...n}. Since x and y are adjacent to s, = 0, both x and y are
idempotents. Also, sy is a primitive idempotent such that zs; < sq1. If £s; = 0, then
x + $1 is an idempotent making = and s; adjacent, a contradiction. Hence xs; # 0.
Therefore xs; = s1. Similarly ys; = s3. Then s; = xs; = xysi, hence xy # 0. Since

x and y are adjacent, x 4+ y is an idempotent which gives 2zy = 0. From Lemma 2.4

n
we have ) s; = 1. Hence
Jj=1

n n
xzx( sj) =xs1 + E sy,
J=1 J#1,
570

but xs; = s;, whenever xs; # 0 (s; being primitive idempotent). Thus, we get

n
xr =51+ E Sj-

J#1,
x5;7#0

Let

n
t= Z Sj-
J#1,
xs;7#0
Hence x = s; +t. Recall that = + s; is idempotent for each j # 1. Consequently,

(x4 s;)> = x + sj, i.e,, x +as; + xs; + s; = & + s, which gives 2s; = 0 (since
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xs; = s;), hence s; = —s; whenever zs; # 0. This also gives ¢t = —¢, which leads to
x4+t = s1. Then adding y to both sides we get y+x+t = y+s1. Now (y+z+1)? =
(y+x+t)(y+az+t) = > +ay+yt+ay+a? +at+yt+at+t2 = y+ 2wy + 2yt + 2wt +t.
Using 22 = z, 4> = y, 2t = 0 and t?> = t (since s;’s are pairwise orthogonal), we
get (y +x+1)?2 = (y+ax+1),ie, y+ s is an idempotent, which makes y and s;
adjacent, a contradiction.

Thus, there exists s; (j # 1) such that y is nonadjacent to s;. Hence, we can
assign the color of s; to  and the color of s; to y.

Now there are two cases.

Case I. Suppose that ch(R) # 2. Then by Lemma 2.6, there exists a primitive
idempotent sj such that 1 + s, ¢ Id(R), i.e., 1 is not adjacent to s; in Gia(R).
Hence, we can assign the color of s; to 1. Thus, x(Gia(R)) < n. Therefore n <
w(Gra(R)) < x(Gua(R)) < n. Thus w(Ga(R)) = x(Gra(R)) = n.

Case II. Suppose that ch(R) = 2. Then by Remark 2.5, 1 4+ ¢ € Id(R), for any
nonzero e € Id(R). Recall that we are assuming R is non-Boolean ring containing
a nontrivial idempotent. Let S; = S U {1}. Then the elements of S; form a clique
in Gia(R). We assign different colors to elements of S;. Observe that for any two
adjacent vertices x and y there exist different elements of S that are non adjacent to x
and y, respectively. Consequently, |S1]| < w(G1a(R)) < x(Gra(R)) < |S1]. Therefore
w(Gu(R)) = x(Ga(R)) = [S1].

Thus in any case, Giq(R) is weakly perfect. O

We illustrate Theorem 2.7 with the following example.

Example 2.8. Let Ry = Z19. Then Id(Ry) = {0,1,5,6}, the maximal set of
pairwise orthogonal idempotents in Ry is S = {0,5,6} and G14(R1) is depicted in
Figure 1. Observe that w(Gia(R1)) = x(G1a(R1)) = 3.

0 1 4 7 3

) 6 9 2 3
Figure 1. Gld(zlo).

Let Ry = (Z3 x Z3)[z]/{z?) = {eo = (0,0),e1 = (1,0),e2 = (0,1),e5 = (1,1), e17,
€2X,€3%,€1 + €1,e1T + €2,e1X + €3,E27 + €1,e2T + €3,€2T + €3,€3T + €1,e3r +
ea,e3x + ez}. Then S = {eg, e1,ea} is a maximal set of pairwise idempotents in Ry,
S1 = SU{es} and Gra(R2) is depicted in Figure 2. Observe that w(Gia(Rz2)) =
X(Gla(Re)) = 4.
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el €2 ex+e ertexy exr+e; exxt+ex e3r+e; e3r + e
Figure 2. Gq((Z2 x 22)[m]/<x2>)

The following example shows that the condition ‘abelian’ in Theorem 2.7 is suffi-
cient but not necessary.

Example 2.9. Let

00 10 0 1 00
R_MQ(ZQ)_{I_ 00 ’2_[0 o}’3_[0 0]’4:{1 0]’

i 11 1 1

5 [0 0] 4_ g [V 0] s [t 0]
0 1] 0 0 10 01
0 17 01 0 0 11

9— 10 = 11 = 12— 7
1 0] [o 1} [1 1} [1 o]
11 1

13 = R R T L T
0 1] 11 11 11

(here bold numbers are used to denote matrices), with usual addition of matrices
and matrix multiplication.

Here Id(R) = {1,2,5,6,7,8,10,11} and Giq(R) is as depicted (using Sage) in
Figure 3. Observe that w(Giq(R)) = x(G1a(R)) = 4. Here R is not abelian but still
Gra(R) is weakly perfect.

Figure 3. Gpq(Ma2(Z2).
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Recall that a graph G is a perfect graph if the clique number w(H) is the same
as the chromatic number y(H) for every induced subgraph H of G. Chudnovsky et
al. [7] characterized perfect graphs as follows.

Theorem 2.10 (Strong perfect graph theorem [7]). A graph G is perfect if and
only if it has no induced subgraph isomorphic either to a cycle of odd length at
least 5, or to the complement of such a cycle.

Next we provide a condition for Giq(R) to be perfect.

Theorem 2.11. Let R be a ring with unity. If Gi4(R) is perfect, then R has at
most four primitive idempotents.

Proof. Suppose that Gia(R) is perfect. On the contrary, assume that R con-
tains more than four primitive idempotents. Let eq, es, e3, e4 and e5 be distinct prim-
itive idempotents in R. Then (e1 +e2) ~ (e3+e4) ~ (e1+e5) ~ (e2+e3) ~ (esa+e5)
is an induced 5-cycle in Giq(R), a contradiction to the fact that Giq(R) is perfect
(by Theorem 2.10). This completes the proof. O

For the zero-divisor graph I'(R) of a finite reduced commutative semiring R, Patil
et al. [11], Corollary 2.5 proved that if w(I'(R)) < 4, then I'(R) is perfect. The
analogous result is not true for Giq(R) (see example below). We provide rings with
exactly two and three primitive idempotents for which Giq(R) is not perfect.

Example 2.12. Let Ry = Z3xZ5. ThenId(R;1) = {e1 = (0,0),e2 = (1,0),e3 =
(0,1),e4 = (1,1)}, and S = {e1,e9,e3} is a maximal set of pairwise orthogonal
idempotents in R;. Hence, by Theorem 2.7, w(G14(R1)) = 3. Here es, e are the
only primitive idempotents in R;. Let a3 = (2,0),a2 = (0,4) € R;. Then ey ~ ez ~
as ~ eq4 ~ a; ~ ey is an induced 5-cycle in Giq(R;) which has no chord, hence, by
Theorem 2.10, G1q(R1) is not perfect.

Let Ry = Z3 x Z3 x Z3. Then Id(R2) = {f1 = (0,0,0), f2 = (1,0,0), f3 =
(0,1,0), f4 = (0, 0, 1)7 f5 = (1,1,0), fs = (1, 0, 1)7 fr=1(0,1,1), fs = (1, 1, 1)} and
S ={f1, f2, f3, f4} is a maximal set of pairwise orthogonal idempotents in Ry. Hence,
by Theorem 2.7, w(G1a(R2)) = 4. Here fo, f3, f4 are the only primitive idempotents
in Ro. Let by = (2,2, 2),b2 = (1,2, 2) € Ry. Then f1 ~ fg ~ by~ by~ f7 ~ f1 is an
induced 5-cycle in Gi14(Rz2) which has no chord, hence by Theorem 2.10, G14(R2) is
not perfect.

We conclude by characterizing finite abelian rings with unity for which Giq(R)® is
connected.
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Theorem 2.13. Let R be a finite abelian ring. Then the complement of Gi4(R)
is connected if and only if R is not isomorphic to a Boolean ring or to Z3 or to
ZQ X Z3.

Proof. If R is a Boolean ring, then Giq(R) is a complete graph, hence, its
complement is a null graph. The graphs G14(Z2 x Z3)¢ and G1a(Z3)° are as depicted
in Figure 4, which are disconnected graphs.

(0,0) (0,1) (0,1)

(1,0) (1,2) (L1
G1a(Zs2 x Zs3)* Gra(Zs)*
Figure 4. G14(R)¢ disconnected.

Suppose that R is not a Boolean ring. If R has exactly two idempotents, then by
Razaghi et al. [12], G14(R) is either disconnected or is a path. Hence, its complement
is disconnected only if |[R| = 2 or 3, i.e., R = Z3 or R = 7Z3. Suppose that R has
exactly four idempotents, say, Id(R) = {0,1,e,1 — e}. Suppose that ch(R) = 2. If
the additive group R is not generated by Id(R), then by Razaghi et al. [12], G14(R)
is disconnected, hence, its complement is connected. If the additive group R is
generated by Id(R), then R is a Boolean ring (as we are considering ch(R) = 2),
which is a contradiction, since we are considering non-Boolean rings. Suppose that
ch(R) # 2. Then R = eR x (1 — e)R, where eR and (1 — e)R both contain exactly
two idempotents. Then Id(R) = {(0,0),(e,0),(0,1 —e),(e,1 —e)}. If [eR] = 2
and |(1 — e)R| = 3 (since R is not Boolean), then R = Z; x Z3, which yields that
G1a(R) is disconnected. Suppose |eR| = 2 and |(1 — e¢)R| > 3. Then 2¢ = 0 and
2(1 —e) # 0, hence there exists z € (1 — e)R such that z # —z and = # 1 —e.
Then (e,1 —e) and (0,1 — e) are adjacent in Grq(R)¢, which gives a path (0,0) ~
(0,z) ~ (0,1 —e) in Grq(R)°. Similarly, there are paths (0,0) ~ (e,z) ~ (e,1 —€)
and (0,0) ~ (e, x) ~ (e,0) in Grq(R)°. Thus, (0,0) is connected to every other vertex
in G14(R)® through a path. Consequently, G14(R)® is connected. Similarly, Gi4(R)®
is connected if |eR| > 3 and/or |(1 — e)R]| > 3.

Next, suppose that |Id(R)| > 6. By Patil et al. [10], Theorem 4, there is a path in
G14(R)¢ connecting any two nontrivial idempotents of R. Since R is a non-Boolean
ring, there exists z € R which is not an idempotent. Then x is adjacent to 0 in
Gra(R)¢. We claim that there is a nonzero idempotent in R that is adjacent to x
in Gra(R)°. Let S be a maximal set of pairwise idempotents in R. If there is an
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element in S which is adjacent to = in Grq(R)°, then we are done. Suppose that x
is nonadjacent to every element of S in Grq(R)¢, i.e., x + e is an idempotent in R
for each e € S. Observe that x + e; # x + ey for distinct e;,es € S. Let f be
a nonzero idempotent in S. Then by assumption x is nonadjacent to f in Gra(R)¢,
i.e.,, x + f is an idempotent in R. Then as shown in the proof of Theorem 2.7, there
exists an element g € S such that + f + ¢ is not an idempotent in R (clearly g # 0,
as x + f is idempotent). Then f + g is a nonzero idempotent in R that is adjacent
to z in Grq(R)¢. Thus, 0 ~ z ~ f + g is a path in Gq(R)¢. Hence, in Gq(R)¢, 0
is connected to every idempotent and to every nonidempotent element of R through
a path. Thus, G1q(R)° is connected in this case. O
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