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Abstract. We are concerned in this paper with the existence of positive solutions to the
φ-Laplacian third-order boundary value problem
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−(φ(u′′))′(t) = f(t, u(t), u′(t)) for a.e. t ∈ J,

u(0) = 0, u′(0) = a, lim
t→∞

u′′(t) = 0,

∆u(tk) = I1,k(u(tk), u
′(tk)), k = 1, 2, . . . ,

∆u′(tk) = I2,k(u(tk), u
′(tk)), k = 1, 2, . . . ,

−∆φ(u′′)(tk) = I3,k(u(tk), u
′(tk)), k = 1, 2, . . . ,

where a > 0, J = (0,∞), 0 < t1 < t2 < . . . < tk . . ., tk → ∞ as k → ∞, ∆u(tk) =
u(t+k ) − u(t−k ) and J∗ = J \ {tk : k > 1}. The function φ : R → R is an increasing
homeomorphism such that φ(0) = 0, Ii,k ∈ C(I2, [0,∞)) for i = 1, 2, 3 and k > 1, and the
nonlinearity f : J3 → R

+ is a Caratheodory function. By means of a Guo-Krasnoselskii
type fixed point theorem, we prove an existence result for at least one positive solution.
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1. Introduction and main results

Third-order differential equations arise in many physical and engineering appli-

cations such as the deflection of an elastic beam having constant or varying cross-

section, three-layer beam, electromagnetic waves or gravity-driven flows, see [1], [2],

[5], [10], [17] and the references therein. In infinite intervals, third-order BVPs can

describe the evolution of physical phenomena, for example, some draining or coating

fluid-flow problems, see [18]. Due to the unboundedness of the interval, the inves-

tigation for sufficient conditions for the solvability of BVPs is more complicated.

Many papers and monographs considering such problems have appeared in the last

few decades, we refer the reader to [1], [2], [12], [13], [14], [16], [19], [20] and refer-

ences therein. In nature, physical phenomena are generally subject to some kind of

perturbations that make them change their states suddenly. These perturbations are

modeled as impulses. That’s why many authors have been interested in the study of

impulsive BVPs, see for instance [3], [4], [11], [15], [21] and references therein.

In the last three decades, many authors investigated the existence of positive

solutions for such kind of problems involving p-Laplacian operator or its natural

generalization, φ-Laplacian operator, see, for instance, [3], [7], [8], [9] and references

therein. Physically speaking, often the solution to this type of problem refers to

density, position, temperature, etc. That’s why some of the above-cited references

were interested in studying the existence of positive solutions.

This work deals with the existence of positive solutions to the φ-Laplacian third-

order boundary value problem (bvp for short)

(1.1)





−(φ(u′′))′(t) = f(t, u(t), u′(t)) for a.e. t ∈ J,

u(0) = 0, u′(0) = α, lim
t→∞

u′′(t) = 0,

∆u(tk) = I1,k(u(tk), u
′(tk)), k = 1, 2, . . . ,

∆u′(tk) = I2,k(u(tk), u
′(tk)), k = 1, 2, . . . ,

−∆φ(u′′)(tk) = I3,k(u(tk), u
′(tk)), k = 1, 2, . . . ,

where α > 0, J = (0,∞), 0 < t1 < t2 < . . . < tk < . . ., tk → ∞ as k → ∞

and ∆u(i)(tk) = u(t+k ) − u(t−k ) for any function u. The function φ : R → R is an

increasing homeomorphism such that φ(0) = 0, Ii,k ∈ C(J × J, J) for i = 1, 2, 3 and

k > 1, and the nonlinearity f : J × J × J → [0,∞) is a Caratheodory function, that

is

⊲ f(·, u, v) is measurable for all u, v ∈ J and

⊲ f(t, ·, ·) is continuous for a.e. t ∈ J .

In all what follows, we use the following notations. We let J = [0,∞), Jj =

(tj−1, tj) and Jj = [tj−1, tj ] for all j > 1 with t0 = 0 and J∗ = J \ {tk : k > 1}. We
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let also ψ to be the inverse function to φ and we suppose that

(1.2)

{
there exist p, q > 0 such that for all x > 0

and t ∈ (0, 1), tqφ(x) 6 φ(tx) 6 tpφ(x).

Note that for all x > 0 and t ∈ (0, 1), we have from (1.2) that

(1.3) t1/pψ(x) 6 ψ(tx) 6 t1/qψ(x).

Let φ+, φ−, ψ+ and ψ− be the functions defined on J by

φ−(x) =

{
xq if x 6 1,

xp if x > 1,
φ+(x) =

{
xp if x 6 1,

xq if x > 1,

ψ−(x) =

{
x1/q if x 6 1,

x1/p if x > 1,
ψ+(x) =

{
x1/p if x 6 1,

x1/q if x > 1

and notice that

(φ+)−1 = ψ−, (φ−)−1 = ψ+,(1.4)

φ+
(1
x

)
=

1

φ−(x)
, ψ+

(1
x

)
=

1

ψ−(x)
for all x > 0.

It follows from (1.3) that for all t, x > 0,

φ−(t)φ(x) 6 φ(tx) 6 φ+(t)φ(x),(1.5)

ψ−(t)ψ(x) 6 ψ(tx) 6 ψ+(t)ψ(x).

Equivalently, for all t, x > 0 we have

φ(ψ−(t)x) 6 tφ(x) 6 φ(ψ+(t)x),(1.6)

ψ(φ−(t)x) 6 tψ(x) 6 ψ(φ+(t)x).

We obtain also, from (1.2) and (1.3), that for all x, y > 0,

φ∗(φ(x) + φ(y)) 6 φ(x + y) 6 φ∗(φ(x) + φ(y)) and(1.7)

ψ∗(ψ(x) + ψ(y)) 6 ψ(x+ y) 6 ψ∗(ψ(x) + ψ(y)),

where
φ∗ = min(1, 2p−1), φ∗ = max(1, 2q−1),

ψ∗ = min(1, 2(1−q)/q), ψ∗ = max(1, 2(1−p)/p).
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Throughout this paper, we suppose that the following conditions hold.

(1.8)





Ii,k(u, v) 6 ai,ku+ bi,kv + ci,k ∀u, v > 0 for i = 1, 2 and k > 1,

I3,k(u, v) 6 a3,kφ(u) + b3,kφ(v) + c3,k ∀u, v > 0 for k > 1,

a1 =
∑

k>1

a1,k <∞, a2 =
∑

k>1

a2,k(1 + tk) <∞,

a3 =
∑

k>1

a3,k(1 + tk)
2q <∞,

b1 =
∑

k>1

b1,k(1 + tk)
−1 <∞, b2 =

∑

k>1

b2,k <∞,

b3 =
∑

k>1

b3,k(1 + tk)
q <∞,

c1 =
∑

k>1

c1,k(1 + tk)
−2 <∞, c2 =

∑

k>1

c2,k(1 + tk)
−1 <∞,

c3 =
∑

k>1

c3,k <∞.

(1.9)





For all R > 0 there exist two functions ωR : I → I and ΨR : I2 → I

such that ΨR is nonincreasing following its two variables,

f(t, (1 + t)2w, (1 + t)z) 6 ωR(t)ΨR(w, z) for all t, w, z > 0

with |(w, z)| 6 R,∫ ∞

s

ωR(τ)ΨR(rγ̃(τ), rγ(s)) dτ <∞ for all s ∈ I and r ∈ (0, R], and

∫ t

0

ψ

(∫ ∞

s

ωR(τ)ΨR(rγ̃(τ), rγ(τ)) dτ

)
ds <∞ for all t ∈ I and r ∈ (0, R],

where |(w, z)| = sup(|w|, |z|),

̺(t) =





t if t ∈ [0, 1],

1

t
if t > 1,

˜̺(t) =
∫ t

0

̺(s) ds =





t2

2
if t ∈ [0, 1],

1

2
+ ln t if t > 1,

γ(t) =
̺(t)

1 + t
=





t

(1 + t)
if t ∈ [0, 1],

1

t(1 + t)
if t > 1,
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γ̃(t) =
˜̺(t)

(1 + t)2
=





t2

(1 + t)2
if t ∈ [0, 1],

1 + ln t

2(1 + t)2
if t > 1.

We set throughout this work

A = a1 + a2 + b1 + b2 + (ψ∗)2ψ+(a3 + b3),

B = α+ c1 + c2 + (ψ∗)2ψ(c3).

R em a r k 1.1. Observe that the case when the nonlinearity f satisfies the poly-

nomial growth condition

f(t, u, v) 6 C(1 + uσ + vµ),

where C, σ, µ > 0, is a particular case when condition (1.9) is satisfied.

By a positive solution to bvp (1.1), we mean a function u in C2(J) such that u > 0

in (0,∞), u(0) = lim
t→∞

u′′(t) = 0, φ(u′′) belongs to W 1,1([τ,∞)) for all τ > 0, and

u satisfies the differential equation in (1.1).

Our approach to bvp (1.1) consists in a fixed point formulation. Since the nonlin-

earity f is supposed here to be nonnegative, the existence of a positive solution will

be proved by means of Guo-Krasnoselskii’s version of the expansion and compression

of a cone in a Banach space principle.

The statement of the main result in this paper needs to introduce some additional

notations. Let

Π = {m : J → J measurable such that

∫ ∞

s

m(τ) dτ <∞

for all s > 0 and

∫ t

0

ψ+

(∫ ∞

s

m(τ) dτ

)
ds <∞ for all t > 0},

and set for m ∈ Π, θ > 1, and ν = 0,∞,

Jθ = [1/θ, θ],

fν(m) = lim sup
|(w,z)|→ν

(
sup
t>0

f(t, (1 + t)2w, (1 + t)z)

m(t)φ(w + z)

)
,

fν(m, θ) = lim inf
|(w,z)|→ν

(
min
t∈Jθ

f(t, (1 + t)2w, (1 + t)z)

m(t)φ(w + z)

)
,
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where |(w, z)| = |w| + |z|,

̺(m) = 2 sup
t>1

(
1

1 + t

∫ t

0

ψ+

(∫ ∞

s

m(τ) dτ

)
ds

)
,

Γ0(m) = φ+
(
2ψ∗̺(m)

1−A

)
and Γ∞(m) = φ+

(
2(ψ∗)2̺(m)

1−A

)
for A > 1,

µ(m, θ) =
1

1 + θ
ψ−

(∫ θ

1/θ

m(τ)φ−(γ̃(τ) + γ(τ)) dτ

)
,

Θ(m, θ) = φ−(µ(m, θ)).

The following theorem is the main result of this work.

Theorem 1.2. Assume that hypotheses (1.2), (1.8) and (1.9) hold and there exist

θ > 1 and two functions m0,m∞ ∈ Π such that one of the conditions

(1.10) A < 1, B = 0, f0(m0)Γ0(m0) < 1 < Θ(m∞, θ)f∞(m∞, θ)

and

(1.11) A < 1, f∞(m∞)Γ∞(m∞) < 1 < Θ(m0, θ)f0(m0, θ)

is satisfied. Then bvp (1.1) has at least one positive solution u such that for all t > 1,

u(t) > σu(1/2 + ln t) for some σu > 0.

2. Example

Consider bvp (1.1) with φ(x) = |x|p−1x+ |x|q−1x and

f(t, u, v) =
t

(1 + t)ξ

(
θ

(
u

(1 + t)2
+

v

(1 + t)

)m

+ σ

(
u

(1 + t)2
+

v

(1 + t)

)n)
,

where θ, σ, n > 0, q > p > 0, ξ > 2 and max(−2− 1/q, (2− ξ)/2) < m < 0.

Clearly, the function φ satisfies (1.2) and for all t, w, z > 0 with w + z < R, we

have

f(t, (1 + t)2w, (1 + t)z) =
t

(1 + t)ξ
(θ(w + z)m + σ(w + z)n) 6 ωR(t)ΨR(w, z),

where ωR(t) = ω(t) = t(1 + t)−ξ and ΨR(w, z) = θwm + σRn.
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Taking into account ξ > 2 and m < 0, straightforward calculations lead to

(2.1) ω(τ)ΨR(Rγ̃(τ), Rγ(τ)) ∼ θRm(1 + τ)−ξ−2m+1 at ∞

and

(2.2) ω(τ)ΨR(Rγ̃(τ), Rγ(τ)) ∼ θRmτm+1 at 0.

Noticing that −ξ − 2m+ 1 < −1, we obtain from (2.1)

∫ ∞

s

ωR(τ)ΨR(Rγ̃(τ), Rγ(τ)) dτ <∞ for all s > 0.

We obtain also from (2.2) that at 0 we have

(2.3) ψ+

(∫ ∞

s

ωR(τ)ΨR(Rγ̃(τ), Rγ(τ)) d

)
τ ∼ c





s(m+2)p if m>−2,

ln s if m=−2,

sm+2 if − 2>m>−2− 1/q.

Because of the estimate

∫ t

0

ψ

(∫ ∞

s

ωR(τ)ΨR(Rγ̃(τ), Rγ(τ)) dτ

)
ds

6 ψ(1)

∫ t

0

ψ+

(∫ ∞

s

ωR(τ)ΨR(Rγ̃(τ), Rγ(τ)) dτ

)
ds,

we conclude that if m > −2− 1/q, then

∫ t

0

ψ

(∫ ∞

s

ωR(τ)ΨR(Rγ̃(τ), Rγ(τ)) dτ

)
ds <∞.

This shows that hypothesis (1.9) is fulfilled.

Set m0(t) = m∞(t) = ω(t), straightforward computations lead to

f0(ω, θ) = ∞,

f∞(ω) =





0 if n < q,

σ if n = q,

∞ if n > q.

Suppose that A < 1, we conclude then from Theorem 1.2 and all the above cal-

culations that for such a case, bvp (1.1) admits a positive solution if either n < q or

n = q and σΓ∞(ω) < 1.
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3. Abstract background

Let (E, ‖·‖) be a Banach space and let K be a cone in E, i.e., K is a nonempty

closed and convex subset of E, such that K ∩ (−K) = ∅ and tK ⊂ K for all t > 0.

The main result of this work will be proved by means of the following theorem which

can be proved in the same way as Theorems 2.3.3–2.3.5 in [11].

Theorem 3.1. Let r1, r2 be two positive real numbers such that r1 < r2 and let

T : K ∩ (Ω2 \ Ω1) → K be a compact mapping where Ωi = {u ∈ E, ‖u‖1 < ri} for

i = 1, 2. If one of the conditions

(1) ‖Tu‖ < ‖u‖ for all u ∈ K∩∂Ω1 and there exists e ∈ K\{0} such that u 6= Tu+te

for all u ∈ K ∩ ∂Ω2 and all t > 0,

(2) there exists e ∈ K \ {0} such that u 6= Tu+ te for all u ∈ K ∩ ∂Ω1 and all t > 0

and ‖Tu‖ < ‖u‖ for all u ∈ K ∩ ∂Ω2,

is satisfied, then T has at least a fixed point in K ∩ (Ω2 \ Ω1).

4. Fixed point formulation

Consider the functional spaces

PC(J) = {u : J → R continuous for t ∈ J∗, u(tk) = u(t−k )

and u(t+k ) exists for all k > 1},

PC1(J) = {u ∈ PC(J) : ∃ v ∈ PC(J) such that u′(t) = v(t) for all t ∈ J∗}.

Let E and F be the linear spaces defined by

E =

{
u ∈ PC1(J) :

∑

k>1

|∆u(tk)|

(1 + tk)2
<∞,

∑

k>1

|∆u′(tk)|

1 + tk
<∞, sup

t>0

|u(t)|

(1 + t)2
<∞,

and sup
t>0

|u′(t)|

1 + t
<∞

}
.

Equipped by the norm ‖·‖, where for u ∈ E

‖u‖ = max(‖u‖3, ‖u‖4, ‖u‖5, ‖u‖6),

‖u‖3 =
∑

k>1

|∆u(tk)|

(1 + tk)2
, ‖u‖4 =

∑

k>1

|∆u′(tk)|

1 + tk
,

‖u‖5 = sup
t>0

|u(t)|

(1 + t)2
, ‖u‖6 = sup

t>0

|u′(t)|

1 + t
,

the linear space E becomes a Banach space.
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Let E1 and E2 be the subspaces of E defined by

E1 =

{
u : u(t) =

k=j−1∑

k=0

γk +

k=j∑

k=1

(i=k−1∑

k=0

δi

)
(tk − tk−1)

+

( i=j∑

k=0

δi

)
(t− tj) for t ∈ (tj , tj+1),

(γi), (δi) ⊂ R, γ0 = δ0 = 0,
∑

k>1

|γk|

(1 + tk)2
<∞ and

∑

k>1

|δk|

1 + tk
<∞

}

and

E2 =

{
u ∈ C1(J) : lim

t→∞

u′(t)

1 + t
= 0

}
,

respectively.

Let ‖·‖1 and ‖·‖2 be the norms defined on E1 and E2 by

‖u‖1 = max(‖u‖3, ‖u‖4) for all u ∈ E1

and ‖u‖2 = max(‖u‖5, ‖u‖6) for all u ∈ E2,

respectively. Since ‖u‖ = ‖u‖i for i = 1, 2 and all u ∈ Ei, we conclude that for

i = 1, 2, (Ei, ‖u‖i) is a Banach space.

Let l# = l11 × l12, where l
1
1 and l

1
2 are defined by

l11 =

{
γ = (γk)k>1 : |γ|1 =

∑

k>1

|γk|

(1 + tk)2
<∞

}
,

l12 =

{
δ = (δk)k>1 : |δ|2 =

∑

k>1

|δk|

1 + tk
<∞

}
.

Clearly for i = 1, 2 we have that (l1i , |·|i) is a Banach space and (E2, ‖·‖2) is isometric

to (l#, |·|#) where |(γ, δ)|# = max(|γ|1, |δ|2) for all (γ, δ) ∈ l#.

Throughout this paper, K is the cone of E given by

K = {u ∈ E : u, u′ > 0 on J and u′ is concave in J}.

Lemma 4.1. For all u ∈ K and t > 0, we have

u(t) > ˜̺(t)‖u‖ and u′(t) > ̺(t)‖u‖.
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P r o o f. Let u ∈ K \{0} (the case u = 0 is obvious) and let us prove first that u′

is nondecreasing on J . To this aim let t1, t2 ∈ J with t1 < t2. By the concavity of u
′,

for all η > t2 we have
u′(η) − u′(t2)

η − t2
6
u′(η)− u′(t1)

η − t1
,

leading to

u′(t2) >
η − t2
η − t1

u′(t1) +
(t1 − t2)(1 + η)

η − t1

u′(η)

1 + η
.

Letting η → ∞, we obtain u′(t2) > u′(t1). We have proved that u
′ is nondecreasing

on J .

Now, set h(t) = u′(t)/(1 + t). Since h(0) = α > 0 and lim
t→∞

h(t) = 0, we claim

that there exists t0 ∈ J such that h(t+0 ) = sup
t∈J

h(t) = ‖u‖6. Indeed, let m = sup
t∈J

h(t).

There exists a sequence (tn) such that limh(tn) = m. Because lim
t→∞

h(t) = 0, the

sequence (tn) is bounded and converges (up to a subsequence) to some t0 ∈ J . Taking

in account u′ is nondecreasing on J yields

limh(tn) = m 6 lim sup
t→t0

h(t) =
lim supt→t0 u

′(t)

1 + t0
=
u′(t+0 )

1 + t0
6 m.

At this stage let θ > 1. For arbitrary t > t0 we have by the concavity of u
′

u′
(
1

θ

)
= u′

(
θ − 1 + θt

θ + θt

1

θ − 1 + θt
+

t

θ + θt

)

>
θ − 1 + θt

θ + θt
u′
(

1

θ − 1 + θt

)
+

1

θ + θt
u′(t)

>
1

θ

u′(t)

1 + t
.

Letting t→ t0 we obtain

(4.1) u′
(
1

θ

)
>

1

θ

u′(t+0 )

1 + t0
=

1

θ
‖u‖6.

Thus, for t > 0 we distinguish the following cases.

(i) t = 0, in this case we have u′(0) = α > 0 = ̺(0)‖u‖6.

(ii) t > 1, in this case taking in consideration u′ is nondecreasing on J and (4.1),

we obtain u′(t) > u′(1/t) > (1/t)‖u‖6.

(iii) 0 < t < 1, in this case we have from (4.1) that u(t) = u(1/t−1) > (1/t−1)‖u‖6 =

t‖u‖6.

Hence, we have proved that u′(t) > ̺(t)‖u‖6 for all t ∈ J .

592



At the end, because u is nondecreasing on J , we have ∆u(tk) = u(t+k )−u(t−k ) > 0

for all k > 1. Therefore, we have

u(t) =

∫ t

0

u′(s) ds+
∑

tk<t

∆u(tk) >

∫ t

0

̺(s)‖u‖6 ds = ˜̺(t)‖u‖6.

�

Definition 4.2. A subset M in l1 is said to be equiconvergent if for any ε > 0

there exists kε ∈ N such that
∑

k>kε

|xk| 6 ε for all (xk)k>1 ∈M .

Definition 4.3. Let M be a nonempty subset in E2. The subset M is said to

be:

(i) locally equicontinuous in E2 if for all a > 0 and any ε > 0, there exists δ > 0

such that for all t1, t2 ∈ [0, a] and all u ∈M

|t2 − t1| 6 δ =⇒





∣∣∣∣
u(t2)

(1 + t2)2
−

u(t1)

(1 + t1)2

∣∣∣∣ 6 ε and

∣∣∣∣
u′(t2)

1 + t2
−
u′(t1)

1 + t1

∣∣∣∣ 6 ε,

(ii) equiconvergent if for any ε > 0, there exists tε > 0 such that for all u ∈M and

all t > tε we have ∣∣∣∣
u(t)

(1 + t)2

∣∣∣∣ 6 ε,

∣∣∣∣
u′(t)

1 + t

∣∣∣∣ 6 ε.

The following lemma presents a compactness criterion in l1.

Lemma 4.4. Let M be a subset in l1. If M is bounded and equivergent, then M

is relatively compact in l1.

P r o o f. Set for any l ∈ N,

El = {(xk)k>1 ∈ l1 : xk = 0 for all k > l + 1}.

Clearly, for any l ∈ N, El is a closed subspace of l
1 with dim(El) = l.

Let ε > 0, then there exits kε ∈ N such that
∑

k>kε

|xk| 6 ε/2 for all (xk)k>1 ∈M .

Set now X̃ = (x1, x2, . . . , xkε−1, 0, 0, . . .) and M̃ = {X̃ : X ∈ M} for X =

(xk)k>1 ∈ M . Hence, we have M̃ ⊂ Ekε
and M̃ is bounded in Ekε

. Indeed,

for all X = (xk)k>1 ∈M , we have

|X̃|1 =

k=kε−1∑

k=1

|xk| 6
∑

k>1

|xk| = |X |1.
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Now, we know that M̃ is relatively compact in Ekε−1. So, there exist a1, a2, . . . , am

belonging to Ekε
such that

M̃ ⊂
i=m⋃

i=1

B
(
ai,

ε

2

)
.

Let X = (xk)k>1 ∈ M . There exists i0 ∈ {1, . . . ,m} such that X̃ ∈ B(ai0 , ε/2).

Therefore, if ai0 = (ai0,1, ai0,2, . . . , ai0,kε−1, 0, 0, . . .), we have

|X − ai0 |1 =

k=kε−1∑

k=1

|xk − ai0,k|+
∑

k>kε

|xk| = |X̃ − ai0 |1 +
∑

k>kε

|xk| 6
ε

2
+
ε

2
= ε.

This shows that M ⊂
i=m⋃
i=1

B(ai, ε) and M is relatively compact in l1. �

Since the space E1 is isometric to l
1 × l1, we deduce from the above lemma the

following compactness criterion available in E1.

Lemma 4.5. A nonempty subset M of E1 is relatively compact if the condi-

tions (a) and (b) hold.

(a) M is bounded in E1.

(b) For all ε > 0, there corresponds kε > 0 such that
∑

k>kε

|∆u(tk)|/(1 + tk)
2 6 ε

and
∑

k>kε

|∆u′(tk)|/(1 + tk) 6 ε for all x ∈M .

The following lemma is an adapted version for the case of the space E2 of Cor-

duneanu’s compactness criterion ([6], p. 62). It will be used to prove that for

R > r > 0, the operator T given by Lemma 4.9 maps K ∩ (B(0, R) \ B(0, r))

into a relatively compact subset of E.

Lemma 4.6. A nonempty subset M of F is relatively compact if the condi-

tions (a)–(c) hold.

(a) M is bounded in F .

(b) The sets {u : u(t) = x(t)/(1 + t)2, x ∈M} and {u : u(t) = x′(t)/(1 + t), x ∈M}

are locally equicontinuous on [0,∞).

(c) The sets {u : u(t) = x(t)/(1 + t)2, x ∈M} and {u : u(t) = x′(t)/(1 + t), x ∈M}

are equiconvergent at ∞, that is, given ε > 0, there corresponds Tε > 0 such

that for all x ∈M , |x(t)/(1 + t)2| 6 ε, |x′(t)/(1 + t)| 6 ε for any t > Tε.
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Let for u ∈ K \ {0} it holds Tu = T1u+ T2u, where

T1u(t) =
∑

tk<t

I1,k(u(tk), u
′(tk)) +

∫ t

0

(∑

tk<s

I2,k(u(tk), u
′(tk))

)
ds and

T2u(t) = αt+

∫ t

0

(t− s)ψ

(∑

tk>s

I3,k(u(tk), u
′(tk)) +

∫ ∞

s

f(τ, u(τ), u′(τ)) dτ

)
ds.

The following lemma provides a fixed point formulation for bvp (1.1).

Lemma 4.7. Assume that hypotheses (1.5), (1.8) and (1.9) hold, then T1u ∈

K ∩ E for all u ∈ K. Moreover, the mapping T1 : K → K ∩ E1 is completely

continuous.

P r o o f. Let u ∈ K. For any t ∈ Jj = (tj , tj+1) we have

T1u(t) =
∑

tk<t

I1,k(u(tk), u
′(tk)) +

∫ t

0

(∑

tk<s

I2,k(u(tk), u
′(tk))

)
ds

=

k=j∑

k=1

I1,k(u(tk), u
′(tk)) +

k=j∑

k=1

[∫ tk

tk−1

(i=k−1∑

i=1

I2,i(u(ti), u
′(ti))

)
ds

]

+

∫ t

tj

(i=j∑

i=1

I2,i(u(ti), u
′(ti))

)
ds

=

k=j∑

k=1

I1,k(u(tk), u
′(tk)) +

k=j∑

k=1

[(i=k−1∑

i=1

I2,i(u(ti), u
′(ti))

)
(tk − tk−1)

]

=

(i=j∑

i=1

I2,i(u(ti), u
′(ti))

)
(t− tj).

This shows that T1u ∈ E2.

Furthermore, because that holds for all t ∈ Jj , we have

(T1u)
′(t) =

i=j∑

i=1

I2,i(u(ti), u
′(ti)),

(T1u)
′′(t) = 0

and for all j > 1 we have

∆(T1u)(tj) = I1,j(u(tj), u
′(tj)) > 0,

∆(T1u)
′(tj) = I2,j(u(tj), u

′(tj)) > 0,

thus we conclude that T1u ∈ K ∩ E2.
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Let I# : K → l# be the mapping defined by

I#(u) =
(
(I1,k(u(tk), u

′(tk)))k>1, (I2,k(u(tk), u
′(tk)))k>1

)
.

Since for all u ∈ K

(4.2)
∑

k>1

|I1,k(u(tk), u′(tk))|

(1 + tk)2
6

∑

k>1

(
a1,k

u(tk)

(1 + tk)2
+ b1,k

u′(tk)

(1 + tk)2
+

c1,k
(1 + tk)2

)

6 ‖u‖

(∑

k>1

a1,k +
∑

k>1

b1,k
1 + tk

)
+

∑

k>1

c1,k
(1 + tk)2

<∞

and

(4.3)
∑

k>1

|I2,k(u(tk), u
′(tk))|

1 + tk
6

∑

k>1

(
a2,k

u(tk)

1 + tk
+ b2,k

u′(tk)

1 + tk
+

c2,k
1 + tk

)

6 ‖u‖

(∑

k>1

a2,k(1 + tk) +
∑

k>1

b2,k

)

+
∑

k>1

c2,k
1 + tk

<∞,

the mapping I# is well defined. Moreover, the continuity of the functions I1,k and

I2,k for all k > 1 makes of I# a continuous mapping.

Hence, taking in consideration that T1 = Iso◦I#, where Iso is the isometry between

l# and E2, we deduce that T1 is a continuous mapping.

Now, letM be a subset in K bounded by R > 0. From inequalities (4.2) and (4.3)

we obtain that for all u ∈M

∑

k>1

|I1,k(u(tk), u
′(tk))|

(1 + tk)2
6 R

(∑

k>1

a1,k +
∑

k>1

b1,k
1 + tk

)
+

∑

k>1

c1,k
(1 + tk)2

<∞,

∑

k>1

|I2,k(u(tk), u′(tk))|

(1 + tk)2
6 R

(∑

k>1

a2,k(1 + tk) +
∑

k>1

b2,k

)
+

∑

k>1

c2,k
1 + tk

<∞.

Therefore, for any ε > 0 there exists kε ∈ N such that for all u ∈M we have

∑

k>kε

|I1,k(u(tk), u′(tk))|

(1 + tk)2
6 R

(∑

k>kε

a1,k +
∑

k>kε

b1,k
1 + tk

)
+

∑

k>kε

c1,k
(1 + tk)2

6 ε,

∑

k>kε

|I2,k(u(tk), u
′(tk))|

(1 + tk)2
6 R

(∑

k>kε

a2,k(1 + tk) +
∑

k>kε

b2,k

)
+

∑

k>kε

c2,k
1 + tk

6 ε.

Thus, the equiconvergence of T1(M) is proved and this concludes the proof of T1
being completely continuous. �
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Lemma 4.8. Assume that hypotheses (1.5), (1.8) and (1.9) hold, then for all

u ∈ K \ {0} it is T2u ∈ K ∩E2. Moreover, for all r, R with 0 < r < R, the mapping

T2 : K ∩ (B(0, R) \B(0, r)) → K ∩ E2 is compact.

P r o o f. Let r, R be real numbers with 0 < r < R and set Ω = K ∩ (B(0, R) \

B(0, r)). Set for k > 1,

z3,k = φ(R)(a3,k(1 + tk)
2q + b3,k(1 + tk)

q) + c3,k

and let Φr,R be the function defined by

Φr,R(s) = ωR(s)ΨR

(
rγ̃(s), rγ(s)

)
,

where ωR and ΨR are the functions given by hypothesis (1.9).

Claim 1. T : Ω → K ∩ E2 is well defined. For all u ∈ Ω, we have by hypothesis

(1.8),

I3,k(u(tk), u(tk)) 6 a3,kφ(u(tk)) + b3,kφ(u
′(tk)) + c3,k

6 a3,kφ
+((1 + tk)

2)φ

(
u(tk)

(1 + tk)2

)

+ b3,kφ
+(1 + tk)φ

(
u′(tk)

1 + tk

)
+ c3,k

6 z3,k

and by hypothesis (1.9)

f(τ, u(τ), u′(τ)) = f

(
τ, (1 + τ)2

u(τ)

(1 + τ)2
, (1 + τ)

u′(τ)

1 + τ

)
6 Φr,R(τ).

Taking in account hypotheses (1.8) and (1.9), we obtain from the above estimates

∑

tk>t

I3,k(u(tk), u(tk)) 6 A3 <∞ for all t > 0

and ∫ ∞

s

f(τ, u(τ), u′(τ)) dτ 6

∫ ∞

s

Φr,R(τ) dτ <∞ for all s > 0,

where A3 =
∑
k>1

z3,k = φ(R)(a3 + b3) + c3.

Therefore, the function

s→ ψ
(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ +
∑

tk>s

I3,k(u(tk), u
′(tk)

)
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belongs to PC(J). Using (1.7), we obtain

ψ

(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ +
∑

tk>s

I3,k(u(tk), u
′(tk)

)

6 ψ∗ψ

(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ

)
+ ψ∗ψ

(∑

tk>s

I3,k(u(tk), u
′(tk)

)

6 ψ∗ψ

(∫ ∞

s

Φr,R(τ) dτ

)
+ ψ∗ψ(A3).

The above estimates and hypothesis (1.9) show that the function

s→ ψ

(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ +
∑

tk>s

I3,k(u(tk), u
′(tk)

)

is integrable on [0, t] for all t > 0 and T2u is well defined on J . Furthermore, it is

easy to see that T2u ∈ C1(J) with

(T2u)
′(t) = α+

∫ t

0

ψ

(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ +
∑

tk>s

I3,k(u(tk), u
′(tk)

)
ds

for all t > 0 and (T2u)
′ is differentiable with

(T2u)
′′(t) = ψ

(∫ ∞

t

f(τ, u(τ), u′(τ)) dτ +
∑

k>j−1

I3,k(u(tk), u
′(tk)

)
for all t ∈ Jj ,

(T2u)
′′(t−j ) = (T2u)

′′(tj) = ψ

(∫ ∞

tj

f(τ, u(τ), u′(τ)) dτ +
∑

k>j

I3,k(u(tk), u
′(tk)

)
,

and

(T2u)
′′(t+j ) = ψ

(∫ ∞

tj

f(τ, u(τ), u′(τ)) dτ +
∑

k>j+1

I3,k(u(tk), u
′(tk)

)
> (T2u)

′′(t−j ).

The above identities show that (T2u)
′′ is nonincreasing and (T2u)

′ is concave on J .

It remains to show that for all u ∈ Ω,

lim
t→∞

T2u(t)

(1 + t)2
= lim

t→∞

(T2u)
′(t)

1 + t
= 0

to conclude that T2Ω ⊂ K∩E2. This needs to introduce some functions and establish

some estimates. Set for all t > 0,

U(t) =

∫ t

0

ψ

(∫ ∞

s

Φr,R(τ) dτ

)
ds

and V (t) =

∫ t

0

ψ

(∑

tk>s

z3,k

)
ds.
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Clearly, U ∈ C1(J) and by L’Hopital’s rule

lim
t→∞

U(t)

1 + t
= lim

t→∞
U ′(t) = lim

t→∞
ψ

(∫ ∞

t

Φr,R(τ) dτ

)
= 0.

Let ε > 0, there exists tε > 0 such that
∑

tk>tε

z3,k 6 φ(ε). Hence, for t > tε we have

V (t) =

∫ tε

0

ψ

(∑

tk>s

z3,k

)
ds+

∫ t

tε

ψ

( ∑

tk>s>tε

z3,k

)
ds

6 ψ(A3)tε + ε(t− tε)

leading to

lim sup
t→∞

V (t)

1 + t
6 lim

t→∞

ψ(A3)tε + ε(t− tε)

1 + t
= ε.

Since ε is arbitrary, we conclude that lim
t→∞

V (t)/(1 + t) = 0.

In the remainder of this proof, we let

U∗ = sup
t>0

U(t)

1 + t
and V ∗ = sup

t>0

V (t)

1 + t
.

At this stage, for any u ∈ Ω we have

T2u(t)

(1 + t)2
=

∫ t

0
(T2u)

′(s) ds

(1 + t)2
6

(T2u)
′(t)

1 + t
6 ψ∗ U(t)

1 + t
+ ψ∗ V (t)

1 + t
,(4.4)

leading to

lim
t→∞

T2u(t)

(1 + t)2
= lim

t→∞

(T2u)
′(t)

1 + t
= 0.

This ends the proof of T2Ω ⊂ K ∩ E2.

Claim 2. T : Ω → K ∩ E2 is continuous. Let (un)n be a sequence in Ω with

lim
n→∞

un = u.

We start by proving that for all η > 0,

sup
t∈[0,η]

|(Tun)′(t)− (Tu)′(t)|

1 + t
→ 0 as n→ ∞.

For any s ∈ J , we have

|f(τ, un(τ), u
′
n(τ)− f(τ, u(τ), u′(τ))| −→

n→∞
0 for a.e. τ ∈ [s,∞)
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and

|f(τ, un(τ), u
′
n(τ)− f(τ, u(τ), u′(τ))| 6 2Φr,R(τ) for a.e. τ ∈ [s,∞).

By means of the Lebesgue dominated convergence theorem, we obtain

(4.5) lim
n→∞

∫ ∞

s

f(τ, un(τ), u
′
n(τ)) dτ =

∫ ∞

s

f(τ, u(τ), u′(τ)) dτ for all s ∈ I.

Moreover, since

|I3,k(un(tk), u
′
n(tk))− I3,k(u(tk), u

′(tk))| 6 z3,k

and
∞∑
k=1

z3,k <∞, the dominated convergence theorem for series gives

(4.6) lim
n→∞

∑

tk>s

I3,k(un(tk), u
′
n(tk)) =

∑

tk>s

I3,k(u(tk), u
′(tk)).

Set

gn(s) =

∣∣∣∣ψ
(∫ ∞

s

f(τ, un(τ), u
′
n(τ)) dτ +

∑

tk>s

I3,k(un(tk), u
′
n(tk))

)

− ψ

(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ +
∑

tk>s

I3,k(u(tk), u
′(tk))

)∣∣∣∣.

The continuity of ψ, (4.5) and (4.6) lead to lim gn(s) = 0 for all s > 0.

Since

gn(s) 6 2ψ

(∫ ∞

s

Φr,R(τ) dτ +A3

)
for all n ∈ N,

the Lebesgue dominated convergence theorem leads to

sup
t∈[0,η]

|(Tun)′(t)− (Tu)′(t)|

1 + t
6 sup

t∈[0,η]

|(Tun)
′(t)− (Tu)′(t)|

6

∫ η

0

gn(s) ds → 0 as n→ ∞.

Now, we have

|(T2un)′(t)− (T2u)
′(t)|

1 + t
6 2ψ∗ U(t)

1 + t
+ 2ψ∗ V (t)

1 + t
→ 0 as t→ ∞.
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Therefore, for all ε > 0 some ηε > 0 corresponds such that for all n > 1

sup
t∈[ηε,∞)

|(T2un)′(t)− (T2u)
′(t)|

1 + t
6
ε

2
.

Taking in consideration

lim
n→∞

(
sup

t∈[0,ηε]

|(T2un)′(t)− (T2u)
′(t)|

1 + t

)
= 0,

we conclude that there exists nε ∈ N such that for all n > nε, we have

‖T2un − T2u‖6 6 sup
t∈[0,ηε]

|(T2un)′(t)− (T2u)
′(t)|

1 + t
+ sup

t∈[ηε,∞)

|(T2un)′(t)− (T2u)
′(t)|

1 + t

6
ε

2
+
ε

2
= ε.

This ends the proof of Claim 2.

Claim 3. T2Ω is relatively compact. Estimate (4.4) leads to

‖T2u‖6 6 ψ∗(U∗ + V ∗) for all u ∈ Ω,

and estimate (4.4) with lim
t→∞

U(t)/(1 + t) = lim
t→∞

V (t)/(1 + t) = 0 shows that for any

ε > 0 there exists tε > 0 such that for all t > tε and all u ∈ Ω, we have

Tu(t)

(1 + t)2
6

(Tu)′(t)

1 + t
6 ε.

Hence, conditions (a) and (c) in Lemma 4.6 are satisfied and it remains to show

that condition (b) is satisfied.

Let [0, a] ⊂ J . For all u ∈ Ω and all t ∈ [0, a] we have

T2u(t) 6 (T2u)
′(t) 6 ψ∗(U(a) + V (a)) := c∗.

Let t1, t2 ∈ [0, a]. For all u ∈ Ω, we obtain by means of the mean value theorem
∣∣∣∣
T2u(t2)

(1 + t2)2
−

Tu(t1)

(1 + t1)2

∣∣∣∣ 6 (1 + t1)
2|T2u(t2)− T2u(t1)|

+ |T2u(t1)|
∣∣(1 + t2)

2 − (1 + t1)
2
∣∣

6 ((1 + a)2 + 2(1 + a))c∗|t2 − t1|

and
∣∣∣∣
(T2u)

′(t2)

1 + t2
−

(T2u)
′(t1)

1 + t1

∣∣∣∣ 6 t(1 + t1)|(T2u)
′(t2)− (T2u)

′(t1)|

+ |(T2u)
′(t1)|

∣∣(1 + t2)
2 − (1 + t1)

2
∣∣

6 |ξ(t2)− ξ(t1)|+ 2(1 + a)c∗|t2 − t1|,
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where

ξ(t) =

∫ t

0

ψ

(∫ ∞

s

Φr,R(τ) dτ +A3

)
ds.

Taking into account that the function ξ is uniformly continuous on [0, a], we conclude

from the above calculations that condition (b) in Lemma 4.6 is fulfilled and T2Ω is

relatively compact. This ends the proof. �

Lemma 4.9. Assume that Hypotheses (1.5), (1.8) and (1.9) hold. If u ∈ K \ {0}

is a fixed point of the mapping T = T1 + T2 : K \ {0} → K, then u is a positive

solution to bvp (1.1).

P r o o f. Let u ∈ K \ {0} be a fixed point of T . We then have

u(0) = Tu(0) = 0, u′(0) = (T2u)
′(0) = α,

∆u(tk) = ∆T1u(tk) = I1,k(u(tk), u
′(tk)) for k = 1, 2, . . . ,

∆u′(tk) = ∆(T1u)
′(tk) = I2,k(u(tk), u

′(tk)) for k = 1, 2, . . . ,

−∆φ((u)′′(tj))−∆φ((T2u)
′′(tj)) = I3,j(u(tj), u

′(tj)) > 0,

−(φ((u)′′))′(t) = − (φ((T2u)
′′))′(t) = f(t, u(t), u′(t)) for a.e. t ∈ J

and

lim
t→∞

u′′(t) = lim
t→∞

(T2u)
′′(t)

= lim
t→∞

ψ

(∫ ∞

t

f(τ, u(τ), u′(τ)) dτ +
∑

tk>t

I3,k(u(tk), u
′(tk)

)
ds = 0.

The lemma is proved. �

5. Proof of Theorem 1.2

Step 1. In this step we establish some estimates for the norm ‖·‖. Notice that for

all u ∈ K \ {0}, we have

‖Tu‖3 = ‖T1u‖3 =
∑

k>1

I1,k(u(tk), u
′(tk))

(1 + tk)2
6 ‖u‖(a1 + b1) + c1,

‖Tu‖4 = ‖T1u‖4 =
∑

k>1

I2,k(u(tk), u
′(tk))

1 + tk
6 ‖u‖(a2 + b2) + c2,

‖T1u‖5 = sup
t>0

∑

tk<t

I1,k(u(tk), u
′(tk))

(1 + t)2
+

∫ t

0

(∑
tk<s I2,k(u(tk), u

′(tk))
)
ds

(1 + t)2
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6
∑

k>1

I1,k(u(tk), u
′(tk))

(1 + tk)2
+
∑

k>1

I2,k(u(tk), u
′(tk))

1 + tk
= ‖T1u‖3 + ‖T1u‖4

6 ‖u‖(a1 + a2 + b1 + b2) + (c1 + c2),

‖T1u‖6 = sup
t>0

∑
tk<t I2,k(u(tk), u

′(tk))

(1 + t)2
6

∑

k>1

I2,k(u(tk), u
′(tk))

1 + tk
= ‖T1u‖4,

‖T2u‖5 6 ‖T2u‖6,

‖T2u‖6 6 ψ∗‖T3u‖6 + ψ∗ sup
t>0

1

1 + t

∫ t

0

ψ

(∑

tk>s

I2,k(u(tk), u
′(tk))

)
ds

6 ψ∗‖T3u‖6 + ψ∗ψ(φ(‖u‖)(a3 + b3) + c3),

where

T3u(t) =

∫ t

0

ψ

(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ

)
ds ∈ K ∩ E2.

Hence, for all u ∈ K \ {0}, we have

(5.1) ‖T3u‖ = ‖T3u‖6 6 ‖Tu‖ 6 ψ∗‖T3u‖6 +A‖u‖+ B.

Step 2. Existence in the case when (1.10) holds

Let ε > 0 be such that (f0(m0) + ε)Γ0(m0) < 1. For such a positive real ε, there

exists R1 > 0 such that f(t, (1 + t)2w, (1 + t)z) 6 (f0(m0) + ε)m0(t)φ(w + z) for all

w, z with sup(|w|, |z|) 6 R1.

Thus, for all u ∈ K∩∂Ω1, where Ω1 = {u ∈ E, ‖u‖ < R1}, the following estimates

hold.

‖T3u‖6 = sup
t>0

1

1 + t

∫ t

0

ψ

(∫ ∞

s

f(τ, u(τ), u′(τ)) dτ

)
ds

6 sup
t>0

1

1 + t

∫ t

0

ψ

(∫ ∞

s

f(τ, (1 + τ)2
u(τ)

(1 + τ)2
, (1 + τ)

u′(τ)

(1 + τ)
) dτ

)
ds

6 sup
t>0

1

1 + t

∫ t

0

ψ

(∫ ∞

s

(f0(m0) + ε)m0(τ)φ(2‖u‖) dτ

)
ds.

Using (1.6) twice, we get

‖T3u‖6 6 sup
t>0

1

1 + t

∫ t

0

ψ

(
φ(2ψ+(f0(m0) + ε)‖u‖)

∫ ∞

s

m0(τ) dτ

)
ds

6 sup
t>0

1

1 + t

∫ t

0

ψ

(
φ

(
2ψ+(f0(m0) + ε)‖u‖ψ+

(∫ ∞

s

m0(τ) dτ

)))
ds

= 2ψ+(f0(m0) + ε)̺(m0)‖u‖.
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Inserting the above estimate in (5.1), we obtain by using (1.4) that for all u ∈ K∩∂Ω1,

‖Tu‖ 6 (A+ 2ψ∗ψ+(f0(α) + ε)̺(m0))‖u‖

6 (A+ 2ψ∗2ψ+((Γ0(m0))
−1)̺(m0))‖u‖

= A+ 2ψ∗2ψ+

((
φ+

(
2ψ∗̺(m)

1−A

))−1)
‖u‖ = ‖u‖.

Now, let ε > 0 be such that (f∞(m∞, θ)− ε)Θ(m∞, θ) > 1. There exists R2 > R1

such that

(5.2) f(t, (1 + t)2w, (1 + t)z) > (f∞(m∞, θ)− ε)m∞(t)φ(w + z)

for all t ∈ Jθ and w, z > 0 with |(w, z)| > R2.

Let Ω2 = {u ∈ E : ‖u‖6 < R2/γ∗}, where γ∗ = inf
t∈Jθ

{(γ̃(t) + γ(t))}. Hence, for all

u ∈ K ∩ ∂Ω2 and all τ ∈ Jθ, we have by Lemma 4.1

u(τ)

(1 + τ)2
+

u′(τ)

(1 + τ)
> (γ̃(t) + γ(t))‖u‖6 > γ∗‖u‖6 = R2.

Inserting this in (5.2), we obtain that for u ∈ K ∩ ∂Ω2 and all τ ∈ Jθ, that

f(τ, u(τ), u′(τ)) = f

(
τ, (1 + τ)2

u(τ)

(1 + τ)2
, (1 + τ)

u′(τ)

(1 + τ)

)

> (f∞(m∞, θ)− ε)m∞(t)φ

(
u(τ)

(1 + τ)2
+

u′(τ)

(1 + τ)

)

> (f∞(m∞, θ)− ε)m∞(t)φ((γ̃(t) + γ(t))‖u‖6).

Now, suppose that there are e ∈ K \ {0}, t > 0, and u ∈ K ∩ ∂Ω2 such that

u = Tu + te. Taking in account the above estimate, we obtain by using (1.6) and

(1.4) the following contradiction.

‖u‖6 > ‖Tu‖6 >
(Tu)′(1/θ)

1 + (1/θ)
>

θ

1 + θ

∫ 1/θ

0

ψ

(∫ θ

1/θ

f(τ, u(τ), u′(τ)) dτ

)
ds

>
1

1 + θ
ψ

(∫ θ

1/θ

(f∞(m∞, θ)− ε)m∞(τ)φ((γ̃(τ) + γ(τ))‖u‖6) dτ

)

>
1

1 + θ
ψ−(f∞(m∞, θ)− ε))ψ

(
φ

(
‖u‖6ψ

−

(∫ θ

1/θ

m∞(τ)φ−((γ̃(τ) + γ(τ))) dτ

)))

= ψ−((Θ(m∞, θ))
−1)µ(m∞, θ)‖u‖6 > ‖u‖6.

Therefore, we deduce from Theorem 3.1 that T admits a fixed point u ∈ K with

R1 6 ‖u‖ 6 R2/γ∗ which is by Lemma 4.9 a positive solution to bvp (1.1).
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Step 3. Existence in the case when (1.11) holds

Let ε > 0 be such that (f0(m0, θ) − ε)Θ(m∞, θ) > 1. There exists R̃1 > 0 such

that

f(t, (1 + t)2w, (1 + t)z) > (f0(m0, θ)− ε)m0(t)φ(w + z)

for all w, z ∈ [0, R̃1], and all t ∈ J .

Let Ω1 = {u ∈ E : ‖u‖ < R̃1/γ∗}, where γ∗ = inf
t∈Jθ

{(γ̃(t) + γ(t))}. The same

calculations as those done in Step 2 show that for all e ∈ K \ {0} and all t > 0, such

that u 6= Tu+ te for all u ∈ K ∩ ∂Ω1.

Now, let ε > 0 be such that (f∞(m∞)+ε)Γ∞(m∞) < 1. Then there exists Rε > 0

such that

f(t, (1+t)2w, (1+t)z) 6 (f∞+ε)m∞(t)φ(w+z)+ωRε
(t)ΨRε

(w, z) for all w, z > 0,

where ωRε
and ΨRε

are those given by hypothesis (1.9) for R = Rε.

Put

Φε(t) = ωRε
(t)ΨRε

(Rεγ̃(t), Rεγ(t)),

Φε = sup
t>0

(
1

1 + t

∫ t

0

ψ

(∫ ∞

s

Φε(τ) dτ

)
ds

)
,

R̃2 = max

(
R̃1

γ∗
+ 1,

B + ψ∗Φε

1− (2(ψ∗)2ψ+(f∞(m∞) + ε)̺(m∞) +A)

)
.

Thus, for all u ∈ K ∩ ∂Ω2, where Ω2 = {u ∈ E : ‖u‖ < R̃2}, we have

f(τ, u(τ), u′(τ)) 6 (f∞(m∞) + ε)m∞(τ)φ

(
u(τ)

(1 + τ)2
+

u′(τ)

(1 + τ)

)

+ ωRε
(τ)ΨRε

(
u(τ)

(1 + τ)2
,
u′(τ)

(1 + τ)

)

6 (f∞(m∞) + ε)m∞(τ)φ(2‖u‖) + Φε(τ).

We obtain by using (1.7) and (1.6) that for all u ∈ K ∩ ∂Ω2,

‖T3u‖6 6 sup
t>0

1

1 + t

∫ t

0

ψ

(∫ ∞

s

((f∞(m∞) + ε)m∞(τ)φ(2‖u‖) + Φε(τ)) dτ

)
ds

6 ψ∗ sup
t>0

(
1

1 + t

∫ t

0

ψ

(∫ ∞

s

((f∞(m∞) + ε)m∞(τ)φ(2‖u‖) + Φε(τ)) dτ

))
ds+ ψ∗Φε

6 2ψ∗ψ+(f∞(α) + ε)̺(m∞)‖u‖+ ψ∗Φε.
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Inserting the above estimate in (5.1), we obtain then by using (1.4) that for all

u ∈ K ∩ ∂Ω2

‖Tu‖ 6 (2(ψ∗)2ψ+(f∞(m∞) + ε)̺(m∞) +A)‖u‖+B + ψ∗Φε

6 (2(ψ∗)2ψ+((Γ∞(m∞))−1)̺(m∞) +A)‖u‖+B + ψ∗Φε

=

(
2(ψ∗)2ψ+

((
φ+

(
2(ψ∗)2̺(m∞)

1−A

))−1)
̺(m∞) + A

)
‖u‖+B + ψ∗Φε

= ‖u‖.

We deduce from Theorem 3.1 that T admits a fixed point u ∈ K with R̃1/γ∗ 6

‖u‖ 6 R̃2 which is, by Lemma 4.9, a positive solution to bvp (1.1).

The proof of the main theorem is complete. �
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