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Abstract. We are concerned in this paper with the existence of positive solutions to the
¢-Laplacian third-order boundary value problem

—(o(u"))' (t) = f(t,u(t),u(t)) for ae. t € J,
u(0) =0, u'(0) = a, tlgglo o’ (t) =0,

Au(ty) = I g(u(ty), v’ (ty)), k=1,2,...,

A/ (ty) = Io g (u(ty), v/ (tg)), k=1,2,...,
—Ap(u")(ty) = I3 g (ulty), v/ (tr)), k=1,2,...,

where a > 0, J = (0,00), 0 < t1 < t2 < ... < tg..., tp — 00 as k — oo, Au(ty) =
u(t;;") —u(ty) and J* = J\ {t}: k > 1}. The function ¢: R — R is an increasing
homeomorphism such that ¢(0) =0, I; , € C(I2%,]0,00)) for i = 1,2,3 and k > 1, and the
nonlinearity f: J3 5 Rt isa Caratheodory function. By means of a Guo-Krasnoselskii
type fixed point theorem, we prove an existence result for at least one positive solution.
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1. INTRODUCTION AND MAIN RESULTS

Third-order differential equations arise in many physical and engineering appli-
cations such as the deflection of an elastic beam having constant or varying cross-
section, three-layer beam, electromagnetic waves or gravity-driven flows, see [1], [2],
[5], [10], [17] and the references therein. In infinite intervals, third-order BVPs can
describe the evolution of physical phenomena, for example, some draining or coating
fluid-flow problems, see [18]. Due to the unboundedness of the interval, the inves-
tigation for sufficient conditions for the solvability of BVPs is more complicated.
Many papers and monographs considering such problems have appeared in the last
few decades, we refer the reader to [1], [2], [12], [13], [14], [16], [19], [20] and refer-
ences therein. In nature, physical phenomena are generally subject to some kind of
perturbations that make them change their states suddenly. These perturbations are
modeled as impulses. That’s why many authors have been interested in the study of
impulsive BVPs, see for instance [3], [4], [11], [15], [21] and references therein.

In the last three decades, many authors investigated the existence of positive
solutions for such kind of problems involving p-Laplacian operator or its natural
generalization, ¢-Laplacian operator, see, for instance, [3], [7], [8], [9] and references
therein. Physically speaking, often the solution to this type of problem refers to
density, position, temperature, etc. That’s why some of the above-cited references
were interested in studying the existence of positive solutions.

This work deals with the existence of positive solutions to the ¢-Laplacian third-
order boundary value problem (bvp for short)

() (1) = F(tut), w'(1) for ace. t € J,
u(0) =0, v'(0) = o, tlim u”’(t) =0,

(1.1) Au(ty) = I p(u(ty), v/ (t)), k=1,2,...,

A’U,/(tk) = Ing(u(tk), u'(tk)), k=1,2,...,

—Ap(u")(tr) = Is g (u(ty), v (tr)), k=1,2,...,

where o 2 0, J = (0,00), 0 < t1 < ta < ... < tp < ..., tp = 00 as k = o©
and Au((ty) = u(t}) — u(t;) for any function u. The function ¢: R — R is an
increasing homeomorphism such that ¢(0) =0, I, € C(J x J, J) for i = 1,2,3 and
k > 1, and the nonlinearity f: J x J x J — [0,00) is a Caratheodory function, that

is

> f(-,u,v) is measurable for all u,v € J and
> f(t,-,-) is continuous for a.e. t € J.

In all what follows, we use the following notations. We let J = [0,00), J; =
(tj—1,tj) and J; = [tj_1,t;] for all j > 1 with ¢ty =0 and J* = J\ {t;: k > 1}. We
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let also v to be the inverse function to ¢ and we suppose that

(1.2)

there exist p,q > 0 such that for all z > 0
and ¢t € (0,1), t9¢(x) < d(tz) < tPo(z).

Note that for all z > 0 and ¢t € (0, 1), we have from (1.2) that
(1.3) Py (x) < P(ta) < 9% (x).
Let ¢, ¢~ ,¢ and ¢~ be the functions defined on .J by

9 ifx <1, P ifx <1,

— _ + —
¢(m)_{x” ifx>1, (b(m)_{xq ifx>1,

B V1 if 2 < 1, . VP if x <1,
Y (x) = Pr(x) =

/P ifz > 1, 2V ifr > 1
and notice that

(1.4) (T ' =v (o) ' =vT,

o (i) = %(x)a ¢+(é> = 1/171(55) for all z > 0.

It follows from (1.3) that for all ¢,z > 0,

(1.5) ¢ (t)e(z),

()Y ().

(tr)
P(tr)

<
<

.
P (t)()

Equivalently, for all ¢,z > 0 we have

(1.6) (W~ (t)r) < tp(x) < P(¥ (1)),
Y(¢ ()7) < tp(z) < P(o" (1))

We obtain also, from (1.2) and (1.3), that for all z,y > 0,

(1.7) o«(d(2) + 9(y)) < ¢(z +y) < ¢"(d(x) + ¢(y)) and
Ve (P() +9(y) < vz +y) <P (v() + (),
where
¢, = min(1,2°71), ¢* = max(1,297"),

¥, = min(1,20079/9) 4* = max(1,20-2)/p),
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Throughout this paper, we suppose that the following conditions hold.

I p(u,v) <ajpu+bigv+cp Vu,o=20fori=1,2and k > 1,
I3 1 (u,v) < ag pdp(u) + b pd(v) + 3 Yu,v =0 for k > 1,
a; = ZaLk < 00, ag = Zagk(l +tk) < 00,
k>1 k>1
as = Za&k(l -+ tk)Qq < 00,
k>1
(1.8) b= bir(l+t)" <oo, by = bak < o0,
k>1 E>1
by = Zb37k(1 + tk)q < 00,
k>1
c1 = ZCLk(l + tk)72 < 00, Cg = ZCQ’]C(]. +tk)71 < 00,
k>1 k>1
c3 = z:C&]C < 0.
k>1

For all R > 0 there exist two functions wr: I — I and ¥p: I? = T
such that Wg is nonincreasing following its two variables,
ft, (141w, (1 +1t)2) < wr(t)Vr(w,z) for all t,w,z >0
(1.9) with |(w, z)| < R,
[ee]
/ wr(T)PR(rY(7),rv(s))dr < oo for all s € I and r € (0, R], and

/0 t w( / R (R (7),r(7)) df> ds <ocforallt € Land r € (0, K],

where |(w, 2)| = sup(|w], |]),
t iftel0,1],
t) =
o(t) % i1,

t2
3 ift €10,1],

1
gt ifr>1,

if t € [0,1],

ift>1,
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t2

. i 7(1+t)2 if t € ]0,1],
WEATE2 7Y 14me

We set throughout this work

A=ai+as+ b+ by + ()2 (as + bs),
B=a+c +ca+ @) *Y(c3).

Remark 1.1. Observe that the case when the nonlinearity f satisfies the poly-
nomial growth condition

flt,u,v) < CA+u” +0t),

where C, o, 1 > 0, is a particular case when condition (1.9) is satisfied.

By a positive solution to bvp (1.1), we mean a function u in C?(J) such that u > 0
in (0,00), u(0) = tlgglo u”(t) = 0, ¢(u”) belongs to Whi([r,0)) for all 7 > 0, and
u satisfies the differential equation in (1.1).

Our approach to bvp (1.1) consists in a fixed point formulation. Since the nonlin-
earity f is supposed here to be nonnegative, the existence of a positive solution will
be proved by means of Guo-Krasnoselskii’s version of the expansion and compression
of a cone in a Banach space principle.

The statement of the main result in this paper needs to introduce some additional
notations. Let

II = {m: J — J measurable such that / m(7)dr < oo
t oS] ’
for all s > 0 and / U </ m(T) dT> ds < oo for all ¢ > 0},
0 s
and set for m € II, # > 1, and v = 0, 0o,

Jo = [1/0,4],

( f(t,(1+t)2w,(1+t)z)>7

sup

fY(m) = limsup Sup m)b(w + 2)

[(w,z)|—v
flt, (1+1)2w, (1 +1)z)

f"(m"’)_<1i€>“ifu<¥253 mB)6(w + 2) )
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where |(w, 2)| = [w] +[2],

ofm >—2§gg(lit/tw+(/fm<f>dr)ds)7

Lo(m) = ¢>+<2¢ Q(A)) andFoo(m)—qSJr(M) for A > 1,

6
pm,0) = g0 ([ mnw G 4 9(rar ),
Om. ) = 6™ (u(m. 1)),

The following theorem is the main result of this work.

Theorem 1.2. Assume that hypotheses (1.2), (1.8) and (1.9) hold and there exist
0 > 1 and two functions mg, ms, € Il such that one of the conditions

(1.10) A< 1, B=0, fO%mo)To(mo) <1< O(Meoo,0) foo(Moo, )
and
(1.11) A<, fP(Moo)Toc(me) <1< O(mo,0)folmg,0)

is satisfied. Then bvp (1.1) has at least one positive solution u such that for all t > 1,
u(t) = 0y (1/2 4+ Int) for some o, > 0.
2. EXAMPLE

Consider bvp (1.1) with ¢(x) = |z|P~ 1z + |z|?" 12z and

Fltw0) = (14:)5 <9<(1ft)2 i (1it)>m+a((1ﬁt)2 ! (1:)”))")’

where 6,0,n >0, ¢>p>0,£>2and max(—2—1/q,(2-¢)/2) <m < 0.
Clearly, the function ¢ satisfies (1.2) and for all ¢,w,z > 0 with w + z < R, we
have

Ft, 1+ 1w, (1+1)2) = (O(w + 2)™ + o(w + 2)") < wr()Vr(w, 2),

(1+1)¢
where wg(t) = w(t) = t(1 +t)~¢ and Vg(w, 2) = fw™ + o R™.
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Taking into account £ > 2 and m < 0, straightforward calculations lead to

(2.1) w(T)WR(RY(7), Ry(T)) ~ OR™(1 4+ 1) 72T at oo
and
(2.2) W(T)UR(RA (1), Ry(7)) ~ OR™ 7™ at 0.

Noticing that —¢ — 2m 4+ 1 < —1, we obtain from (2.1)
/ wr(T)UR(RY(7), Ry(T))dT < 00 for all s > 0.

We obtain also from (2.2) that at 0 we have
s if m > -2,

(2.3) ¥ (/OO wr(T)UR(RY(T), RYy(T)) d)TNC Ins if m=-2,
’ s i —2>m>—2—1/q.

Because of the estimate

t e}

[ ([ entrrenten. mar) as
0 s
t e3¢}
<o) [ 0r ([ entpatie) R ar ) as
we conclude that if m > —2 — 1/¢, then
/0 w(/ wr(T)¥R(RY(T), Ry(T)) dT) ds < 0.

This shows that hypothesis (1.9) is fulfilled.
Set mo(t) = Mmoo (t) = w(t), straightforward computations lead to

fO(wvg) = 00,
0 ifn<yg,
fPw)=1c0 ifn=gq,
o ifn>q.

Suppose that A < 1, we conclude then from Theorem 1.2 and all the above cal-
culations that for such a case, bvp (1.1) admits a positive solution if either n < ¢ or
n=gqand ol'w(w) < 1.
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3. ABSTRACT BACKGROUND

Let (E,||-||) be a Banach space and let K be a cone in E, i.e., K is a nonempty
closed and convex subset of E, such that K N (—K) =0 and tK C K for all ¢ > 0.
The main result of this work will be proved by means of the following theorem which
can be proved in the same way as Theorems 2.3.3-2.3.5 in [11].

Theorem 3.1. Let 1,72 be two positive real numbers such that r1 < ry and let
T: KN (Q2\ Q) — K be a compact mapping where Q; = {u € E, ||ul|; < r;} for
i =1,2. If one of the conditions

(1) |ITu|| < |Jul|| for allu € KNOQy and there exists e € K\{0} such thatu # Tu+te
for allu € KNOQs and all t > 0,

(2) there exists e € K \ {0} such that u # Tu+te for allu € KNOQy and allt > 0
and ||Tu|| < ||u|| for all u € K N 0N,

is satisfied, then T has at least a fixed point in K N (Q2\ Q).

4. FIXED POINT FORMULATION

Consider the functional spaces

PC(J) ={u: J — R continuous for t € J*, u(ty) = u(ty)
and u(t]) exists for all k > 1},
PC*(J) = {u e PC(J): 3v € PC(J) such that u'(t) = v(t) for all t € J*}.

Let E and F be the linear spaces defined by

— A t Au/ t t
E = uEPC’l(J):z:IL Z| w(te) <oo, sup [u(t) < 00,
=1 (1+tk =1 1+t t>0 (1+t)2

/
and supM < oo}.

>0 1+

Equipped by the norm [|-||, where for u € E

l[ull = max([fulls, [ulla, [[]l5, l[ulls),

|Au(tk |Au tk
full = 3 120l = 3 150,

k>1 k>1
u(t)] |u'(2)]
Ulls = su , ||[Ulle = Su )
Julls = sup =755 llulle = sup =

the linear space E becomes a Banach space.
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Let F1 and E5 be the subspaces of E defined by
k=j—1

E = {u u(t) = o +kzl<z ~ )tk_tk 1)

k=0 k=0

(Zé) (t —t;) for t € (tj,tj11),
\ (5, s 7| |0 |
(71)7(51)C[Ra 70_50—0;27)2<OO and Z—<oo

1 (L +tg =1 1+t
and 0
_ LTy 1 )
EQ—{U,EC(J) tlgrolol_’_t O},
respectively.

Let ||| and ||-||2 be the norms defined on E; and Es by

[lu|lr = max(||ul|s, ||ulla) for all u € Ey

and ||ullz = max(||u||s, ||ulle) for all u € Es,
respectively. Since ||u|| = ||ul|; for ¢ = 1,2 and all u € E;, we conclude that for

i=1,2, (E;, |lu||;) is a Banach space.
Let Iy = I} x [, where I} and I} are defined by

g
li = {7 = (w1 Yh=)_ ﬁ ) 00}7

k>1
6
I3 = {5 = (Bk)iz1: 1812 =) 1|+k7|f = OO}.
=1 i

Clearly for i = 1,2 we have that (I}, |-|;) is a Banach space and (Es, ||-||2) is isometric
t0 (L, |-14) where [(7,6) 4 = max((y1,3]2) for all (7,6) € L.

Throughout this paper, K is the cone of F given by
K={u€FE: u,u’>0on J and v is concave in J}.
Lemma 4.1. For allu € K and t > 0, we have

u(t) = e®)lull - and w'(t) > o(t)|ull
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Proof. Letue K \{0} (the case u = 0 is obvious) and let us prove first that u’
is nondecreasing on J. To this aim let ¢1,ty € J with t; < t2. By the concavity of u’,
for all n > t3 we have
u'(n) —u'(ts) _ w(n) —u'(t)
n—ta So—t

leading to

-t t1 —t2)(1 !
n zul(tl)Jr(l 2)(1+n) u'(n)
n—1 n—1t 1+n

Letting 7 — oo, we obtain u/(t2) > u'(¢t;1). We have proved that u’ is nondecreasing

u'(t2) >

on J.
Now, set h(t) = v/ (t)/(1 +¢). Since h(0) = o > 0 and tlim h(t) = 0, we claim
—00
that there exists to € J such that h(t]) = sup h(t) = [lull¢. Indeed, let m = sup h(t).

teJ teJ
There exists a sequence (¢,) such that limh(t,) = m. Because tlim h(t) = 0, the
—00

sequence (t,,) is bounded and converges (up to a subsequence) to some ¢y € J. Taking

in account v’ is nondecreasing on J yields

limsup,_,,, u/'(t)  u/(t])
limAh(t,) =m < limsup h(t) = 0 = 0’ <
(tn) P ®) 1+ o 1+t

At this stage let # > 1. For arbitrary ¢ > to we have by the concavity of u’

A1\ (0—1+06t 1 N t
“\g)~" 0+6t 6—-1+6t 6+6t

>9—1+mw 1 N 1 (1)
0+ 6t 0—1+06t 0+ 0t

21W@.
01+t
Letting t — ty we obtain
1 1 (ty) 1
4.1 =) > =—22 = Zjulls.
(a1) w(5) > s Gl

Thus, for ¢ > 0 we distinguish the following cases.

(i) ¢ =0, in this case we have u/(0) = a > 0 = 0(0)]|ul|s.
(ii) ¢t > 1, in this case taking in consideration u’ is nondecreasing on J and (4.1),
we obtain u'(¢) = w'(1/t) = (1/t)||ulls-
(iii) 0 <t < 1, in this case we have from (4.1) that u(t) = u(1/t~1) > (1/t 1) |ulls =
Elule.

Hence, we have proved that u'(t) > o(t)||ul|¢ for all t € J.
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At the end, because u is nondecreasing on J, we have Au(ty) = u(t}) —u(ty) >0
for all k£ > 1. Therefore, we have

t

u(t) = / W(s)ds+ 3 Au(ty) > / o(s) [ulls ds = 3(8) [l

tp<t
(I

Definition 4.2. A subset M in ' is said to be equiconvergent if for any ¢ > 0

there exists k. € N such that > |zx| < e for all (zg)r>1 € M.
E>k.

Definition 4.3. Let M be a nonempty subset in E5. The subset M is said to
be:

(i) locally equicontinuous in Es if for all ¢ > 0 and any € > 0, there exists § > 0
such that for all ¢;,¢3 € [0,a] and all w € M

‘ u(ta) u(t1)

(14+t2)2  (1+1¢t)2
u'(tz)  u'(t1)

1+t 1+%

< e and

|t2—t1|<(5:>

X Y

(ii) equiconvergent if for any € > 0, there exists t. > 0 such that for all u € M and

‘ u(t)
(141)2

all t > t. we have
u'(t)
1+t

)

‘Se.

The following lemma presents a compactness criterion in [*.

Lemma 4.4. Let M be a subset in I'. If M is bounded and equivergent, then M
is relatively compact in ['.

Proof. SetforanyleN,
By = {(xp)rs1 €1': ap=0forall k >1+1}.

Clearly, for any [ € N, E; is a closed subspace of I! with dim(E;) = 1.
Let € > 0, then there exits k. € N such that > |zx| < €/2 for all (zg)x>1 € M.

k>k.

Set now X = (x1,22,...,25.-1,0,0,...) and M = {)~( X € M} for X =
(xk)k>1 € M. Hence, we have M C Ej, and M is bounded in Ej . Indeed,
for all X = (xx)r>1 € M, we have

. k=ke—1
X[i= Y okl <Y lal = X
k=1 E>1
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Now, we know that M is relatively compact in Ej__1. So, there exist ai,as,...,am
belonging to Ej, such that

e UBal)

i=1

Let X = (z3)x>1 € M. There exists i9 € {1,...,m} such that X € B(aj,,/2).

Therefore, if a;, = (aiy,1,0ig,25 - - - @ig,k—1,0,0,...), we have
k=k.—1 N . -
X —aili= Y ok —aigkl+ Y okl =X —aii + Y Ja| < 3t5=¢
pr k>k. k>ke
i=m
This shows that M C |J B(a;,e) and M is relatively compact in ['. O
i=1

Since the space F; is isometric to ! x !, we deduce from the above lemma the
following compactness criterion available in Fj.

Lemma 4.5. A nonempty subset M of F; is relatively compact if the condi-
tions (a) and (b) hold.

(a) M is bounded in F;.

(b) For all € > 0, there corresponds k. > 0 such that > |Au(ty)|/(1+tx)* < e
k>k.

and > |Au/(t)]/(1+tr) <e forallz € M.
k>k.

The following lemma is an adapted version for the case of the space Fs of Cor-
duneanu’s compactness criterion ([6], p. 62). It will be used to prove that for
R > r > 0, the operator T given by Lemma 4.9 maps K N (B(0,R) \ B(0,7))
into a relatively compact subset of F.

Lemma 4.6. A nonempty subset M of F is relatively compact if the condi-

tions (a)—(c) hold.

(a) M is bounded in F.

(b) Thesets {u: u(t) =z(t)/(1 +t)% x € M} and {u: u(t) = 2'(t)/(1+t), x € M}
are locally equicontinuous on [0, 00).

(c) Thesets {u: u(t) ==z(t)/(1+t)% x € M} and {u: u(t) =2'(t)/(1+t), v € M}
are equiconvergent at oo, that is, given € > 0, there corresponds T, > 0 such
that for allx € M, |z(t)/(1 +t)?| < ¢, |2/ (t)/(1 +t)| < ¢ for any t > Ty.
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Let for u € K \ {0} it holds Tw = Tyu + Tou, where

Tiu(t) = Z I (u(te), o (t)) + /Ot<z Ig,k(u(tk),u’(tk))) ds and

tp<t tp<s

Tault) = at-+ [ (6= 90 X taatuttl o)+ [ fratmalm)ar) ds.

tp>s
The following lemma provides a fixed point formulation for bvp (1.1).

Lemma 4.7. Assume that hypotheses (1.5), (1.8) and (1.9) hold, then Thu €
K NFE for all w € K. Moreover, the mapping T1: K — K N FE; is completely

continuous.

Proof. Letue K. Foranyt e J; = (t;,t;4+1) we have

Tlu(t) = Z Ilyk(u(tk)vu'(tk)) —|—A (Z I2,k(u(tk),u,(tk))> ds

trp<t tr<s

= zh,k(.u('tk),u’(tk)) + :i {/t:: (ijk:l I (u(ty), “/(ti))> ds]
+ /t; (i IQ’i(u(ti),u’(ti))) ds
k=j k=jr ji=k—1
- kZ:l I g (u(ty), o' (t)) + 2 K 2 Ig}z(u(tz),u’(ti))) (tx — tkl)}

— (:zé Ig’i(u(ti),u,(ti))> (t —t5)-

This shows that Thu € Es.
Furthermore, because that holds for all ¢t € J;, we have

i=j
(Tyw) (t) = > Loi(ults), v (t)),
i=1
(Thu)"(t) =0
and for all j > 1 we have

A(Tvu)(ty) = Inj(u(ty), v/ (t;)) = 0
A(Tyu) (t5) = Iz,5(u(t;), ' (t;)) > 0,

thus we conclude that Tyu € K N Es.

595



Let Ix: K — l4 be the mapping defined by
Ly (u) = (I e (u(te), v (t6)))ks1, (T2 (wte), o' (k) k1)
Since for all u € K

111,k ( u'(ty))] u(ty) u'(tg) 1k
(42 > 1+tk S Z(al”“(1+tk)2 +bl7’“(1+tk)2 + (1+tk)2>

E>1 k>1

b1,k C1k
<hl(Soer S5 ) + X iy <
=1

k>1 k>1

and

[ 12,k( u'(ty))| u(ty) u'(ty) | can
4. E < g b :
(43) 1+tk I L I S

k>1 k>1

<l (Y aasli+ 0+ Y b )

k>1 k>1

C2k
D PICTERN
k}ll—’_tk

the mapping I is well defined. Moreover, the continuity of the functions I; ;, and
Iy, for all k > 1 makes of I a continuous mapping.

Hence, taking in consideration that T = Isoolx, where Iso is the isometry between
ly and E5, we deduce that T} is a continuous mapping.

Now, let M be a subset in K bounded by R > 0. From inequalities (4.2) and (4.3)
we obtain that for all u € M

[k (u(ty), u ci,
Z 1k(1+tk (Za1k+zl+t> Zﬁ<00a

k>1 k=1 k=1

3 Bl O (S 1410 + 3 b ) + 30 12
(1+tk 1—|—t

k>1 k>1 k>1 k=1

Therefore, for any € > 0 there exists k. € N such that for all v € M we have

|1k (u(ty), u b1k 1k
> (1+t,c (Z“1k+21+t) kzkzmgg’

k>, ke k>ke
ZUM(( k) U (Za2k1+tk Zb2k)+z ok,
E>k (1+tk k>he oh on Lt

Thus, the equiconvergence of T; (M) is proved and this concludes the proof of T;
being completely continuous. O
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Lemma 4.8. Assume that hypotheses (1.5), (1.8) and (1.9) hold, then for all
u € K\ {0} it is Tou € K N E5. Moreover, for all r, R with 0 < r < R, the mapping
Ty: KN (B(0,R)\ B(0,7)) — K N Ey is compact.

Proof. Let r, R be real numbers with 0 < r < R and set & = K N (B(0, R) \
B(0,7)). Set for k > 1,

g = G(R)(az,pe(1 + 1) + by (1 + 1)) + cap
and let @, r be the function defined by
D, r(s) = wr(s)Pr(r7(s),m(s)),

where wr and Vg are the functions given by hypothesis (1.9).
Claim 1. T: Q — K N E5 is well defined. For all u € ), we have by hypothesis
(19),
I (u(te), u(t)) < asr(u(te)) + b3 rp(u'(tr)) + cak

< asudt (1 + m%(ﬂ)

(1 —+ tk)Q
/
4 u (tk)
+b3x0" (1 + tk)¢<1 e +c3k
< 23,k

and by hypothesis (1.9)

u(7)
(1+7)2’

F(ru(r) () = f(T, (147 (1+7) “'“)> < @, p(r).

1+7

Taking in account hypotheses (1.8) and (1.9), we obtain from the above estimates

Z I3 o (u(ty), u(ty)) < Ag < ocoforallt >0

tp>t
and

/ fru(r), (7)) dr < / @, g(7)dr < oo for all s > 0,

where A3 = Z 23k = d)(R)(ag + b3) + c3.
k>1
Therefore, the function

s — w(/oo fru(r), (7)) dr + Z Is e (u(te), v (tk))

tp>s
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belongs to PC(J). Using (1.7), we obtain

w(/:o flrur),d () dr+ Y Ig7k(u(tk),u'(tk)>

trp>s

<wru( [T stramamyar) +vo T b))

trp>s
< w( e dr) Ty (Ag).

The above estimates and hypothesis (1.9) show that the function
S—)l/)(/ flryu(r dT—i—Zng )>
tp>s

is integrable on [0,¢] for all + > 0 and Thu is well defined on .J. Furthermore, it is
easy to see that Tou € C*(J) with

(Tow) (1) = a + / t w( / ORI EDS 13,k<u<tk>,u'<tk)> ds

tp>s

for all t > 0 and (Tu)’ is differentiable with

(Tou)"( (/ fru(r),' (7)) dr + Z Ig7k(u(tk),u'(tk)> for all t € J;,

E>ji—1
(Tow)"(t;) = (Tou)"(t;) = w( Fu(r),u (1) dr + > Ty i( )>,
tj k>j
and
(Tou)” tJr f(ru(r), (7)) dr + I3 e (u(ty), o (tg) | = (T u)”(tj’).
(/J k;rl 3,k k k ) 2

The above identities show that (Tou)” is nonincreasing and (Thu)' is concave on J.
It remains to show that for all u € 2,

Tl (D))
t—00 (]_ + t)2 t—00 1+t

to conclude that 752 C KNFE5. This needs to introduce some functions and establish
some estimates. Set for all ¢t > 0,
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Clearly, U € C'(J) and by L’Hopital’s rule

O = .
Jim 1y = i 00 = fim o [ @en(r)ar) <o
Let € > 0, there exists t. > 0 such that > 23, < ¢(¢). Hence, for ¢ > t. we have
te>te
te t
V(t)z / ’lﬂ(z ZB,k) d5+/ ’lﬂ( Z Z37k> ds
0 1 >s te tp>s>te
< (As)te +e(t —te)
leading to
A _
limsupv—t) < lim w( 3)ts +5(t ts) —¢
t—soo 141 t—o0 1+4+1¢

Since ¢ is arbitrary, we conclude that tlim V(t)/(1+1t)=0.
—00

In the remainder of this proof, we let

U(t) V()
U* =su and V* =sup —=.
t;gl-l—t t}%))l-f—t

At this stage, for any u € €2 we have

Tou(t) _ Jo(Tw)(s)ds _ (Tou)'(t) <y T VO

(1+6)2 (1+8)2 = 1+t 1+t 1+t

(4.4)

leading to
Tou(t) _ . (Tow)'(t)

li = =
tggo (14+t)? too0 14t

This ends the proof of 752 C K N Es.
Claim 2. T: Q — K N E5 is continuous. Let (u,), be a sequence in Q with
lim u, = u.

n—oo

We start by proving that for all n > 0,

—0 asn— oo.

sup [(Tun)'(t) = (Tw)'(t)|
tefo,n] L+t

For any s € J, we have
|f (T, un(7),ul (7) — f(r,u(r),d/ (1)) — 0 for ae. T € [s,00)
n—oo
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and
|f (T, un(T),u, (T) — f(r,u(r),u'(1))| < 2@, r(T) for ae. T € [s,00).

By means of the Lebesgue dominated convergence theorem, we obtain

(4.5) lim h F(ryun(T) ))dr = / f(ryu(r),u (7)) dr for all s € I.

n—oo s

Moreover, since
3,5 (un (b ), iy, (t)) — T3, (u(ti), o' (k)] < 23,1

oo
and Y 231 < 00, the dominated convergence theorem for series gives
k=1

(4.6) lim_ > I (un(ty),u =3 Ikl (tr)).

tr>s tp>s
Set

%@»=@(/mfvu4ﬂ 'Oﬂd7+§:thMML%GMO

tr>s

(/ flru(r), o (r)dr + Y Ig,k(u(tkw(tk))) ‘

tp>s

The continuity of v, (4.5) and (4.6) lead to lim g, (s) = 0 for all s > 0.
Since

gn(s) < 2¢ (/ @, g(7)dr + A3> for all n € N,

the Lebesgue dominated convergence theorem leads to

[(Tun)' (1) = (Tw)'(t)] ") — (Tw)
e T < e [(Tun)'(t) = (Tw)'(t)]

n
g/ gn(s)ds =0 asn — oo.
0

Now, we have

[(Toun) (6) = Do) O oUW o VO

—0 ast— oo.
1+4+1¢ 1+4+1¢ 1+¢
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Therefore, for all ¢ > 0 some 7. > 0 corresponds such that for all n > 1

’ _ /
[T (0= T 0] _ <
tene,00) 1+1¢

[\

Taking in consideration

lim
n—oo

sup

= 0,
tef0.n.] L+t

< |(Toun)' () — (TQU)’(t)I>

we conclude that there exists n. € N such that for all n > n., we have

Touy) (t) — (Tou)' (¢ Touy) (t) — (Tou)'(t
o — Tyl < sup [T O = V@] | (Do () = (T ()
te(0,1c] 1+t te[n-,00) 1+t
e €
<S4 —g
B 9 + B €
This ends the proof of Claim 2.

Claim 3. T2 is relatively compact. Estimate (4.4) leads to

IToulle < Y™ (U* + V™) for all u € Q,
and estimate (4.4) with tlim Ut)/1+t)= tlim V(t)/(1 +t) = 0 shows that for any
€ > 0 there exists t. > 0 such that for all t > t. and all u € 2, we have

Tu(t) (Tu)'(t)
(141)2 S 1+t S

Hence, conditions (a) and (c) in Lemma 4.6 are satisfied and it remains to show
that condition (b) is satisfied.
Let [0,a] € J. For all u €  and all ¢ € [0, a] we have

Tou(t) < (Tou)'(t) < v*(U(a) + V(a)) := c..

Let t1,t2 € [0,a]. For all u € Q, we obtain by means of the mean value theorem

‘ (?2:?;))2 (;ri(iigg <1+ t1)2|T2u(t2) — Tou(ty)]

+ [Tou(ty)| | (1 +t2)* — (1 +t1)?|
< ((1+a)? +2(1 + @)t — 1|

and

‘(Tzu)'(h) _ (Taw)'(t)
141, 1+t

(1 + t1)|(Tou)' (t2) — (Tow) (t1)]

+ [(Tou)' (t1)] |(1 4 t2)* — (1 + £1)?|
< €(t2) — E(t)| +2(1 + a)exlta — t],
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where

() = /Ot w(/:o D, p(7)dr + A3> ds.

Taking into account that the function £ is uniformly continuous on [0, a], we conclude
from the above calculations that condition (b) in Lemma 4.6 is fulfilled and T2 is
relatively compact. This ends the proof. O

Lemma 4.9. Assume that Hypotheses (1.5), (1.8) and (1.9) hold. If u € K \ {0}
is a fixed point of the mapping T = T1 + T»: K \ {0} — K, then u is a positive
solution to bvp (1.1).

Proof. Letue K\ {0} be a fixed point of T. We then have

uw(0) = Tu(0) =0, u'(0) = (Tou)' (0) = a,
Au(ty) = ATvu(ty) = I g (ulty), v/ (tg)) for k=1,2,...,
Ad'(t) = A(Thu) (t) = L g(u(te), v (ty)) for k=1,2,.
—Ad((u)"(t;)) — Ad((Tw)" (t5)) = Is,5(ult;), ' (t;)) > 0,
—(¢((w)")'(t) = = (o((Tzw)"))'(t) = f(t,u(t),u'(t)) forae. teJ

:tg&w(/ flru(r dT—l—Zng ))ds:O
tp>t
The lemma is proved. ]
5. PROOF OF THEOREM 1.2
Step 1. In this step we establish some estimates for the norm ||-||. Notice that for

all w € K \ {0}, we have

I g (u(ty), u'(t
ITulls = [Toulls = 3= 2a @) oy 4 by) 4,

2
=1 (1 +tg)
Io g (u(ty), v (¢
Tl = Tl = 32 2EEEELED) o, 18,) 4,
+ tx
k>1
t
Ilk l k)) fo (Et <5127k(u(tk)7u/(tk))) ds
T — k
[ Tyulls = supz 1+t) + fEmE

/t<t
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I k tk)) I k(u(tk), u'(tk))
< ’ = ||T1ul| T
> ) | 3, Tialls + | Thll

< JJull(ar + az + b1 + b2) (01 + ¢2),

Zt tIQ k( ( / IQk ))
|Thulle = sup == (L4102 < Z 1 +t = || Trull4,
E>1

Toulls < [T
T T — I d
[Tl < o Tyullo+ 0" sup =5 [ (Z an(ulti) (1) ) ds

S P Tsulls + ™ (@([[ull)(as + bs) + c3),

Tsu(t / </ Flrul(r (T))dT)dS€KﬂE2.

Hence, for all u € K \ {0}, we have

where

(5.1) 1Tsull = 1 Tsulle < [[Tull < ¢ [[Tsulls + Allull + B.

Step 2. Existence in the case when (1.10) holds

Let € > 0 be such that (f°(mg) + €)To(mg) < 1. For such a positive real ¢, there
exists Ry > 0 such that f(¢, (1 +t)%w, (1 +1t)2) < (f°(mo) + &)mo(t)p(w + z) for all
w, z with sup(|w|, |z|) < R;.

Thus, for all u € KNOQ, where Q1 = {u € E, ||u|]| < R1}, the following estimates
hold.

(Taulle = sup 3 | </ frutr) () ar) ds
<t>01+t (/ F(r, (14 7)? i ())2,(1+r)(7f/f;))dr)ds
<swp s [o( [T+ momiotziul) ar ) as

Using (1.6) twice, we get
t

Il < suw g7 [ oo (7 ma) + )l [ matr)ar) as

<sup i [ o(o(200 (P 0ma) + et ([ matryar) ) ) as
= 204 (1 o) + <)ol ]
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Inserting the above estimate in (5.1), we obtain by using (1.4) that for all u € KN9Q,

ITull < (A+ 20" (£%() + ) o(mo))||ull

(A + 20207 ((To(mo)) " )e(mo))|lull

= a2 (0 (220)) Y = ol

Now, let € > 0 be such that (foo (Moo, ) —€)O(Meo,d) > 1. There exists Ry > R
such that

NN

(5:2) Ft, (L+1)%w, (1+1)2) > (foo(moo, 0) — &)mos (H)p(w + 2)
for all t € Jp and w, z > 0 with |(w, z)| > Ra.
Let Q3 = {u € E: ||u|lg < R2/7v+}, where 7, = tiean {(A(t) + v(t))}. Hence, for all
6
u € K NNy and all 7 € Jy, we have by Lemma 4.1

u(r) u'(7)

I+n2  (T+7)

= (V) +v@)llulle = 7= llulls = Re.

Inserting this in (5.2), we obtain that for u € K N0y and all 7 € Jp, that

Flrulr) (7)) = f(r, (1+ 7)2%, (1+7) (;‘;@))

= (foo(mw79) 6)77100( )¢<(1 _’(_2) + (111/_5_7-3_))

2 (foo (Moo, 0) = &)moc ()G(((2) + (1)) [[ulls)-

Now, suppose that there are e € K \ {0}, t > 0, and u € K N 99y such that
u = Tu + te. Taking in account the above estimate, we obtain by using (1.6) and

(1.4) the following contradiction.

@y 0 M ,
llls > [Tulls > et w( 1/0f<7,u<7>,u<7>>d7)ds

1+(1/6) ~ 1+6

0
> g0 ([ Ut 0) =m0 (r) 42l

> o ntims0) =9 (o julow ([ matriom (@) +20r) )

= w_((@)(moo,9))_1)u(moo79)||U||6 > [lulle-

Therefore, we deduce from Theorem 3.1 that T admits a fixed point v € K with
Ry < ||lu|| € Ra/7« which is by Lemma 4.9 a positive solution to bvp (1.1).
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Step 3. Existence in the case when (1.11) holds

Let ¢ > 0 be such that (fo(mo,0) — £)O(mes,0) > 1. There exists Ry > 0 such
that

Ft, (L4 1)%w, (1 +1)2) > (fo(mo,8) — e)mo(t)p(w + 2)
for all w, z € [0,]?1], and all t € J.
Let Q = {u € E: |lul| < Ri/v.}, where v, = tiEan {(F(t) + v(¢))}. The same
6
calculations as those done in Step 2 show that for all e € K\ {0} and all ¢ > 0, such
that u # Tu + te for all u € K N 0Q.

Now, let € > 0 be such that (f°° (M) +€)oo(Moo) < 1. Then there exists R, > 0
such that

Tt (148)%w, (141)2) < (fC+)meo(t)p(w+2) +wr, () VR, (w,z) for allw, z > 0,

where wg, and ¥, are those given by hypothesis (1.9) for R = R..
Put

O (t) = wr. () Vr. (RA(t), Ry (1)),

o 1 t [e'e]
b, = i;g<1—+t/o w(/S <I>€(T)d7> ds),

B (1 B+ 0.
fto = ma (w T R (= () + @) e(mos) + A>)'

Thus, for all u € K N Ay, where Qy = {u € E: |lul| < Ry}, we have

F (o u(m), (7)) < (/% (mec) + e)moowm((l“flp + (’f’fl))
u(r)  w(r)
ron v (7 1)

< ([T (moo) + €)moo ()92 ul]) + P (7).

We obtain by using (1.7) and (1.6) that for all u € K N 99,

Tl < sup iy [0 [ (= nm) 4 mstrpotul) + 0.0 ar ) s

<y sup<# / tw( | )+ macotzlul) + <I>€<T>>d7>> ds + 4T

>0 \1+1
<29y (f*(@) + €)o(moo)|ull + " ..
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Inserting the above estimate in (5.1), we obtain then by using (1.4) that for all
u € K NoQy

I Tull < 2% 0T (f* (me) + €)e(moo) + A)llul| + B + ¢ @,

< P el Yol + Al + B+ 5,
= (2o (o0 (PULEE=D)) Yot + 4l + B+ 075

= [lul-
We deduce from Theorem 3.1 that 7" admits a fixed point © € K with Ry /7 <

|lu]| < Ry which is, by Lemma 4.9, a positive solution to bvp (1.1).
The proof of the main theorem is complete. ([
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