
Mathematics in the Austrian-Hungarian Empire

Marta Pémová; Zita Sklenáriková
Karel Pelz an outstanding geometer of the 19th century

In: Martina Bečvářová (author); Christa Binder (author): Mathematics in the Austrian-Hungarian
Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST.
(English). Praha: Matfyzpress, 2010. pp. 125–136.

Persistent URL: http://dml.cz/dmlcz/400825

Terms of use:
© Bečvářová, Martina
© Binder, Christa

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/400825
http://dml.cz


125
 125

KAREL PELZ AN OUTSTANDING GEOMETER 
OF THE 19th CENTURY 

MARTA PÉMOVÁ, ZITA SKLENÁRIKOVÁ 

Abstract: The second half of the 19th century was a crucial period for the formation of 
descriptive geometry as a science. This paper offers notes on the life and work of Karel Pelz, 
an outstanding mathematician in the field of both synthetic and constructive geometry, who 
belonged to the first generation of the best cultivators of descriptive geometry in the Austrian- 
-Hungarian Empire. His name is closely connected with the highest development of 
descriptive geometry that was crowned by Emil Müller and his disciples in the first third  
of the 20th century. Pelz has excelled in the synthetic theory of conics, curves and surfaces 
(especially the quadratic ones) and has been interested also in other various contemporary 
problems. His contribution to the developing of the principles of orthogonal axonometry as  
a method of representation is also highly appreciated. 

1 Curriculum Vitae and professional career 
Karel Pelz, an outstanding Czech geometer, is a personage who is chronologically 

closing up the first strong generation of theoreticians of descriptive geometry in Austria-
Hungary. This geometer of world importance was one of the most considerable 
representatives of the Czech geometrical school besides the Weyr brothers, Jan Sobotka, 
Vincenc Jarolímek and others. According to Gino Loria1 Karel Pelz won an honourable 
position among scientists who dedicated all their efforts to descriptive geometry. He was 
able to exploit the most determinative achievements reached during the 19th century in 
the geometry of position2 for the further progress in her grades, particularly in the theory 
of conic sections. He succeeded to add to this discipline several important pages setting 
so an example which is desirable to follow by many other workers in interests of the 
development of knowledge. [5] 

Karel Pelz was born in Běleč at Křivoklát on the 2nd october of 1845. He grew up in 
the deep forests around Křivoklát, where his father was the dukes’ gamekeeper. The father 
however was murdered by poachers, and so Pelz became orphan as far back as his 
childhood. After graduation from the Realschule in Rakovník he studied at the Institute of 
technology in Prague (1864–1869). In this period of crucial importance for the formation 
of descriptive geometry as a scientific discipline in the system of mathematical sciences, 
the favourable influence of the Prague department of descriptive geometry on students 
and young researchers was amplified by the activities of two significant personalities: 
František Tilšer, the second professor of the department of descriptive geometry for 
Czech lectures (after the unexpected death of Rudolf Skuherský)3 and above all Wilhelm 
Fiedler, first professor of the department of descriptive geometry for German lectures 
(Fiedlers’ lectures on newer geometry were at that time the first lectures on this topic in 
Austria). 

                                                 
1 Gino Loria (19. 5. 1862 – 30. 1. 1954), a significant Italian mathematician and historician. 
2 Geometry of position, newer/new geometry = projective geometry. 
3 With the merit of Skuherský descriptive geometry on the polytechnic institute in Prague extricated from the 
role of an auxiliary discipline to an independent discipline with a twofold subsidy of lessons in comparison with 
the previous period. It is possible to find more details about the systematization of the departments of descriptive 
geometry in Austria – Hungary in [16]. 
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In the first year of his stay in Prague Pelz studied descriptive geometry by Tilšer. In 
the second year he attended the same lectures by Fiedler, by him he elaborated laborious 
drawing complements to the lectures with such excellent results, that Fiedler requested 
them as exemplary models. Apart from that with active enthusiasm attended Pelz the 
optional lectures of Fiedler on newer geometry. The relationship between the teacher and 
the student grew into mutual affection; from the side of Fiedler it was support (material 
as well) and provideness, all his life Pelz held his teacher in the high respect and 
admiration for his ardour for projective and descriptive geometry and a contribution to 
these domains. It is evident from their lifelong correspondence.4 Both soundness and 
conscientiousness were characteristic features of these two scientists in all their acts. 
([20]) 

During the studies Pelz met the brothers Emil and Eduard Weyr; the relationship with 
Emil developed into a permanent lifelong friendship, even though fate didn´t grant them 
to live close to each other. Both Pelz and Emil Weyr loved Prague ardently; the desire to 
live in this city came to fruition only for Pelz in his declining years. Karel Pelz 
participated on the publication of the first scientific work of Emil Weyr by carrying out 
five sheets of drawings, which were an essential part of the publication.5 

After graduating from the Institute of technology in 1869 Pelz assumed the post 
of a draughtsman at the central institute for meteorology and earth magnetism in Vienna. 
After a year he returned to Prague to the post of an assistant of descriptive geometry by 
professor Karel Küpper, who was appointed to the head of department of descriptive 
geometry after Fiedler left Prague. Pelz worked on this post until the year 1875, then he 
became the professor of a public Realschule (grammar school) in Těšín. At that time 
were already published Pelz’s several scientific works, what gained him an invitation to 
the post of a professor at a technical college in Kamenica. Before he could accept this 
appointment, he was in 1876 appointed to the post of professor at a regional Realschule 
in Graz, domicile city of universities. 

In the same time he entered his academic career in Graz as a highly regarded scientist. 
First he was a private docent at the local Institute of technology. His lectures evoked such 
interests, that he was appointed after two years to the post of the extraordinary professor 
of descriptive geometry. Firstly it was an expression of appreciation and recognition of 
Pelz’s scientific and teaching work, but in the nearest future it brought a considerable 
increase of duties, through the extending his schoolmasterly work by his academic 
activities at the Institute of technology. However he did not remain long at that position. 
After the sudden death of Emil Koutný ([16], [17]) became Karel Pelz in 1881 a regular 
professor of descriptive geometry at the Institute of technology in Graz and he remained 
at that position fifteen prettiest and most fruitful years of his life. 

In 1891 received Pelz a proposal for a professorial post of descriptive geometry at the 
University of technology in Vienna. Due to unacceptable rules on the Viennese side he 
has rejected the proposed post. In 1896 he repeatedly declined a proposal to Vienna, and 
in the same year he was appointed, on the basis of a public contest, a post of the ordinary 
professor at the Czech University of technology in Prague after the leaving of F. Tilšer to 
retirement. But the favourable activity of Karel Pelz at the University of technology in 

                                                 
4 Fiedler leaved in 1867 to the technical university in Zurich, where he occupied the post of professor 
of descriptive geometry. He preserved contact with Pelz practically to Pelz’s last days; the teacher overlived his 
student more then four years. 
5 The author of the publication is mentioning it with thanks in the introduction; he himself was not a good drawer 
and Pelz was practically the only one, from who was a correct and quick making out of this part of the work 
expectable. (Concerning the publication Theorie der mehr-deutigen geometrischen Elementargebilde und 
der algebraischen Kurven und Flächen als deren Erzeugnisse, 1869.) 
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Prague was already distressed by illness; in Prague he wrote only one scientific work 
devoted to the principals and characteristics of stereographic projection. However it is 
evident from his correspondence and the memoirs of his friends, that he was still mainly 
interested in structural problems, but it was not granted him to complete it to a level of 
publication. He stayed in written contact mainly with his former colleagues from Graz. 
He was on the best terms with Fr. Mertens, who also worked there (later Mertens 
obtained a professorial position at the University in Vienna). Pelz leaved Prague only 
unwillingly, he wanted to enjoy it as most as possible. He had several hobbies. His 
photography collection of outstanding mathematicians6 of whose scientific merits and life 
stories he was able to talk interestingly and well-founded expanded to hundreds of pieces. 
He was at all an enthusiast of excellent memoirs, he liked to talk especially about Prague. 
Jan Sobotka wrote: It is to regret that Pelz didn’t write his memoirs – first of all about the 
scientific events and the cultural and social memorabilities in Prague. I am sure that he 
would be able to write as an expert and well-informed person eligible over others. ([20]) 
In 1904 he was awarded a title and grade of the counselor of the court; however he did 
not live to enjoy the deserved departure to retirement. 

Karel Pelz died on the 16th June in 1908 in Prague. He is entombed together with his 
wife Paulina (1854–1931) in Prague’s memorial Slavín (Vyšehrad). 

2 Scientific work 
The name of Karel Pelz is closely connected with the top development of descriptive 

geometry crowned by Emil Müller7 and his disciples in the first third of the 20th century. 
His scientific works were quoted, highly regarded and applied almost in all publications 
devoted to this mathematical discipline. At the turn of the 19th century Prague has 
contributed in a high degree to the development of new geometric methods. From the 
second half of the sixties of the 19th century it went through a whole epoch of successful 
expansion in geometry (the arrival of W. Fiedler to the Prague polytechnic institute, the 
rapidly growing high repute of the Weyr brothers, the arrival of Jan Sobotka to the Prague 
University, and many others, among whom Pelz had a characteristic and distinguished 
position. The scientific work of K. Pelz (altogether 34 papers8) has been mainly related to 
two main branches of descriptive geometry: 1. the synthetic theory of conic sections, 
curves and surfaces; 2. the scientific building of methods of representations.  

2.1 Synthetic theory of conic sections, curves and surfaces 
One of the first problem Pelz has been interested in, was the study of the so called 

brilliant points of a circle and an ellipse (under the condition that both the center of 
illumination and the eye of the observer lay in the plane of the given curve). The first 
problem he has solved by the construction of the tangents of the given circle that were the 
tangents of an auxiliary parabola as well, and the second one by the construction of the 
intersection points of the given ellipse and an auxiliary circular cubic. The elegance of 
the procedures and the achieved results inspired the Dutch geometer P. H. Schouten 
(1846–1913), who has e. g. proved, that an algebraic plane curve of the degree m has 
m(2m – 1) brilliant points that lay on a curve of the degree 2m passing through ideal 
points of the given curve.  

                                                 
6 The collection is the property of the Czech Academy of Science. See [20]. 
7 On the life and work of Emil Müller, an outstanding representative of the geometrical school of Vienna, is 
possible to learn more in [15]. 
8 The list of the papers can be found in [19], [20].  
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A great deal of Pelz’s work is devoted to quadratic surfaces (quadrics), to their 
properties and representation (the contours of quadrics, the contours of their projections, 
the construction of the axes of quadrics, the construction of the axes and foci of the 
contours of their projections, problems related to the illumination, i.e. the construction of 
the shadows of quadrics in parallel and central illumination, etc.) The solution of these 
problems is connected with the problems about conic sections. In many of them we can 
meet a very ingenious use and generalization of the following theorem of Steiner:9 The 
tangent and the normal in a point of a central conic section are together with the axes of 
the conic section tangents of a parabola; the tangent point of this parabola with the 
normal is the center of curvature of the given conic section in a corresponding point. Pelz 
named this parabola Steiner’s parabola and proved the following theorem: 

Theorem 1. Let k be an arbitrary central conic section, P an arbitrary point not laying 
on it and p its polar line with respect to the conic section k. Let Q be an arbitrary point of 
the line p and q its polar line with respect to the conic section k, thus holds true: for all 
points Q of the line p the set of polar lines q´ conjugate to the polar line q (in relation to 
the conic section k), which are perpendicular to the line q, is an envelope of a parabola10.  

Note 1. The axes io (i = 1, 2) of the conic section k, its normal lines in in the points 
iT ∈ p ∩ k (i = 1, 2), the line p and the bisectors ir of the angles of tangents i it TP=


 (i = 1, 

2) are also the tangents of the parabola from the theorem 1. The directrix of this parabola 
is the diametral line PS of the given conic section k. Some of the mentioned tangents 
points we can see in Fig. 1.  

 

 

Fig. 1 
 

One of the most relevant problems of the theory of quadrics is to determine the axes 
of  a  quadratic surface. Pelz has investigated this problem in [7] especially for the 
quadratic conic surface (it is possible to reduce the construction of the axes of any other 
quadric to this case). M. Chasles gave two solutions of the problem (without proof) in his 
Aperçu historique.11 In the introduction of his paper Pelz proved the correctness of both 
Chasles’s constructions in his own way, simply and compendiously, and consequently 
deduced a new, elegant and simpler solution moreover. We give a brief sketch of the main 
idea of it.  

                                                 
9 Jacob Steiner (1796–1863), professor of geometry at the University in Berlin, one of the most outstanding 
German geometers of the 19th century. 
10 We call this parabola Steiner-Pelz parabola pertaining to point P and the given conic section k. 
11 Michele Chasles (1793–1880), one of the greatest French mathematicians of the 19th century (Aperçu 
historique sur l’origine et le dèveloppement des méthodes en géometrie, II. Ed., Paris, 1875). 
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Let K be a conical surface given by a conic section k in the plane α and by its vertex 
V. As almost the whole solution of the problem will be made in the plane α, so we can 
determine the vertex V by its orthogonal projection V' into this plane and by the distance 
d =V, α =VV' . By the axes x, y, z of the surface K we mean three mutually 
perpendicular lines for which holds that any of them is a conjugate polar line to the plane 
given by the remaining two one’s (with respect to the surface K).12 If a triple of lines x, y, 
z of the required properties does exist, the trihedral given by them is an autoconjugate  
one with respect to the surface K. Followingly, the triangle  XYZ (X = x ∩ α, Y = y ∩ α,  
Z = z ∩ α) is an autoconjugate (polar) triangle (with respect to the conic section  
k = K ∩ α) with the point V' being its orthocenter13 (Fig. 2b). Pelz has stated the 
necessary and sufficient conditions for the existence of such triangle. He has 
demonstrated, in a simple way, that all its sides are tangents of the parabola p 
(followingly the axes io (i = 1, 2) of the conic section k, the polar line of the point V' and 
the bisectors ih (i = 1, 2) of the angles of the straight lines 1FV', 2FV', – the points  
iF (i = 1, 2) being the foci of the k – are also the tangents of p). The focus P of the 
parabola p is a diagonal point of a quadrilateral given by pairs of tangents io, ih (i = 1, 2) 
(Fig. 2a). The lines V'X, V'Y, V'Z are the conjugate polar lines to the lines YZ, XZ, XY 
respectively, each one orthogonal to the corresponding polar line. As the envelope of 
parabola p is the set of all conjugate polar lines to the lines of a pencil of the straight lines 
with the center V', which are perpendicular to the corresponding lines of the pencil, the 
vertices of the polar triangle have to lie on the polar figure to this envelope. This point set 
is an equiangular hyperbola k1, the asymptotes ia (i = 1, 2) of which are parallel to the 
axes of conic section k; the hyperbola k1 passes through the center S of k, and also 
through the point V' (the tangent t of the hyperbola in the point V' is a conjugate polar line 
to the polar of point V', perpendicular to it). Hyperbola k1 is given; let us sign its center  
S1 and let the second end point of the diameter of the hyperbola passing through the point 
V' be Q (moreover the points S, P, Q are collinear).14 

 

 

Fig. 2a, b 

                                                 
12 The number of such triples may be infinite, e.g. in the case of a conic surface of revolution. 
13 Note: If in the following text will be the reference to polarity/polar conjugated figures (without additional 
information), we will mean the polarity/polar conjugated figures with respect to the conic section k ⊂ α. 
14 Point Q can not, evidently, be indicated in Fig. 2a; it is the point for which: (V´QS1) = –1.  
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Further on Pelz is proving that the circumscribed circle l about the triangle XYZ passes 
through the fixed points P and Q. Every circle of the family of circles (that passes 
through the points P, Q) has in general case three other points with the hyperbola k1, 
except the point Q, in common. These points are the vertices of the polar triangle (with 
respect to the given conic section k) with the orthocenter V'. In conclusion we need to 
choose a circle of the pencil, for which the lines passing through the vertex of the conic 
surface K and through one vertex of the polar triangle (corresponding to this circle) are 
mutually perpendicular. This condition is fulfilled if and only if the circle l passes 
through the anti-pole O of the diametral line of hyperbola k1 perpendicular to the line V'S1 
(with respect to the distance circle kd of vertex V.15 Then l ∩ k1 = {Q, X, Y, Z} and the 
lines VX, VY, VZ are the solution of the problem.  

The next original contribution of Karel Pelz to the solution of problems related to the 
constructions of contours of the projections of quadrics and an analogous problem, 
related to the construction of their shadows in the parallel, as well as in the central 
illumination, was the generalization of a significant theorem of Quetelet and Dandeline 
(Q-D Theorem). Pelz has stated the necessary and sufficient conditions for the solution of 
the problems introduced above for all regular quadrics except the one-sheet hyperboloid 
of revolution and the hyperbolic paraboloid, for which he had to use another method of 
solution. The generalization of Pelz sounds: 

Theorem 2. The contour of the projection of a quadratic surface into a plane 
belonging to the system of the circular plane sections of the surface in the parallel, as 
well as in the central projection, is a conic section. The foci of this conic section are the 
projections of the end points of a diameter of the quadratic surface conjugate with  
the system of planes parallel to the plane of projections (related to the given surface).16 

Pelz has returned to this theorem also in his last work devoted to the stereographic 
projection.17 This paper has illustrated how – quite spontaneously – all characteristics of 
this projection were derived of the Quetelet–Dandeline theorem. Pelz remarked: Just a 
few theorems of solid geometry are playing such an important role in the tuition of 
descriptive geometry as this theorem – for its numerous and multilateral use in the 
discipline in question. 

With respect to the extent and object of this paper we will not analyze further papers 
of Pelz from this field. We will mention only two next theorems, denoted as the 
Theorems of Pelz ([2], [20]), with the help of which it is possible to prove the Theorem 
of Chasles quoted without proof in his note XXVI in Aperçu historique. 

Theorem 3. The foci of the projections of parallel plane sections of a given quadric 
with planes parallel to the plane of projection, are lying on two conic sections. These 
conic sections are confocal with the contour of projection of the quadric.18 

Theorem 4. The orthogonal projection of the foci of the two-sheet hyperboloid 
of revolution, the prolate ellipsoid of revolution and the paraboloid of revolution are the 

                                                 
15 The circle kd with the center V´ and diameter d (d = |V, α|) is a circle of the plane α. The circle l is anti-inverse 
to the nine-point circle of the triangle XYZ; the center of anti-inversion is the point V´ and its coefficient is equal 
–d 2 (V´O.V´S1= d 2). Pelz has introduced in his paper [7] very detailed proofs of all arguments. The part of 
the proof related to the circle l the author illustrated on a case, in which the conic section k was a hyperbola. 
16 The theorem on the contour of the projection of a quadric of revolution (except the one-sheet hyperboloid 
of revolution) is a simple consequence of this theorem. The focuses in this case are the projections of the vertices 
of the surface. 
17 The main theorems of stereographic projection as consequences of the Q-D Theorem, Věstník královské české 
společnosti nauk v Praze, 1898. 
18 It is possible to prove, that in the case of parallel projection this theorem is in vigor for an arbitrary system of 
planes not including the plane of projection. 
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foci of the contours of projections of these surfaces. The contours of orthogonal 
projections of the one-sheet hyperboloid of revolution and of the oblate ellipsoid of 
revolution are confocal with the projection of a circle, which is generated by the rotation 
of a focus of the meridian of the surface about the axis of revolution of a quadric. 19 

 

2.2 Scientific building of methods of representation 
The main contribution of Karel Pelz in this branch was that he have precised the 

elements of orthogonal axonometry as an autonomous method of representation. He has 
started his work with the very modest and noble-minded intention to correct some of the 
non precise conclusions in the works devoted to this method ([5]) and was the first who 
has turned attention to the axonometric triangle and proved that the method of orthogonal 
axonometry was by this triangle fully determined.20 In this method of representation Pelz 
has solved all metric problems on basic space elements (lines and planes perpendicular to 
each other, the representation of a circle, the length of a segment, the distance of the 
origin of the system of coordinates from a plane given by its traces, the revolvement of 
a plane). Even problems of both central and parallel illumination could not escape to his 
attention, e. g.: illumination of a sphere; construction of isophotes on the sphere and on 
the cylindrical and conic surfaces of revolution; the parallel illumination of the semi-
sphere surface. Pelz was also the first who – for the construction of the shadow of 
a sphere (in a parallel illumination) into an auxiliary plane of projection – used a sphere 
symmetrically conjugate to the given one with respect to the plane of shadows. The axes 
of the contour of the shadow (generally an ellipse) were lying on diagonals of a rhomb 
generated by the contour of the projection of two cylindrical surfaces circumscribed to 
the spheres.21  

Karel Pelz dealt of course with the fundamental theorem of oblique axonometry as 
well. It was the Theorem of Pohlke, which was named in this way by mathematicians 
after its publication in the first volume of Pohlke’s textbook on descriptive geometry22 in 
1860, where Pohlke noted, that an elementary proof of the theorem does probably not 
exist, and therefore it would be delayed to the second volume of the textbook. The first 
elementary and genially simple complete proof of the theorem of Pohlke was given by 
young H. Schwarz, a student of Pohlke. Schwarz proved in 1863 the generalized theorem: 
“An arbitrary quadruple of non-collinear points of the plane of projection can be 
considered as a parallel projection of the vertices of a tetrahedron, for which the 
proportions of the lengths of its sides and their mutual angles are known”.23 Pohlke 
published the proof of Schwarz by mutual consent in the second edition of the first 
volume of his textbook in 1866.24 The original proof of Pohlke was never published. In 
the course of the next half century were many proofs of this theorem published, synthetic 

                                                 
19 Analogous theorems related to the illumination of quadrics are direct consequences of the theorems 2–4.  
20 The property of axonometric triangle that the axonometric projection of the origin of the orthonormal system 
of coordinates is its orthocenter has been proved by the German mathematician O. Schlömilch (1823–1901) 
in 1856.  See [5].  
21 One of the surfaces is the tangent illumination figure of a given sphere; the second one is symmetrically 
conjugate to it with respect to the plane of shades. 
22 Karl Pohlke (1810–1876), professor of descriptive geometry at the University of technology in Berlin; 
Darstellende Geometrie (Descriptive geometry, Berlin, 1860, 1866, 1872 – first volume, Berlin 1876 – second 
volume) 
23 The concidered tetrahedron is similar to an arbitrary chosen tetrahedron. 
24 More details about the history of the proof of this theorem and its importance in the didactics of mathematics 
can be found in [18]. 
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and analytic. One of the first was the proof of Karel Pelz in 1877 ([9]). The proof of Pelz 
was important from the historical standpoint; Schwarz recognized in it the proof of Pohlke, 
which he was acquainted with, but was not able to reproduce (in the time of the publication of 
Pelz’s proof Karl Pohlke was already dead). Next we present at least the draft of the main idea 
of the proof of Karel Pelz, who proved the fundamental theorem of oblique axonometry in 
approximately the following wording: 

Theorem 5. The vertices of an arbitrary quadrilateral O X Y Z′ ′ ′ ′  of the plane of 
projection can be considered as the parallel projection of the vertices of the orthonormal 
coordinate tetrahedron OXYZ.25 

Outline of the proof: Let us choose in the plane of projection ε three arbitrary 
segments ,O X′ ′  ,O Y′ ′  O Z′ ′  in order the points , ,X Y Z′ ′ ′  to have the required character; 
moreover let the point O be lying in the plane ε of projection (O = O′ ). 

a) At first let us consider the ellipse k′  in the plane ε given by two conjugate half-
diameters, that are coincident with an arbitrary pair of given segments (for example ,O X′ ′  

)O Y′ ′ . The ellipse k′  can be considered as an oblique projection of the circle k with its 
diameter in an arbitrary chosen diameter of the ellipse k′  (k ⊂ α, α ≠ ε), i.e. A = ,A′  B = B′ . 
The angle of the planes α, ε can be chosen arbitrarily; it corresponds to an arbitrary choice 
of the orthogonal projection of one endpoint C of the diameter CD (CD ⊥ AB) of the circle k 
into the plane ε.26 (Fig. 3) The system of oblique projection g: k  k′  is given with the line 
CC′ , where C D′ ′  is the diameter of ellipse k′  conjugate to the diameter A B′ ′ . (These 
oblique projections are two; the second one projects into point C′  the point D ∈ k.) Let us 
construct point E: OE ≅ OA (≅ OC) and OE ⊥ α (the construction of point E1 is evident from 
the theorem on the orthogonal projection of a circle27), and its oblique projection E´ into the 
plane of projection ε (ΔE´E1(E) ∼ Δ C´C1(C)). Then it is sufficient to construct the points X, Y 
in a way, that X = (g/α)-1(X´), Y = (g/α)-1(Y´). The figure OXYE is an orthonormal tetrahedron, 
the vertices of which are in the projection g projected into the points O´, X´, Y´, E´. The point 
E´ is in a general case different from point Z´, that’s why it is needed further on to answer the 
following two questions: – what is the set of all points E´ for all possible positions of plane α 
by its rotation around the line AB; – what is the set of all points E´ for all possibilities of the 
choice of the diameter A´B´? 

b) By the rotation of the plane α about the line AB the point C moves on a circular path 
of the circle k* ⊂ λ, while the projector CC′ is passing through the generators of a circular 
conical surface K* with the directrix k* and the vertex .C′  At the same time the projector 
of the point E is passing through a set of parallel lines with the mentioned projectors. (The 
point E is a point of the circle k*, for which the oriented angle ∠COE is congruent to the 
positive right angle; the orientation of the angle (by the motion of the point C) remains 
invariant. Pelz has proved (analytically) that the set of traces of the projectors of all positions 
of the point E was a hyperbola h ⊂ ε coaxial with the ellipse k′ ; the (linear) excentricities of 

                                                 
25 The theorem is introduced in a modern – from the viewpoint of terminology correct – version. OXYZ is 
a tetrahedron, in which all edges OX, OY, OZ are congruent and perpendicular one to each other (= orthonormal 
coordinate tetrahedron). 
26 Normal projections into the plane ε will have a right subscript “1”. The angle of planes α and ε can be 
determined by the revolvement of the plane λ (CD ⊂ λ, λ ⊥ ε): ∠αε ≅ ∠ (C)OC1; (O) = O1 = O. 
27 From it follows: E ∈ λ, OE ≅ OC, OE ⊥ OC O1E1= e, where e is the linear excentricity of the ellipse k1. 
The construction can be made by help of the revolvement of plane λ to the plane of projection ε; E, C, are the 
end points of perpendicular half-diameters of the circle k* = λ ∩ G, where G is a sphere with the center O and 
diameter OA. 
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both conic sections were equal (the real axis of the hyperbola h coincided with the minor axis 
of the ellipse k′ ). The normal projection of the projector of the point E ( 1E E′


) is a tangent 

to the hyperbola h at the point E′  and the asymptotes of the hyperbola h are parallel to the 
lines C K′  and C L′  (the points K, L being points of the circle k* in the plane ε.) 28 Karl Pohlke 
has probably proved (synthetically) that the set of points of the projectors of every point 
E ∈ k* (corresponding to the point C that pass through points of the circle k*) is a quadratic 
surface. Every two rectilinear generators of this surface are the skew lines; from the 
classification of quadrics it follows that this surface is a one-sheet hyperboloid. The traces 
of its generators lie on the intersection of this hyperboloid with the plane of projection (the 
Pelz’s hyperbola h). 

 
 

Fig. 3 

c) When choosing another diameter 1 1A B  of the ellipse k′  we get a system of one-sheet 
hyperboloids that intersect the plane ε in a system of confocal hyperbolas. Evidently through 
every point Z ′  in the plane ε (of the required characteristic) passes exactly one hyperbola  
ih  (i ∈ I) that is determined by its foci ff 21  ,  and by the point Z ′ .29 To every hyperbola ih  
corresponds exactly one sphere iG ; its diameter LK ii  ⊂ ε is the revolved position of the 
diameter i iA B  of the ellipse k′  by a right angle. From it follows the construction of the points 

,iK  ,iL  and of the diameter i iA B .30
 Two conic sections φ( k′ ) and 

ih  have generally the 
endpoints of two diameters common: i iK L , i o i oK L . Consequently there exist two planes iλ , 

 i oλ each perpendicular to the plane ε and coinciding with exactly one of these diameters. Let 
us consider the plane iλ . The normal projection of the point Z ∈ iλ  lies on the tangent of the 

                                                 
28 KL is a diameter of the hyperbola h in the plane λ with vertices U, V. (Fig. 3) 
29 The construction of the major axis and asymptotes of hyperbola 1h follows from its focal characteristics.  
30 Evidently this is valid: iK, iL ∈ φ(k´) ∩ ih, where (iK iLO) = –1 and φ is the rotation in the plane of projection 
with the center O by a right angle. 
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hyperbola ih  at the point Z ′ . The construction of the normal projection 1
iC  of the point 

iC  ∈ *ik  ( *ik  = iG  ∩ iλ ), as well as of the point iC′  ∈ k′  is evident from a), b). The 
parallel projection ig (ig: iC   iC′ ) has the required characteristic: it projects the vertices 
O, X, Y, Z of the orthonormal coordinate tetrahedron to the vertices , , ,O X Y Z′ ′ ′ ′  of the given 
quadrilateral of the plane of projection.31 

In conclusion it can be said, that Karel Pelz was able in a masterly way to use the synthetic 
methods of projective and descriptive geometry to deduce and fill in known and to trace new 
constructions and methods. He considered every problem from the next viewpoint: the 
problem solving has to be compendious (with respect to the number of basic operations) and 
exact. He put the most emphasis on transparent clearness and simplicity. It was reflected as 
well in his own lectures, which enjoyed great popularity. It really can be regretted, that Pelz 
have not left behind a systematic publication on descriptive geometry. At least his axonometry 
got into a book compilation in the work of his former assistant and later successor in Graz 
Rudolf Schüssler “Orthogonale Axonometrie. Ein Lehrbuch zum Selbststudium” (Orthogonal 
axonometry. A textbook for self-study, Berlin 1905). The author wanted to repay to a great 
descriptive geometer his favor for the use of descriptive geometry and its tuition at 
universities. In the work not only the ideas of Pelz are methodically explained for those, who 
are already acquainted with the basics of this discipline, but they are also applied on a wide 
scale of interesting problems theoretical and practical too. 

 
It is a great pleasure for us to express our deep gratitude to Professor Ján Čižmár for his 

help both in the study of documents and the thorough and competent recension of this paper.  
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