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Chapter 1

Introduction

This chapter starts with a brief look on the prehistory of product integration;
the first section summarizes some results concerning ordinary differential equations
that were obtained prior the discovery of product integral. The next part provides a
motivation for the definition of product integral, and the last two sections describe
simple applications of product integration in physics and in probability theory.

1.1 Ordinary differential equations in the 19th century
The notion of product integral was introduced by Vito Volterra in connection with
the differential equation of the n-th order

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = q(x). (1.1.1)

Such an equation can be converted (see Example 2.5.5) into a system of n linear
differential equations of the first order

y′i(x) =
n∑

j=1

aij(x)yj(x) + bi(x), i = 1, . . . , n,

which can be also written in the vector form

y′(x) = A(x)y(x) + b(x). (1.1.2)

Volterra was initially interested in solving this equation in the real domain: Given
the functions A : [a, b] → Rn×n (where Rn×n denotes the set of all real n × n
matrices) and b : [a, b] → Rn, we have to find all solutions y : [a, b] → Rn of the
system (1.1.2). Later Volterra considered also the complex case, where y : G→ Cn,
A : G → Cn×n and b : G → Cn, where G ⊆ C and Cn×n denotes the set of all
n× n matrices with complex entries.

To be able to appreciate Volterra’s results, let’s have a brief look on the theory of
Equations (1.1.1) and (1.1.2) as developed at the end of the 19th century. A more
detailed discussion can be found e.g. in the book [Kl] (Chapters 21 and 29).

A large amount of problems in physics and in geometry leads to differential equa-
tions; mathematicians were thus forced to solve differential equations already since
the invention of infinitesimal calculus. The solutions of many differential equations
have been obtained (often in an ingenious way) in a closed form, i.e. expressed as
combinations of elementary functions.

Leonhard Euler proposed a method for solving Equation (1.1.1) in case when the
pi are constants. Substituting y(x) = exp(λx) in the corresponding homogeneous
equation yields the characteristic equation

λn + p1λ
n−1 + · · ·+ pn = 0.
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If the equation has n distinct real roots, then we have obtained a fundamental
system of solutions. Euler knew how to proceed even in the case of multiple or
complex roots and was also able to solve inhomogeneous equations. The well-known
method of finding a particular solution using the variation of constants (which
works even in the case of non-constant coefficients) was introduced by Joseph Louis
Lagrange.

More complicated equations of the form (1.1.1) can be often solved using the power
series method: Assuming that the solution can be expressed as y(x) =

∑∞
n=0 an(x−

x0)n and substituting to the differential equation we obtain a recurrence relation for
the coefficients an. Of course, this procedure works only in case when the solution
can be indeed expressed as a power series. Consequently, mathematicians began to
be interested in the problems of existence of solutions.

The pioneering result was due to Augustin Louis Cauchy, who proved in 1820’s the
existence of a solution of the equation

y′(x) = f(x, y(x))

y(x0) = y0
(1.1.3)

under the assumption that f and ∂f
∂y are continuous functions. The statement is

also true for vector functions y, and thus the linear Equation (1.1.2) is a special
case of the Equation (1.1.3). Rudolf Lipschitz later replaced the assumption of
continuity of ∂f

∂y by a weaker condition

‖f(x, y1)− f(x, y2)‖ < K · ‖y1 − y2‖

(now known as the Lipschitz condition).

Today, the existence and uniqueness of solution of Equation (1.1.3) is usually proved
using the Banach fixed point theorem: We put

y1(x) = y0 +
∫ x

x0

f(t, y0) dt,

yn(x) = y0 +
∫ x

x0

f(t, yn−1(t)) dt, n ≥ 2.

If f is continuous and satisfies the Lipschitz condition, then the successive approx-
imations {yn}∞n=1 converge to a function y which solves Equation (1.1.3). The
method of successive approximations was already known to Joseph Liouville and
was used by Émile Picard.

Around 1840 Cauchy proved the existence of a solution of Equation (1.1.3) in
complex domain using the so-called majorant method (see [VJ, EH]). We are looking
for the solution of Equation (1.1.3) in the neighbourhood of a point x0 ∈ C; the
solution is a holomorphic function and thus can be expressed in the form

y(x) =
∞∑

n=0

cn(x− x0)n (1.1.4)
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in a certain neighbourhood of x0. Suppose that f is holomorphic for |x − x0| ≤ a
and |y − y0| ≤ b, i.e. that

f(x, y) =
∞∑

i,j=0

aij(x− x0)i(y − y0)j . (1.1.5)

Substituting the power series (1.1.4) and (1.1.5) to Equation (1.1.3) gives an equa-
tion for the unknown coefficients cn; it is however necessary to prove that the
function (1.1.4) converges in the neighbourhood of x0. We put

M = sup{|f(x, y)|, |x− x0| ≤ a, |y − y0| ≤ b}

and define

Aij =
M

aibj
,

F (x, y) =
∞∑

i,j=0

Aij(x− x0)i(y − y0)j =
M

(1− (x− x0)/a)(1− (y − y0)/b)
. (1.1.6)

The coefficients aij can be expressed using the Cauchy’s integral formula

aij =
1
i!j!

∂i+jf

∂xi∂yj
=

1
(2πi)2

∫

ϕa

∫

ϕb

f(x, y)
(x− x0)i+1(y − y0)j+1

dy dx,

where ϕa is a circle centered at x0 with radius a > 0 and ϕb is a circle centered at
y0 with radius b > 0. The last equation leads to the estimate |aij | ≤ Aij , i.e. the
infinite series (1.1.6) is a majorant to the series (1.1.5). Cauchy proved that there
exists a solution of the equation

Y ′(x) = F (x, Y (x))

that can be expressed in the form Y (x) =
∑∞
n=0 Cn(x − x0)n in a neighbourhood

of x0 and such that |cn| ≤ Cn. Consequently the series (1.1.4) is also convergent in
a neighbourhood of x0.

In particular, for the system of linear equations (1.1.2) Cauchy arrived at the fol-
lowing result:

Theorem 1.1.1. Consider functions aij , bj (i, j = 1, . . . , n) that are holomorphic
in the disk B(x0, r) = {x ∈ C; |x− x0| < r}. Then there exists exactly one system
of functions

yi(x) = y0
i +

∞∑

j=1

cij(x− x0)i (i = 1, . . . , n)

defined in B(x0, r) that satisfies

y′i(x) =
n∑

j=1

aij(x)yj(x) + bi(x),

yi(x0) = y0
i ,
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where y0
1 , . . . , y

0
n ∈ C are given numbers.

As a consequence we obtain the following theorem concerning linear differential
equations of the n-th order:

Theorem 1.1.2. Consider functions p1, . . . , pn, q that are holomorphic in the disk
B(x0, r) = {x ∈ C; |x − x0| < r}. Then there exists exactly one holomorphic
function

y(x) =
∞∑

k=0

ck(x− x0)k

defined in B(x0, r) that satisfies the differential equation

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = q(x)

and the initial conditions

y(x0) = y0, y
′(x0) = y′0, . . . , y

(n−1)(x0) = y
(n−1)
0 ,

where y0, y
′
0, . . . , y

(n−1)
0 ∈ C are given complex numbers.

Thus we see that the solutions of Equation (1.1.1), whose coefficients p1, . . . , pn, q
are holomorphic functions, can be indeed obtained by the power series method.

However, it is often necessary to solve Equation (1.1.1) in case when the coefficients
p1, . . . , pn, q have an isolated singularity. For example, separation of variables in
the wave partial differential equation leads to the Bessel equation

y′′(x) +
1
x
y′(x) +

(
1− n2

x2

)
y(x) = 0,

whose coefficients have a singularity at 0. Similarly, separation of variables in the
Laplace equation gives the Legendre differential equation

y′′(x)− 2x
1− x2

y′(x) +
n(n+ 1)
1− x2

y(x) = 0

with singularities at −1 and 1.

The behaviour of solutions in the neighbourhood of a singularity has been stud-
ied by Bernhard Riemann and after 1865 also by Lazarus Fuchs. Consider the
homogeneous equation

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = 0 (1.1.7)

in the neighbourhood of an isolated singularity at x0 ∈ C; we assume that the
functions pi are holomorphic in the ring P (x0, R) = {x ∈ C; 0 < |x − x0| < r}.
If we choose an arbitrary a ∈ P (x0, R), then the functions pi are holomorphic
in U(a, r) (where r = |a − x0|), and Equation (1.1.7) has n linearly independent
holomorphic solutions y1, . . . , yn in U(a, r). We now continue these functions along
the circle

ϕ(t) = x0 + (a− x0) exp(it), t ∈ [0, 2π]
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centered at x0 and passing through a. We thus obtain a different system of solutions
Y1, . . . , Yn in U(a, r). Since both systems are fundamental, we must have Yi =∑n
j=1Mijyj , or in the matrix notation Y = My. By a clever choice of the system

y1, . . . , yn it can be achieved that M is a Jordan matrix. Using these facts, Fuchs
was able to prove the existence of a fundamental system of solutions of Equation
(1.1.7) in P (x0, R) that consists of analytic functions of the form

(x− x0)λi
(
ϕi0(x) + ϕi1(x) log(x− x0) + · · ·+ ϕini(x) logni(x− x0)

)
,

i = 1, . . . , n, where ϕjk are holomorphic functions in P (x0, R) and λi ∈ C is such
that exp(2πiλi) is an eigenvalue of M with multiplicity ni.

Moreover, if pi has a pole of order at most i at x0 for i ∈ {1, . . . , n}, then the
Fuchs theorem guarantees that ϕjk has a pole (i.e. not an essential singularity) at
x0. This result implies that Equation (1.1.7) has at least one solution in the form
y(x) = (x − x0)r

∑∞
k=0 ak(x − x0)k; the numbers r and ak can be calculated by

substituting the solution to Equation (1.1.7) (this is the Frobenius method).

We have now recapitulated some basic facts from the theory of ordinary differential
equations. In later chapters we will see that many of them can be also obtained
using the theory of product integration.

1.2 Motivation to the definition of product integral

The theory of product integral is rather unknown among mathematicians. The
following text should provide a motivation for the following chapters.

We consider the ordinary differential equation

y′(t) = f(t, y(t)) (1.2.1)

y(a) = y0 (1.2.2)

where f : [a, b] × Rn → Rn is a given function. Thus, we are seeking a solution
y : [a, b]→ Rn that satisfies (1.2.1) on [a, b] (one-sided derivatives are taken at the
endpoints of [a, b]) as well as the initial condition (1.2.2).
An approximate solution can be obtained using the Euler method, which is based
on the observation that for small ∆t,

y(t+ ∆t)
.
= y(t) + y′(t)∆t = y(t) + f(t, y(t))∆t.

We choose a partition D : a = t0 < t1 < · · · < tm = b of interval [a, b] and put

y(t0) = y0

y(t1) = y(t0) + f(t0, y(t0))∆t1
y(t2) = y(t1) + f(t1, y(t1))∆t2

· · ·
y(tm) = y(tm−1) + f(tm−1, y(tm−1))∆tm,
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where ∆ti = ti − ti−1, i = 1, . . . ,m. We expect that the finer partition D we
choose, the better approximation we get (provided that f is a “well-behaved”,
e.g. continuous, function).

We now turn to the special case f(t, y(t)) = A(t)y(t), where A(t) ∈ Rn×n is a
square matrix for every t ∈ [a, b]. The Euler method applied to the linear equation

y′(t) = A(t)y(t)

y(a) = y0
(1.2.3)

yields

y(t0) = y0,

y(t1) = (I +A(t0)∆t1)y(t0) = (I +A(t0)∆t1)y0,

y(t2) = (I +A(t1)∆t2)y(t1) = (I +A(t1)∆t2)(I +A(t0)∆t1)y0,

· · ·
y(tm) = (I +A(tm−1)∆tm) · · · (I +A(t1)∆t2)(I +A(t0)∆t1)y0,

where I denotes the identity matrix. Put

P (A,D) = (I +A(tm−1)∆tk) · · · (I +A(t1)∆t2)(I +A(t0)∆t1).

Provided the entires of A are continuous functions, it is possible to prove (as will
be done in the following chapters) that, if ν(D) → 0 (where ν(D) = max{∆ti, i =
1, . . . ,m}), then P (A,D) converges to a certain matrix; this matrix will be denoted
by the symbol

b∏

a

(I +A(x) dx)

and will be called the left product integral of the matrix function A over the interval
[a, b]. Moreover, the function

Y (t) =
t∏

a

(I +A(x) dx)

satisfies
Y ′(t) = A(t)Y (t)

Y (a) = I

Consequently, the vector function

y(t) =
t∏

a

(I +A(x) dx) y0

is the solution of Equation (1.2.3).
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1.3 Product integration in physics

The following example shows that product integration also finds applications out-
side mathematical analysis, particularly in fluid mechanics (a more general treat-
ment is given in [DF]).

Consider a fluid whose motion is described by a function S : [t0, t1] × R3 → R3;
the value S(t, x) corresponds to the position (at the moment t) of the particle that
was at position x at the moment t0. Thus, for every t ∈ [t0, t1], S can be viewed as
an operator on R3; we emphasize this fact by writing S(t)(x) instead of S(t, x).

If x is a position of a certain particle at the moment t, it will move to S(t + ∆t) ·
S(t)−1(x) (where · denotes the composition of two operators) during the interval
[t, t+ ∆t]. Consequently, its instantaneous velocity at the moment t is given by

V (t)(x) = lim
∆t→0

S(t+ ∆t) · S(t)−1(x)− x
∆t

=

(
lim

∆t→0

S(t+ ∆t) · S(t)−1 − I
∆t

)
(x),

where I denotes the identity operator. The velocity V (t) is an operator on R3 for
every t ∈ [t0, t1]; in the following chapters it will be called the left derivative of the
operator S.

Given the velocity operator V , how to reconstruct the position operator S? For
small ∆t we have

S(t+ ∆t)(x)
.
= (I + V (t)∆t) · S(t)(x).

If we choose a sufficiently fine partition D : t0 = u0 < u1 < · · · < um = t of interval
[t0, t], we obtain

S(t)(x)
.
= (I + V (um−1)∆um) · · · (I + V (u0)∆u1)(x),

where ∆ui = ui − ui−1, i = 1, . . . ,m. The above product (or composition) resem-
bles the product encountered in the previous section. Indeed, passing to the limit
ν(D)→ 0, we see that S is the left product integral of operator V , i.e.

S(t) =
t∏

t0

(I + V (u) du), t ∈ [t0, t1].

In a certain sense, the left derivative and the left product integral are inverse
operations.

1.4 Product integration in probability theory

Some results of probability theory can be elegantly expressed in the language of
product integration. We present two examples concerning survival analysis and
Markov processes; both are inspired by [Gil].

Example 1.4.1. Let T be a non-negative continuous random variable with dis-
tribution function F (t) = P (T ≤ t) and probability density function f(t) = F ′(t).

9



For example, T can be interpreted as the service life of a certain component (or the
length of life of a person etc.). The probability of failure in the interval [t, t+ ∆t]
is

P (t ≤ T ≤ t+ ∆t) = F (t+ ∆t)− F (t).

We remind that the survival function is defined as

S(t) = 1− F (t) = P (T > t)

and the failure rate (or the hazard rate) is

a(t) =
f(t)
S(t)

=
f(t)

1− F (t)
= − S′(t)

S(t)
= − d

dt
logS(t). (1.4.1)

The name “failure rate” stems from the fact that

lim
∆t→0

P (t ≤ T ≤ t+ ∆t |T > t)
∆t

= lim
∆t→0

P (t ≤ T ≤ t+ ∆t)
P (T > t)∆t

=

= lim
∆t→0

F (t+ ∆t)− F (t)
S(t)∆t

=
f(t)
S(t)

= a(t),

i.e. for small ∆t, the conditional probability of failure during the interval [t, t+ ∆t]
is approximately a(t)∆t.

Given the function a, Equation (1.4.1) tells us how to calculate S:

S(t) = exp

(
−
∫ t

0
a(u) du

)
. (1.4.2)

We can also proceed in a different way: If we choose an arbitrary partition

D : 0 = t0 < t1 < · · · < tm = t,

then

S(t) = P (T > t) = P (T > t0)P (T > t1 |T > t0) · · ·P (T > tm |T > tm−1) =

=
m∏

i=1

P (T > ti |T > ti−1) =
m∏

i=1

(1− P (T ≤ ti |T > ti−1)).

In case the partition is sufficiently fine, the last product is approximately equal to

m∏

i=1

(1− a(ti)∆ti).

This product is similar to the one used in the definition of left product integral, but
the factors are reversed. Its limit for ν(D)→ 0 is called the right product integral
of the function −a on interval [0, t] and will be denoted by the symbol

S(t) = (1− a(u) du)
t∏

0

. (1.4.3)
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Comparing Equations (1.4.2) and (1.4.3) we obtain the result

(1− a(u) du)
t∏

0

= exp

(
−
∫ t

0
a(u) du

)
,

which will be proved in Chapter 2 (see Example 2.5.6). The product integral
representation of S has the advantage that it can be intuitively viewed as the
product of probabilities 1 − a(u) du that correspond to infinitesimal intervals of
length du.

The last example corresponds in fact to a simple Markov process with two states s1

(“the component is operating”) and s2 (“the component is broken”). The process
starts in the state s1 and goes over to the state s2 at time T . We now generalize our
calculation to Markov processes with more than two states; before that we recall
the definition of a Markov process.
A stochastic process X on interval [0,∞) is a random function t 7→ X(t), where
X(t) is a random variable for every t ∈ [0,∞). We say that the process is in the
state X(t) at time t. A Markov process is a stochastic process such that the range
of X is either finite or countably infinite and such that for every choice of numbers
n ∈ N, n > 1, 0 ≤ t1 < t2 < · · · < tn, we have

P (X(tn)=xn|X(tn−1)=xn−1, . . . , X(t1)=x1) = P (X(tn)=xn|X(tn−1)=xn−1),

where x1, . . . , xn are arbitrary states (i.e. values from the range of X). The above
condition means that the conditional probability distribution of the process at time
tn depends only on the last observation at tn−1 and not on the whole history.

Example 1.4.2. Let {X(t); t ≥ 0} be a Markov process with a finite number of
states S = {s1, . . . , sn}. For example, we can imagine that X(t) determines the
number of patients in physician’s waiting room (whose capacity is of course finite).

Suppose that the limit

aij(t) = lim
∆t→0+

P (X(t+ ∆t) = sj |X(t) = si)
∆t

exists for every i, j = 1, . . . , n, i 6= j and for every t ∈ [0,∞). The number aij(t) is
called the transition rate from state i to state j at time t. For sufficiently small ∆t
we have

P (X(t+ ∆t) = sj |X(t) = si)
.
= aij(t)∆t, i 6= j, (1.4.4)

P (X(t+ ∆t) = si |X(t) = si)
.
= 1−

∑

j 6=i
aij(t)∆t. (1.4.5)

We also define
aii(t) = −

∑

j 6=i
aij(t), i = 1, . . . , n

and denote A(t) = {aij(t)}ni,j=1. Given the matrix A, we are interested in calculat-
ing the probabilities

pi(t) = P (X(t) = si), t ∈ [0,∞), i = 1, . . . , n,
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and
pij(s, t) = P (X(t) = sj |X(s) = si), 0 ≤ s < t, i, j = 1, . . . , n.

The total probability theorem gives

pj(t) =
n∑

i=1

pi(0)pij(0, t).

The probabilities pi(0), i = 1, . . . , n are usually given and it is thus sufficient
to calculate the probabilities pij(0, t), or generally pij(s, t). Putting P (s, t) =
{pij(s, t)}ni,j=1 we can rewrite Equations (1.4.4) and (1.4.5) to the matrix form

P (t, t+ ∆t)
.
= I +A(t)∆t (1.4.6)

for sufficiently small ∆t.

Using the total probability theorem once more we obtain

pij(s, u) =
n∑

k=1

pik(s, t)pkj(t, u), (1.4.7)

for 0 ≤ s < t < u, i, j = 1, . . . , n. This is equivalent to the matrix equation

P (s, u) = P (s, t)P (t, u). (1.4.8)

If we choose a sufficiently fine partition s = u0 < u1 < · · · < um = t of interval
[s, t], then Equations (1.4.6) and (1.4.8) imply

P (s, t) =
m∏

i=1

P (ui−1, ui)
.
=

m∏

i=1

(I +A(ui)∆ui).

Passing to the limit for ν(D) → 0 we obtain a matrix which is called the right
product integral of the function A over interval [s, t]:

P (s, t) = (I +A(u) du)
t∏

s

.

The last result can be again intuitively interpreted as the product of matrices
I + A(u) du which correspond to transition probabilities in the infinitesimal time
intervals of length du.
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