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Chapter 3

Lebesgue product integration

While it is sufficient to use the Riemann integral in applications, it is rather un-
satisfactory from the viewpoint of theoretical mathematics. The generalization of
Riemann integral due to Henri Lebesgue is based on the notion of measure. The
problem of extending Volterra’s definition of product integral in a similar way has
been solved by Ludwig Schlesinger.

Volterra’s and Schlesinger’s works differ in yet another way: Volterra did not worry
about using infinitesimal quantities, and it is not always easy to translate his ideas
into the language of modern mathematics. Schlesinger’s proofs are rather precise
and can be read without greater effort except for occasionally strange notation. The
foundations of mathematical analysis in 1930’s were firmer than in 1887; moreover,
Schlesinger inclined towards theoretical mathematics, as opposed to Volterra, who
always kept applications in mind.

Ludwig Schlesinger1

Schlesinger’s biographies can be found in [Lex, McT]: Ludwig (Lajos in Hungarian)
Schlesinger was born on the 1st November 1864 in a Hungarian town Trnava (Nagys-
zombat), which now belongs to Slovakia. He studied mathematics and physics at
the universities of Heidelberg and Berlin, where he received a doctorate in 1887.

1 Photo from [McT]
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The advisors of his thesis (which was concerned with homogeneous linear differ-
ential equations of the fourth order) were Lazarus Fuchs (who later became his
father-in-law) and Leopold Kronecker. Two years later Schlesinger became an as-
sociate professor in Berlin and in 1897 an invited professor at the University of
Bonn. During the years 1897 to 1911 he served as an ordinary professor and also as
the head of the department of higher mathematics at the University of Kolozsvár
(now Cluj in Romania). In 1911 he moved to Giessen in Germany where he con-
tinued to teach until his retirement in 1930. Ludwig Schlesinger died on the 16th
December 1933.

Schlesinger devoted himself especially to complex function theory and linear dif-
ferential equations; he also made valuable contributions to the history of mathe-
matics. He translated Descartes’ Geometrie into German, and was one of the orga-
nizers of the centenary festivities dedicated to the hundredth anniversary of János
Bolyai, one of the pioneers of non-Euclidean geometry. The most important works
of Schlesinger include Handbuch der Theorie der linearen Differentialgleichungen
(1895–98), J. Bolyai in Memoriam (1902), Vorlesungen über lineare Differential-
gleichungen (1908) and Raum, Zeit und Relativitätstheorie (1920).

Schlesinger’s paper on product integration called Neue Grundlagen für einen In-
finitesimalkalkul der Matrizen [LS1] was published in 1931. The author links up to
Volterra’s theory of product integral. He starts with the Riemann-type definition
and establishes the basic properties of the product integral. His proofs are nev-
ertheless original – while Volterra proved most of his statements using the Peano
series expansion, Schlesinger prefers the “ε− δ” proofs. He then proceeds to define
the Lebesgue product integral (as a limit of product integrals of step functions) and
explores its properties.

A continuation of this paper appeared in 1932 under the title Weitere Beiträge zum
Infinitesimalkalkul der Matrizen [LS2]. Schlesinger again studies the properties of
Lebesgue product integral and is also concerned with contour product integration
in R2 and in C.

This chapter summarizes the most important results from both Schlesinger’s papers;
the final section then presents a generalization of Schlesinger’s definition of the
Lebesgue product integral.

3.1 Riemann integrable matrix functions
When dealing with product integral we need to work with sequences of matrices and
their limits. Volterra was mainly working with the individual entries of the matrices
and convergence of a sequence of matrices was for him equivalent to convergence
of all entries.

Schlesinger chooses a different approach: He defines the norm of a matrix A =
{aij}ni,j=1 by

[A] = n · max
1≤i,j≤n

|aij |.

He also mentions another norm

ΩA = max{|λ|; λ is an eigenvalue of A}
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and states that

ΩA ≤

√√√√
n∑

i,j=1

|aij |2 ≤ [A].

The second inequality is obvious, the first is proved in [LS1]1.

Schlesinger’s norm [A] has the nice property that [A · B] ≤ [A] · [B] for every
A,B ∈ Rn×n, but its disadvantage is that [I] = n. In the following text we will
use the operator norm

‖A‖ = sup{‖Ax‖; ‖x‖ ≤ 1},
where ‖Ax‖ and ‖x‖ denote the Euclidean norms of vectors Ax, x ∈ Rn. This
simplifies Schlesinger’s proofs slightly, because ‖I‖ = 1 and

‖A ·B‖ ≤ ‖A‖ · ‖B‖

still holds for every A,B ∈ Rn×n. It should be noted that the space Rn×n is
finite-dimensional, therefore it doesn’t matter which norm we choose since they are
all equivalent.

The convergence of a sequence of matrices and the limit of a matrix function is now
defined in a standard way using the norm introduced above.

For an arbitrary matrix function A : [a, b]→ Rn×n and a tagged partition

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b

of interval [a, b] with division points ti and tags ξi we denote

P (A,D) =
m∏

k=1

(I +A(ξk)∆tk),

where ∆tk = tk − tk−1.

Schlesinger is now interested in the limit value of P (A,D) as the lengths of the
intervals [tk−1, tk] approach zero (if the limit exists independently on the choice
of ξk ∈ [tk−1, tk]). Clearly, the limit is nothing else than Volterra’s right product
integral.

Definition 3.1.1. Consider function A : [a, b]→ Rn×n. In case the limit

lim
ν(D)→0

P (A,D)

exists, it is called the product integral of function A on interval [a, b] and denoted
by the symbol

(I +A(t) dt)
b∏

a

.

1 [LS1], p. 34–35
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Remark 3.1.2. Schlesinger in fact defines the product integral as the limit of the
products

P (A,D) = Y 0
m∏

k=1

(I +A(ξk)∆tk),

where Y 0 is an arbitrary regular matrix (which plays the role of an “integration
constant”). In the following text we assume for simplicity that Y 0 = I. Also,
instead of Schlesinger’s notation

b︷︷∫

a

(I +A(x) dx)

we use the symbol (I +A(x) dx)
∏b
a to denote the product integral.

Lemma 3.1.3.1 Let A1, A2, . . . , Am ∈ Rn×n be arbitrary matrices. Then

‖(I +A1)(I +A2) · · · (I +Am)‖ ≤ exp

(
m∑

k=1

‖Ak‖
)
.

Proof. A simple consequence of the inequalities

‖I +Ak‖ ≤ 1 + ‖Ak‖ ≤ exp ‖Ak‖.

Corollary 3.1.4.2 If ‖A(x)‖ ≤ M for every x ∈ [a, b], then ‖P (A,D)‖ ≤ eM(b−a)

for every tagged partition D of interval [a, b].

Corollary 3.1.5. If the function A : [a, b] → Rn×n is product integrable and
‖A(x)‖ ≤M for every x ∈ [a, b], then

∥∥∥∥∥(I +A(x) dx)
b∏

a

∥∥∥∥∥ ≤ e
M(b−a).

Schlesinger’s first task is to prove the existence of product integral for Riemann
integrable matrix functions, i.e. functions A : [a, b] → Rn×n whose entries aij are
Riemann integrable on [a, b]. The proof is substantially different from the proof
given by Volterra; the technique is similar to Cauchy’s proof of the existence of∫ b
a
f for a continuous function f (see [CE, SŠ]).

Definition 3.1.6. Consider function A : [a, b] → Rn×n and let [c, d] ⊆ [a, b]. The
oscillation of A on interval [c, d] is the number

osc(A, [c, d]) = sup{‖A(ξ1)−A(ξ2)‖; ξ1, ξ2 ∈ [c, d]}.
1 [LS1], p. 37
2 [LS1], p. 38
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The following characterization of Riemann integrable function will be needed in
subsequent proofs:

Lemma 3.1.7. If A : [a, b]→ Rn×n is a Riemann integrable function, then

lim
ν(D)→0

m∑

k=1

osc(A, [tk−1, tk])∆tk = 0.

Proof. The statement follows easily from Darboux’s definition of the Riemann
integral which is based on upper and lower sums; it is in fact equivalent to Riemann
integrability of the given function (see e.g. [Sch2]).

Definition 3.1.8. We say that a tagged partition D′ is a refinement of a tagged
partition D (we write D′ ≺ D), if every division point of D is also a division point
of D′ (no condition being imposed on the tags).

Lemma 3.1.9.1 Let the function A : [a, b]→ Rn×n be such that ‖A(x)‖ ≤M for
every x ∈ [a, b]. Then for every pair of tagged partitions D,D′ of interval [a, b] such
that D′ ≺ D we have

‖P (A,D)− P (A,D′)‖ ≤ eM(b−a)
m∑

k=1

(osc(A, [tk−1, tk])∆tk + (M∆tk)2eM∆tk),

where ti, i = 0, . . . ,m are division points of the partition D.

Proof. Let the partition D consist of division points and tags

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b.

First, we refine it only on the subinterval [tk−1, tk], i.e. we consider a partition D∗

which contains division points and tags

tk−1 = u0 ≤ η1 ≤ u1 · · · ≤ ul−1 ≤ ηl ≤ ul = tk

and coincides with the partition D on the rest of interval [a, b]. Then

‖P (A,D∗)− P (A,D)‖ ≤
∥∥∥∥∥
k−1∏

i=1

(I +A(ξi)∆ti)

∥∥∥∥∥ ·

·
∥∥∥∥∥

l∏

j=1

(I +A(ηj)∆uj)− I −A(ξk)∆tk

∥∥∥∥∥ ·
∥∥∥∥∥

m∏

i=k+1

(I +A(ξi)∆ti)

∥∥∥∥∥.

We estimate
∥∥∥∥∥
k−1∏

i=1

(I +A(ξi)∆ti)

∥∥∥∥∥ ·
∥∥∥∥∥

m∏

i=k+1

(I +A(ξi)∆ti)

∥∥∥∥∥ ≤ e
M(b−a)

1 [LS1], p. 39–41
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and
∥∥∥∥∥∥

l∏

j=1

(I +A(ηj)∆uj)− I −A(ξk)∆tk

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

l∑

j=1

(A(ηj)−A(ξk))∆uj

∥∥∥∥∥∥
+

+

∥∥∥∥∥∥

l∑

p=2

∑

1≤r1<···<rp≤l
A(ηr1) · · ·A(ηrp)∆ur1 · · ·∆urp

∥∥∥∥∥∥
≤

≤ osc(A, [tk−1, tk])∆tk +
l∑

p=2

∑

1≤r1<···<rp≤l
Mp ∆ur1 · · ·∆urp =

= osc(A, [tk−1, tk])∆tk +
l∏

j=1

(1 +M∆uj)− 1−
l∑

j=1

M∆uj ≤

≤ osc(A, [tk−1, tk])∆tk+eM∆tk−1−M∆tk ≤ osc(A, [tk−1, tk])∆tk+(M∆tk)2eM∆tk .

Therefore we conclude that

‖P (A,D)− P (A,D∗)‖ ≤ eM(b−a)(osc(A, [tk−1, tk])∆tk + (M∆tk)2eM∆tk).

Now, since the given partition D′ can be obtained from D by successively refining
the subintervals [t0, t1], . . . , [tm−1, tm], we obtain

‖P (A,D)− P (A,D′)‖ ≤ eM(b−a)
m∑

k=1

(osc(A, [tk−1, tk])∆tk + (M∆tk)2eM∆tk).

Corollary 3.1.10.1 Consider a Riemann integrable function A : [a, b] → Rn×n.
Then for every ε > 0 there exists δ > 0 such that

‖P (A,D)− P (A,D′)‖ < ε

whenever ν(D) < δ and D′ ≺ D.

Proof. The statement follows from the previous lemma, Lemma 3.1.7 and the
estimate

m∑

k=1

(M∆tk)2eM∆tk ≤ ν(D)M2eMν(D)
m∑

k=1

∆tk = (b− a)ν(D)M2eMν(D).

1 [LS1], p. 39–41
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Theorem 3.1.11.1 The product integral (I+A(x) dx)
∏b
a exists for every Riemann

integrable function A : [a, b]→ Rn×n.

Proof. Take ε > 0. Corollary 3.1.10 guarantees the existence of a δ > 0 such that

‖P (A,D)− P (A,D′)‖ < ε/2

whenever ν(D) < δ and D′ ≺ D. Consider a pair of tagged partitions D1, D2 of
interval [a, b] satisfying ν(D1) < δ and ν(D2) < δ. These partitions have a common
refinement, i.e. a partition D such that D ≺ D1, D ≺ D2 (the tags in D can be
chosen arbitrarily). Then

‖P (A,D1)− P (A,D2)‖ ≤ ‖P (A,D1)− P (A,D)‖+ ‖P (A,D)− P (A,D2)‖ < ε.

We have proved that every Riemann integrable function A : [a, b]→ Rn×n satisfies
a certain Cauchy condition and this is also the end of Schlesinger’s proof; the
existence of product integral follows from the Cauchy condition in the same way as
in the analoguous theorem for the ordinary Riemann integral (see e.g. [Sch2]).

Theorem 3.1.12.2 Consider a Riemann integrable function A : [a, b]→ Rn×n. If
c ∈ [a, b], then

(I +A(x) dx)
b∏

a

= (I +A(x) dx)
c∏

a

· (I +A(x) dx)
b∏

c

.

Proof. As Schlesinger remarks, the proof follows directly from the definition of
product integral (see the proof in Chapter 2).

3.2 Matrix exponential function
Let A : [a, b] → Rn×n be a constant function. If Dm is a partition of [a, b] to m
subintervals of length (b− a)/m, then

P (A,Dm) =

(
I +

b− a
m

A

)m
.

Since ν(Dm)→ 0 as m→∞, we have

(I +A(x) dx)
b∏

a

= lim
m→∞

(
I +

b− a
m

A

)m
= e(b−a)A.

The last equality follows from the fact that eA = limm→∞(I + A/m)m for every
A ∈ Rn×n; recall that the matrix exponential was defined in Chapter 2 using the
series

eA =
∞∑

m=0

Am

m!
. (3.2.1)

1 [LS1], p. 41
2 [LS1], p. 41
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Lemma 3.2.1. If A1, . . . , Am ∈ Rn×n and B1, . . . , Bm ∈ Rn×n, then

m∏

i=1

Ai −
m∏

i=1

Bi =
m∑

i=1



i−1∏

j=1

Bj · (Ai −Bi) ·
m∏

j=i+1

Aj


 .

Proof.

m∏

i=1

Ai −
m∏

i=1

Bi =
m∑

i=1

(B1 · · ·Bi−1Ai · · ·Am −B1 · · ·BiAi+1 · · ·Am) =

=
m∑

i=1



i−1∏

j=1

Bj · (Ai −Bi) ·
m∏

j=i+1

Aj


 .

Theorem 3.2.2.1 Consider a Riemann integrable function A : [a, b] → Rn×n.
Then

lim
ν(D)→0

m∏

k=1

eA(ξk)∆tk = lim
ν(D)→0

m∏

k=1

(I +A(ξk)∆tk) = (I +A(t) dt)
b∏

a

.

Proof. Since every Riemann integrable function is bounded, we have ‖A(x)‖ ≤M
for some M ∈ R and for every x ∈ [a, b]. The definition of matrix exponential
(3.2.1) implies

∥∥∥eA(ξk)∆tk − (I +A(ξk)∆tk)
∥∥∥ ≤ (‖A(ξk)‖∆tk)2e‖A(ξk)‖∆tk ≤ (M∆tk)2eM∆tk

for k = 1, . . . ,m. According to Lemma 3.2.1,
∥∥∥∥∥
m∏

k=1

eA(ξk)∆tk −
m∏

k=1

(I +A(ξk)∆tk)

∥∥∥∥∥ =

=

∥∥∥∥∥∥

m∑

j=1



j−1∏

k=1

(I +A(ξk)∆tk) · (eA(ξj)∆tj − I −A(ξj)∆tj) ·
m∏

k=j+1

eA(ξk)∆tk



∥∥∥∥∥∥
≤

≤ eM(b−a)
m∑

j=1

∥∥∥eA(ξj)∆tj − I −A(ξj)∆tj
∥∥∥ ≤ eM(b−a)M2

m∑

j=1

(∆tj)
2eM∆tj ≤

≤ eM(b−a)M2ν(D)eMν(D)
m∑

j=1

∆tj = (b− a)eM(b−a)M2ν(D)eMν(D).

1 [LS1], p. 42
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By choosing a sufficiently fine partition D of [a, b], the last expression can be made
arbitrarily small.

Definition 3.2.3. The trace of a matrix A = {aij}ni,j=1 is the number

TrA =
n∑

i=1

aii.

Theorem 3.2.4.1 If A : [a, b]→ Rn×n is a Riemann integrable function, then

det

(
(I +A(x) dx)

b∏

a

)
= exp

(∫ b

a

TrA(x) dx

)
.

Proof.

det

(
(I +A(x) dx)

b∏

a

)
= det

(
lim

ν(D)→0

m∏

k=1

eA(ξk)∆tk

)
= lim
ν(D)→0

m∏

k=1

det eA(ξk)∆tk =

= lim
ν(D)→0

m∏

k=1

eTrA(ξk)∆tk = lim
ν(D)→0

exp

(
m∑

k=1

TrA(ξk)∆tk

)
= exp

(∫ b

a

TrA(x) dx

)

(we have used a theorem from linear algebra: det expA = exp TrA).

Remark 3.2.5. This formula (sometimes called the Jacobi formula) appeared
already in Volterra’s work. Schlesinger employs a different proof and his statement
is also more general – it requires only the Riemann integrability of A, in contrast
to Volterra’s assumption that A is continuous.

Corollary 3.2.6. If A : [a, b]→ Rn×n is a Riemann integrable function, then the
product integral (I +A(x) dx)

∏b
a is a regular matrix.

Recall that Volterra has also assigned meaning to product integrals whose lower
limit is greater than the upper limit; his definition for the right integral was

(I +A(t) dt)
a∏

b

= lim
ν(D)→0

1∏

k=m

(I −A(ξk)∆tk).

If A is Riemann integrable, we know that this is equivalent to

(I +A(t) dt)
a∏

b

= lim
ν(D)→0

1∏

k=m

e−A(ξk)∆tk .

1 [LS1], p. 43–44
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Thus

I = lim
ν(D)→0

(
m∏

k=1

eA(ξk)∆tk ·
1∏

k=m

e−A(ξk)∆tk

)
=

= lim
ν(D)→0

m∏

k=1

eA(ξk)∆tk · lim
ν(D)→0

1∏

k=m

e−A(ξk)∆tk =

(I +A(t) dt)
b∏

a

·(I +A(t) dt)
a∏

b

,

which proves that (I+A(t) dt)
∏a
b is the inverse matrix of (I+A(t) dt)

∏b
a; compare

with Volterra’s proof of Theorem 2.4.10.

3.3 The indefinite product integral

Schlesinger now proceeds to study the properties of the indefinite product integral,
i.e. of the function Y (x) = (I +A(t) dt)

∏x
a.

Theorem 3.3.1.1 If A : [a, b] → Rn×n is Riemann integrable, then the function
Y (x) = (I +A(t) dt)

∏x
a is continuous on [a, b].

Proof. We prove the right-continuity of Y at x0 ∈ [a, b); continuity from left is
proved similarly. Let x0 ≤ x0 + h ≤ b. The function A is bounded: ‖A(x)‖ ≤ M
for some M ∈ R. We now employ the inequality from Lemma 3.1.9. Let D′ be a
partition of interval [x0, x0 + h]. Then

‖I +A(x0)h− P (A,D′)‖ ≤ eMh(osc(A, [x0, x0 + h])h+ (Mh)2eMh).

Passing to the limit ν(D′)→ 0 we obtain

∥∥∥∥∥I +A(x0)h− (I +A(t) dt)
x0+h∏

x0

∥∥∥∥∥ ≤ e
Mh(osc(A, [x0, x0 + h])h+ (Mh)2eMh),

which implies

lim
h→0+

(I +A(t) dt)
x0+h∏

x0

= I.

Therefore

lim
h→0+

(Y (x0 + h)− Y (x0)) = Y (x0)

(
(I +A(t) dt)

x0+h∏

x0

−I
)

= 0.

1 [LS1], p. 44–46
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Theorem 3.3.2.1 If A : [a, b]→ Rn×n is Riemann integrable, then the function

Y (x) = (I +A(t) dt)
x∏

a

,

satisfies the integral equation

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b].

Proof. It is sufficient to prove the statement for x = b. Let

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b

be a tagged partition of interval [a, b]. We define

Y k =
k∏

i=1

(I +A(ξi)∆ti), k = 0, . . . ,m.

Then
Y k − Y k−1 = Y k−1A(ξk)∆tk, k = 1, . . . ,m. (3.3.1)

Since Y 0 = I and Y m = P (A,D), adding the equalities (3.3.1) for k = 1, . . . ,m
yields

P (A,D)− I =
m∑

k=1

Y k−1A(ξk)∆tk.

The function A is bounded: ‖A(x)‖ ≤M for some M ∈ R. We estimate

∥∥∥∥∥Y (b)− I −
∫ b

a

Y (t)A(t) dt

∥∥∥∥∥ ≤ ‖Y (b)− P (A,D)‖+

+

∥∥∥∥∥P (A,D)− I −
∫ b

a

Y (t)A(t) dt

∥∥∥∥∥ ≤ ‖Y (b)− P (A,D)‖+

+

∥∥∥∥∥
m∑

k=1

(Y k−1 − Y (tk−1))A(ξk)∆tk

∥∥∥∥∥+

∥∥∥∥∥
m∑

k=1

(Y (tk−1)− Y (ξk))A(ξk)∆tk

∥∥∥∥∥+

+

∥∥∥∥∥
m∑

k=1

Y (ξk)A(ξk)∆tk −
∫ b

a

Y (t)A(t) dt

∥∥∥∥∥ . (3.3.2)

1 [LS1], p. 46–47
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Using the inequalities
∥∥∥∥∥
m∑

k=1

(Y k−1 − Y (tk−1))A(ξk)∆tk

∥∥∥∥∥ ≤M
m∑

k=1

‖Y k−1 − Y (tk−1)‖∆tk ≤

≤M
m∑

k=1

eM(b−a)∆tk




m∑

j=1

(osc(A, [tj−1, tj ])∆tj + (M∆tj)
2eM∆tj )


 ≤

≤MeM(b−a)(b− a)




m∑

j=1

osc(A, [tj−1, tj ])∆tj +M2ν(D)eMν(D)




(we have used Lemma 3.1.9) and
∥∥∥∥∥
m∑

k=1

(Y (tk−1)− Y (ξk))A(ξk)∆tk

∥∥∥∥∥ ≤M
m∑

k=1

osc(Y, [tk−1, tk])∆tk,

we see that all terms on the right-hand side of (3.3.2) can be made arbitrarily small
if the partition D is sufficiently fine.

Corollary 3.3.3.1 If A : [a, b]→ Rn×n is continuous, then the function

Y (x) = (I +A(t) dt)
x∏

a

provides a solution of the differential equation

Y ′(x) = Y (x)A(x), x ∈ [a, b]

and satisfies the initial condition Y (a) = I.

Remark 3.3.4. The function Y is therefore the fundamental matrix of the system

y′i(x) =
n∑

j=1

aji(x)yj(x), i = 1, . . . , n.

Schlesinger uses the notation DxY (x) = A(x), where

DxY = Y −1Y ′,

i.e. Dx is exactly Volterra’s right derivative of a matrix function.

3.4 Product integral inequalities

In this section we summarize various inequalities that will be useful later.

1 [LS1], p. 47–48
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Lemma 3.4.1.1 If A : [a, b]→ Rn×n is a Riemann integrable function, then

∥∥∥∥∥(I +A(x) dx)
b∏

a

∥∥∥∥∥ ≤ exp

(∫ b

a

‖A(x)‖ dx

)
.

Proof. Lemma 3.1.3 implies that

∥∥∥∥∥
m∏

i=1

(I +A(ξi)∆ti)

∥∥∥∥∥ ≤ exp

(
m∑

i=1

‖A(ξi)‖∆ti
)

for every tagged partition D of interval [a, b]; the proof is completed by passing to
the limit ν(D)→ 0.

Lemma 3.4.2.2 Let m ∈ N, Ak, Bk ∈ Rn×n for every k = 1, . . . ,m. Then

∥∥∥∥∥
m∏

k=1

(I +Bk)−
m∏

k=1

(I +Ak)

∥∥∥∥∥ ≤ exp

(
m∑

k=1

‖Ak‖
)(

exp

(
m∑

k=1

‖Bk −Ak‖
)
− 1

)
.

Proof. Define

Y k =
k∏

i=1

(I +Ai), Zk =
k∏

i=1

(I +Bi), k = 0, . . . ,m

(where the empty product for k = 0 equals the identity matrix). Then

Y k − Y k−1 = Y k−1Ak,

Zk − Zk−1 = Zk−1Bk,

for k = 1, . . . ,m. This implies

Zk − Y k = (Zk−1 − Y k−1)(I +Bk) + Ek, (3.4.1)

where
Ek = Y k−1(Bk −Ak).

Applying the equality (3.4.1) m times on the difference Zm − Y m we obtain

Zm − Y m =
m−1∑

k=1

Ek(I +Bk+1) · · · (I +Bm) + Em.

1 [LS1], p. 51
2 [LS1], p. 52–53
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We also estimate

‖Ek‖ ≤ exp

(
k−1∑

i=1

‖Ai‖
)
‖Bk −Ak‖

(the empty sum for k = 0 equals zero),

‖Zm−Y m‖ ≤
m−1∑

k=1

exp

(
k−1∑

i=1

‖Ai‖
)
‖Bk−Ak‖ · exp

(
m∑

i=k+1

(‖Bi −Ai‖+ ‖Ai‖)
)

+

+ exp

(
m−1∑

i=1

‖Ai‖
)
‖Bm −Am‖ =

=
m−1∑

k=1

exp


∑

i 6=k
‖Ai‖


 ‖Bk −Ak‖ · exp

(
m∑

i=k+1

‖Bi −Ai‖
)

+

+ exp

(
m−1∑

i=1

‖Ai‖
)
‖Bm −Am‖ ≤

≤
m∑

k=1

exp

(
m∑

i=1

‖Ai‖
)
‖Bk −Ak‖ · exp

(
m∑

i=k+1

‖Bi −Ai‖
)
.

Since
‖Bk −Ak‖ ≤ exp (‖Bk −Ak‖)− 1,

we conclude that
∥∥∥∥∥
m∏

k=1

(I +Bk)−
m∏

k=1

(I +Ak)

∥∥∥∥∥ = ‖Zm − Y m‖ ≤

≤ exp

(
m∑

i=1

‖Ai‖
)

m∑

k=1

(
(exp (‖Bk −Ak‖)− 1) exp

(
m∑

i=k+1

‖Bi −Ai‖
))

=

= exp

(
m∑

i=1

‖Ai‖
)

m∑

k=1

(
exp

(
m∑

i=k

‖Bi −Ai‖
)
− exp

(
m∑

i=k+1

‖Bi −Ai‖
))

=

= exp

(
m∑

i=1

‖Ai‖
)(

exp

(
m∑

i=1

‖Bi −Ai‖
)
− 1

)
.

Corollary 3.4.3.1 If A, B : [a, b]→ Rn×n are Riemann integrable functions, then
∥∥∥∥∥(I +B(x) dx)

b∏

a

−(I +A(x) dx)
b∏

a

∥∥∥∥∥ ≤

1 [LS1], p. 53
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≤ exp

(∫ b

a

‖A(x)‖ dx

)(
exp

(∫ b

a

‖B(x)−A(x)‖dx

)
− 1

)
.

Proof. The previous lemma ensures that for every tagged partition D of interval
[a, b] we have

‖P (B,D)− P (A,D)‖ =

∥∥∥∥∥
m∏

k=1

(I +B(ξk)∆tk)−
m∏

k=1

(I +A(ξk)∆tk)

∥∥∥∥∥ ≤

≤ exp

(
m∑

k=1

‖A(ξk)‖∆tk
)(

exp

(
m∑

k=1

‖B(ξk)−A(ξk)‖∆tk
)
− 1

)
.

The proof is completed by passing to the limit ν(D)→ 0.

Remark 3.4.4. Lemma 3.4.2 is not present in Schlesinger’s work, he proves directly
the Corollary 3.4.3; our presentation is perhaps more readable.

3.5 Lebesgue product integral

The most valuable contribution of Schlesinger’s paper is his generalized definition
of product integral which is applicable to all matrix functions with bounded and
measurable (i.e. bounded Lebesgue integrable) entries.

From a historical point of view, such a generalization certainly wasn’t a straightfor-
ward one. Recall the original Lebesgue’s definition: To compute the integral

∫ b
a
f

of a bounded measurable function f : [a, b]→ [m,M ], we choose a partition

D : m = m0 < m1 < · · · < mp = M,

then form the sets

E0 = {x ∈ [a, b]; f(x) = m},
Ej = {x ∈ [a, b]; mj−1 < f(x) ≤ mj}, j = 1, . . . , p,

and compute the lower and upper sums

s(f,D) = m0µ0 +
p∑

j=1

mj−1µj , S(f,D) = m0µ0 +
p∑

j=1

mjµj , (3.5.1)

where µj = µ(Ej) is the Lebesgue measure of the set Ej . Since

S(f,D)− s(f,D) =
p∑

j=1

(mj −mj−1)µj ≤ ν(D)(b− a),
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the sums in (3.5.1) approach a common limit as ν(D)→ 0 and we define

∫ b

a

f(x) dx = lim
ν(D)→0

s(f,D) = lim
ν(D)→0

S(f,D).

Similar procedure cannot be used to define product integral of a matrix function
A : [a, b] → Rn×n, because Rn×n is not an ordered set. Schlesinger was instead
inspired by an equivalent definition of Lebesgue integral which is due to Friedrich
Riesz (see [FR, KZ]): A bounded function f : [a, b]→ R is integrable, if and only if
there exists a uniformly bounded sequence of step (i.e. piecewise-constant) functions
{fn}∞n=1 such that fn → f almost everywhere on [a, b]; in this case,

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

To proceed to the definition of product integral we first recall that (see Theorem
3.2.2)

(I +A(x) dx)
b∏

a

= lim
ν(D)→0

m∏

k=1

eA(ξk)∆tk

for every Riemann integrable function A : [a, b]→ Rn×n. The product on the right
side might be interpreted as

m∏

k=1

eA(ξk)∆tk = (I +AD(t) dt)
b∏

a

,

where AD is a step function defined by

AD(t) = A(ξk), t ∈ (tk−1, tk)

(the values A(tk), k = 0, . . . ,m, might be chosen arbitrarily). If {Dk}∞k=1 is a
sequence of tagged partitions of [a, b] such that limk→∞ ν(Dk) = 0, it is easily
proved that

lim
k→∞

ADk(t) = A(t) (3.5.2)

at every point t ∈ [a, b] at which A is continuous. Since Riemann integrable func-
tions are continuous almost everywhere, the Equation (3.5.2) holds a.e. on [a, b].
We are therefore led to the following generalized definition of product integral:

(I +A(x) dx)
b∏

a

= lim
k→∞

(I +Ak(x) dx)
b∏

a

,

where {Ak}∞k=1 is a suitably chosen sequence of matrix step functions that converge
to A almost everywhere.

Definition 3.5.1. A function A : [a, b] → Rn×n is called a step function if there
exist numbers

a = t0 < t1 < · · · < tm = b
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such that A is a constant function on every interval (tk−1, tk), k = 1, . . . ,m.

Clearly, a matrix function A = {aij}ni,j=1 is a step function if and only if all the
entries aij are step functions.

Definition 3.5.2. A sequence of functions Ak : [a, b] → Rn×n, k ∈ N, is called
uniformly bounded if there exists a number M ∈ R such that ‖Ak(x)‖ ≤ M for
every k ∈ N and every x ∈ [a, b].

Definition 3.5.3. A function A : [a, b] → Rn×n is called measurable if all the
entries aij are measurable functions.

Lemma 3.5.4. Let Ak : [a, b] → Rn×n, k ∈ N, be a uniformly bounded sequence
of measurable functions such that

lim
k→∞

Ak(x) = A(x)

a.e. on [a, b]. Then Ak → A in the norm of the space L1, i.e.

lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx = 0.

Proof. Choose ε > 0. As ‖Ak(x)‖ ≤ M for every k ∈ N and every x ∈ [a, b], we
can estimate

∫ b

a

‖Ak(x)−A(x)‖ dx ≤ ε(b− a) + 2Mµ({x; ‖Ak(x)−A(x)‖ ≥ ε}).

The convergence Ak → A a.e. implies convergence in measure1, i.e. for every ε > 0
we have

lim
k→∞

µ({x; ‖A(x)−Ak(x)‖ ≥ ε}) = 0.

Therefore

lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx ≤ ε(b− a)

for every ε > 0.

Theorem 3.5.5.2 Let Ak : [a, b]→ Rn×n, k ∈ N, be a sequence of step functions
such that

lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx = 0.

Then the limit

lim
k→∞

(I +Ak(x) dx)
b∏

a

1 [IR], Proposition 8.3.3, p. 256
2 [LS1], p. 55–56
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exists and is independent on the choice of the sequence {Ak}∞k=1.

Proof. We verify that (I + Ak(x) dx)
∏b
a is a Cauchy sequence. According to

Corollary 3.4.3 we have

∥∥∥∥∥(I +Al(x) dx)
b∏

a

−(I +Am(x) dx)
b∏

a

∥∥∥∥∥ ≤

≤ exp

(∫ b

a

‖Am(x)‖ dx

)(
exp

(∫ b

a

‖Al(x)−Am(x)‖ dx

)
− 1

)
.

The assumption of our theorem implies that the sequence of numbers
∫ b
a
‖Am(x)‖dx

is bounded and that

lim
l,m→∞

∫ b

a

‖Al(x)−Am(x)‖ dx = 0,

which proves the existence of the limit. To verify the uniqueness consider two
sequences of step functions {Ak}, {Bk} that satisfy the assumption of the theorem.
We construct a sequence {Ck}, where C2k−1 = Ak and C2k = Bk. Then Ck → A
a.e. and

lim
k→∞

∫ b

a

‖Ck(x)−A(x)‖dx = 0,

which means that limk→∞(I + Ck(x) dx)
∏b
a exists. Every subsequence of {Ck}

must have the same limit, therefore

lim
k→∞

(I +Ak(x) dx)
b∏

a

= lim
k→∞

(I +Bk(x) dx)
b∏

a

.

Definition 3.5.6. Consider function A : [a, b] → Rn×n. Assume there exists a
uniformly bounded sequence of step functions Ak : [a, b]→ Rn×n such that

lim
k→∞

Ak(x) = A(x)

a.e. on [a, b]. Then the function A is called product integrable and we define

(I +A(x) dx)
b∏

a

= lim
k→∞

(I +Ak(x) dx)
b∏

a

.

We use the symbol L∗([a, b],Rn×n) to denote the set of all product integrable
functions.

Remark 3.5.7. The correctness of the previous definition is guaranteed by Lemma
3.5.4 and Theorem 3.5.5. Every function A ∈ L∗([a, b],Rn×n) is clearly bounded
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and measurable (step functions are measurable and the limit of measurable func-
tions is again measurable). Assume on the contrary that A : [a, b] → Rn×n is a
measurable function on [a, b] such that

‖aij(x)‖ ≤M, x ∈ [a, b], i, j = 1, . . . , n.

There exists1 a sequence of step functions {Ak}∞k=1 which converge to A in the
L1 norm. This sequence contains2 a subsequence {Bk}∞k=1 of matrix functions
Bk = {bkij}ni,j=1 such that Bk → A a.e. on [a, b]. Without loss of generality we
can assume that the sequence {Bk}∞k=1 is uniformly bounded (otherwise consider
the functions min(max(−M, bkij),M)). We have thus found a uniformly bounded
sequence of step functions which converge to A a.e. on [a, b]. This means that

L∗([a, b],Rn×n) =
{
A : [a, b]→ Rn×n; A is measurable and bounded

}
.

Schlesinger remarks that it is possible to further extend the definition of product
integral to encompass all matrix functions with Lebesgue integrable (not necessarily
bounded) entries, but he doesn’t give any details. We return to this question at
the end of the chapter.

3.6 Properties of Lebesgue product integral

After having defined the Lebesgue product integral in [LS1], Schlesinger carefully
studies its properties. Interesting results may be found also in [LS2].

Lemma 3.6.1. Assume that {Ak}∞k=1 is a uniformly bounded sequence of functions
from L∗([a, b],Rn×n), and that Ak → A a. e. on [a, b]. Then

∫ b

a

‖A(x)‖ dx = lim
k→∞

∫ b

a

‖Ak(x)‖dx.

Proof. According to the Lebesgue’s dominated convergence theorem,

lim
k→∞

∫ b

a

‖Ak(x)‖ dx =
∫ b

a

lim
k→∞

‖Ak(x)‖ dx =
∫ b

a

‖A(x)‖ dx

(we have used continuity of the norm).

Corollary 3.6.2. Inequalities 3.4.1 and 3.4.3 are satisfied for all step functions.
As a consequence of the previous lemma we see they are valid even for functions
from L∗([a, b],Rn×n).

The next statement represents a dominated convergence theorem for the Lebesgue
product integral.

1 [RG], Corollary 3.29, p. 47
2 [IR], Theorem 8.4.14, p. 267, and Theorem 8.3.6, p. 257
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Theorem 3.6.3.1 Assume that {Ak}∞k=1 is a uniformly bounded sequence of func-
tions from L∗([a, b],Rn×n) such that Ak → A a. e. on [a, b]. Then

(I +A(x) dx)
b∏

a

= lim
k→∞

(I +Ak(x) dx)
b∏

a

.

Proof. The function A is measurable and bounded, therefore A ∈ L∗([a, b],Rn×n).
To complete the proof we use Corollary 3.4.3 in the form

∥∥∥∥∥(I +A(x) dx)
b∏

a

−(I +Ak(x) dx)
b∏

a

∥∥∥∥∥ ≤

exp

(∫ b

a

‖A(x)‖ dx

)(
exp

(∫ b

a

‖Ak(x)−A(x)‖ dx

)
− 1

)

and Lemma 3.5.4.

Remark 3.6.4. The previous theorem holds also for Riemann product integral
in case we add an extra assumption that the limit function A is Riemann product
integrable.

Definition 3.6.5. If M is a measurable subset of [a, b] and A ∈ L∗([a, b],Rn×n),
we define

(I +A(x) dx)
∏

M

= (I + χM (x)A(x) dx)
b∏

a

(where χM is the characteristic function of the set M).

The previous definition is correct, because the product χMA is obviously a mea-
surable bounded function.

Remark 3.6.6. The following theorem is proved in the theory of Lebesgue inte-
gral2: For every f ∈ L1([a, b]) and every ε > 0 there exists δ > 0 such that

∥∥∥∥
∫

M

f(x) dx

∥∥∥∥ < ε

whenever M is a measurable subset of [a, b] and µ(M) < δ. Schlesinger proceeds
to prove an analoguous theorem for the product integral (he speaks about “total
continuity”).

Theorem 3.6.7.3 For every A ∈ L∗([a, b],Rn×n) and every ε > 0 there exists
δ > 0 such that ∥∥∥∥∥(I +A(x) dx)

∏

M

−I
∥∥∥∥∥ < ε

1 [LS1], p. 57–58
2 [RG], theorem 3.26, p. 46
3 [LS1], p. 59
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whenever M is a measurable subset of [a, b] and µ(M) < δ.

Proof. Substituting B = 0 to Corollary 3.4.3 we obtain
∥∥∥∥∥(I +A(x) dx)

∏

M

−I
∥∥∥∥∥ ≤ exp

(∫

M

‖A(x)‖dx

)(
exp

(∫

M

‖A(x)‖ dx

)
− 1

)
,

which completes the proof (see Remark 3.6.6).

Schlesinger now turns his attention to the indefinite product integral. Recall that
if f ∈ L1([a, b]), then the indefinite integral

F (x) =
∫ x

a

f(t) dt, x ∈ [a, b]

is an absolutely continuous function and F ′(x) = f(x) a. e. on [a, b]. Before looking
at a product analogy of this theorem we state the following lemma.

Lemma 3.6.8. If A ∈ L∗([a, b],Rn×n), then

lim
h→0

1
h

∫ x+h

x

‖A(t)−A(x)‖ dt = 0

for almost all x ∈ (a, b).

Proof. If f ∈ L1([a, b]), then1

lim
h→0

1
h

∫ h

0
|f(x+ t)− f(x)|dt = 0

for almost all x ∈ (a, b) (every such x is called the Lebesgue point of f). Applying
this equality to the entries of A we obtain

lim
h→0

1
h

∫ x+h

x

‖A(t)−A(x)‖ dt = lim
h→0

1
h

∫ h

0
‖A(x+ t)−A(x)‖ dt = 0

for almost all x ∈ (a, b).

Theorem 3.6.9.2 If A ∈ L∗([a, b],Rn×n), then the indefinite integral

Y (x) = (I +A(t) dt)
x∏

a

.

satisfies Y −1(x)Y ′(x) = A(x) for almost all x ∈ [a, b].

Proof. According to the definition of derivative,

Y −1(x)Y ′(x) = lim
h→0

Y −1(x)Y (x+ h)− I
h

.

1 [IR], Theorem 6.3.2, p. 194
2 [LS1], p. 60–61
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We now prove that

lim
h→0+

Y −1(x)Y (x+ h)− I
h

= lim
h→0+

1
h

(
(I +A(t) dt)

x+h∏

x

−I
)

= A(x) (3.6.1)

for almost all x ∈ [a, b]; the procedure is similar for the limit from left. We estimate

∥∥∥∥∥
1
h

(
(I +A(t) dt)

x+h∏

x

−I
)
−A(x)

∥∥∥∥∥ ≤
∥∥∥∥∥

1
h

(
(I +A(t) dt)

x+h∏

x

−eA(x)h

)∥∥∥∥∥+

+

∥∥∥∥∥
1
h

∞∑

k=2

Ak(x)hk

k!

∥∥∥∥∥ ≤
∥∥∥∥∥

1
h

(
(I +A(t) dt)

x+h∏

x

−eA(x)h

)∥∥∥∥∥+ ‖A(x)‖2|h|e‖A(x)‖h

(3.6.2)
Since ‖A(x)‖ ≤M for some M ∈ R, the Corollary 3.4.3 yields

∥∥∥∥∥
1
h

(
(I +A(t) dt)

x+h∏

x

−eA(x)h

)∥∥∥∥∥ =

∥∥∥∥∥
1
h

(
(I +A(t) dt)

x+h∏

x

−(I +A(x) dt)
x+h∏

x

)∥∥∥∥∥ ≤

≤ 1
|h| exp

(∫ x+h

x

‖A(x)‖dt

)(
exp

(∫ x+h

x

‖A(t)−A(x)‖ dt

)
− 1

)
=

= exp(‖A(x)‖h)
1
|h|

∞∑

k=1

1
k!

(∫ x+h

x

‖A(t)−A(x)‖ dt

)k
≤

≤ exp(Mh)

(
1
|h|

∫ x+h

x

‖A(t)−A(x)‖dt+ (2M)2h exp(2Mh)

)
. (3.6.3)

Equations (3.6.2), (3.6.3), and Lemma 3.6.8 imply Equation (3.6.1).

Remark 3.6.10. In the previous theorem we have tacitly assumed that the matrix

Y (x) = (I +A(t) dt)
x∏

a

is regular for every x ∈ [a, b]. Schlesinger proved it only for A ∈ R([a, b],Rn×n)
(see Corollary 3.2.6), but the proof is easily adjusted to A ∈ L∗([a, b],Rn×n):
If {Ak}∞k=1 is a uniformly bounded sequence of step functions such that Ak → A
a. e. on [a, b], then (using 3.2.4 and Lebesgue’s dominated convergence theorem)

det(I +A(t) dt)
b∏

a

= det lim
k→∞

(I +Ak(t) dt)
b∏

a

= lim
k→∞

det(I +Ak(t) dt)
b∏

a

=

= lim
k→∞

exp

(∫ b

a

TrAk(t) dt

)
= exp

(∫ b

a

TrA(t) dt

)
> 0.
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Theorem 3.6.11.1 If A ∈ L∗([a, b],Rn×n), then

(I +A(x) dx)
b∏

a

= I +
∞∑

k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk

(where the integrals on the right side are taken in the sense of Lebesgue).

Proof. Let {Ak}∞k=1 be a uniformly bounded sequence of step functions such that
Ak → A a. e. on [a, b]. Every function Ak is associated with a partition

Dk : a = tk0 < tk1 < · · · < tkm(k) = b

such that
Ak(x) = Akj , x ∈ (tkj−1, t

k
j ).

According to the definition of Lebesgue product integral,

(I +A(x) dx)
b∏

a

= lim
k→∞

(I +Ak(x) dx)
b∏

a

= lim
k→∞

m(k)∏

j=1

exp(Akj∆tkj ).

Schlesinger proves2 first that the product integral might be also calculated as

(I +A(x) dx)
b∏

a

= lim
k→∞

m(k)∏

i=1

(I +Aki ∆tki ), (3.6.4)

provided that
lim
k→∞

ν(Dk) = 0 (3.6.5)

(which can be assumed without loss of generality); note that if (3.6.5) is not satis-
fied, (3.6.4) need not hold (consider A = Ak = I and the partitions a = tk0 < tk1 = b
for every k ∈ N). Schlesinger’s proof of (3.6.4) seems too complicated and even
faulty; we instead argue similarly as in the proof of Theorem 3.2.2: Take a positive
number M such ‖Ak(x)‖ ≤M for every k ∈ N and x ∈ [a, b]. Then

∥∥exp(Akj∆tkj )− I −Akj∆tkj
∥∥ ≤ (M∆tkj )2eM∆tkj

for every k ∈ N and j = 1, . . . ,m(k). According to Lemma 3.2.1,
∥∥∥∥∥∥

m(k)∏

j=1

exp(Akj∆tkj )−
m(k)∏

j=1

(I +Akj∆tkj )

∥∥∥∥∥∥
=

=

∥∥∥∥∥∥

m(k)∑

j=1



j−1∏

l=1

(I +Akl ∆tkl ) · (exp(Akj∆tkj )− I −Akj∆tkj ) ·
m(k)∏

l=j+1

exp(Akl ∆tkl )



∥∥∥∥∥∥
≤

1 [LS2], p. 487
2 [LS2], p. 485–486
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≤ eM(b−a)
m(k)∑

j=1

∥∥exp(Akj∆tkj )− I −Akj∆tkj
∥∥ ≤ eM(b−a)M2

m(k)∑

j=1

(∆tkj )2eM∆tkj ≤

≤ eM(b−a)M2ν(Dk)eMν(Dk)
m(k)∑

j=1

∆tkj = eM(b−a)M2ν(Dk)eMν(Dk)(b− a).

This completes the proof of (3.6.4). Schlesinger now states that

m(k)∏

i=1

(I +Aki ∆tki ) = I +
m(k)∑

s=1

∑

1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis

and concludes the proof saying that

lim
k→∞

∑

1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis =

=
∫ b

a

∫ xs

a

· · ·
∫ x2

a

A(x1) · · ·A(xs) dx1 · · · dxs

The last step perhaps deserves a better explanation: Denote

Xs = {(x1, . . . , xs) ∈ Rs; a ≤ x1 < x2 < · · · < xs ≤ b},

and
Xs
k =

⋃

1≤i1<···<is≤m(k)

[ti1−1, ti1 ]× [ti2−1, ti2 ]× · · · × [tis−1, tis ],

where s and k are arbitrary positive integers. If χs and χsk denote the characteristic
functions of Xs and Xs

k, then χsk → χs for k →∞. Consequently

lim
k→∞

∑

1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis =

= lim
k→∞

∫ b

a

∫ b

a

· · ·
∫ b

a

Ak(x1) · · ·Ak(xs)χ
s
k(x1, . . . , xs) dx1 · · · dxs =

=
∫ b

a

∫ b

a

· · ·
∫ b

a

A(x1) · · ·A(xs)χ
s(x1, . . . , xs) dx1 · · · dxs =

=
∫ b

a

∫ xs

a

· · ·
∫ x2

a

A(x1) · · ·A(xs) dx1 · · · dxs

(we have used the dominated convergence theorem).

Remark 3.6.12. The deficiency in the previous proof is that Schlesinger didn’t
justify the equality

lim
k→∞


I +

m(k)∑

s=1

∑

1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis


 =
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I +
∞∑

s=1

lim
k→∞


 ∑

1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis


 .

We have already encountered a similar inaccuracy when discussing Volterra’s proof
of the Peano series expansion theorem for product integral; see also Masani’s proof
of Theorem 5.5.10.

Remark 3.6.13. Recall that, according to Theorem 2.3.5, the right derivative of
a matrix function satisfies

(CD−1)
d

dx
= D

(
C

d
dx
− D

d
dx

)
D−1.

Consider two continuous matrix functions A,B defined on [a, b]. Using the previous
formula and also the convention that

(I +A(t) dt)
x∏

y

=

(
(I +A(t) dt)

y∏

x

)−1

for y > x, we infer the equality
(

(I +B(t) dt)
x∏

b

(I +A(t) dt)
b∏

x

)
d

dx
=

= (I +A(t) dt)
x∏

b

(B(x)−A(x))(I +A(t) dt)
b∏

x

for every x ∈ [a, b]. Denoting S(x) = (I +A(t) dt)
∏x
b we obtain

(
(I +B(t) dt)

x∏

b

(I +A(t) dt)
b∏

x

)
d

dx
= S(x)(B(x)−A(x))S−1(x),

and consequently (since the left hand side is equal to I for x = b)

(I +B(t) dt)
x∏

b

(I +A(t) dt)
b∏

x

= (I + S(t)(B(t)−A(t))S−1(t) dt)
x∏

b

.

Substituting x = a and inverting both sides of the equation yields

(I +A(t) dt)
a∏

b

(I +B(t) dt)
b∏

a

= (I + S(t)(B(t)−A(t))S−1(t) dt)
b∏

a

. (3.6.6)

A similar theorem (concerning the left product integral) was already present in
Volterra’s work1. Schlesinger proves2 that the statement remains true even if A,
B ∈ L∗([a, b],Rn×n). The proof is rather technical and we don’t reproduce it here.

1 [VH], p. 85–86
2 [LS2], p. 488–489
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Theorem 3.6.14.1 Let A : [a, b]× [c, d]→ Rn×n be such that the integral

P (t) = (I +A(x, t) dx)
b∏

a

exists for every t ∈ [c, d] and that
∥∥∥∥
∂A

∂t
(x, t)

∥∥∥∥ ≤M, x ∈ [a, b], t ∈ [c, d],

for some M ∈ R. Then

P
d
dt

= P−1(t)P ′(t) =
∫ b

a

S(x, t)
∂A

∂t
(x, t)S−1(x, t) dx,

where S(x, t) = (I +A(u, t) du)
∏x
b .

Proof. The definition of derivative gives

P−1(t)P ′(t) = lim
h→0

1
h

(
(I +A(x, t) dx)

a∏

b

(I +A(x, t+ h) dx)
b∏

a

−I
)
.

Using Equation (3.6.6) we convert the above limit to

lim
h→0

1
h

(
(I + S(x, t)(A(x, t+ h)−A(x, t))S−1(x, t) dx)

b∏

a

−I
)
.

Expanding the product integral to Peano series (see Theorem 3.6.11) we obtain

lim
h→0

1
h

∞∑

k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

∆(x1, t, h) · · ·∆(xk, t, h) dx1 · · · dxk, (3.6.7)

where
∆(x, t, h) = S(x, t)(A(x, t+ h)−A(x, t))S−1(x, t).

As the Peano series converges uniformly (the Weierstrass M-test, see Theorem
2.4.5), we can interchange the order of limit and summation. According to the
mean value theorem there is a ξ(h) ∈ [t, t+ h] such that

∥∥∥∥
A(x, t+ h)−A(x, t)

h

∥∥∥∥ =

∥∥∥∥
∂A

∂t
(x, ξ(h))

∥∥∥∥ ≤M.

The dominated convergence theorem therefore implies

lim
h→0

1
h

∫ b

a

∆(x1, t, h) dx1 =
∫ b

a

lim
h→0

∆(x1, t, h)
h

dx1 =

1 [LS2], p. 490–491
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=
∫ b

a

S(x1, t)
∂A

∂t
(x1, t)S

−1(x1, t) dx1,

and for k ≥ 2

lim
h→0

1
h

∫ b

a

∫ xk

a

· · ·
∫ x2

a

∆(x1, t, h) · · ·∆(xk, t, h) dx1 · · · dxk =

=
∫ b

a

∫ xk

a

· · ·
∫ x2

a

lim
h→0

(
hk−1 ∆(x1, t, h)

h
· · · ∆(xk, t, h)

h

)
dx1 · · · dxk = 0,

which completes the proof.

The following statement generalizes Theorem 2.5.12; Schlesinger replaces Volterra’s
assumption A ∈ C([a, b],Rn×n) by a weaker condition A ∈ L∗([a, b],Rn×n).

Theorem 3.6.15.1 If A ∈ L∗([a, b],Rn×n) and C ∈ Rn×n is a regular matrix,
then

(I + C−1A(x)C dx)
b∏

a

= C−1(I +A(x) dx)
b∏

a

C.

Proof. Since (C−1AC)k = C−1AkC for every k ∈ N, we have

exp(C−1AC) = C−1 exp(A)C.

If A is a step function, then

(I + C−1A(x)C dx)
b∏

a

=
m∏

i=1

eC
−1A(ξi)C∆ti =

= C−1
m∏

i=1

eA(ξi)∆tiC = C−1(I +A(x) dx)
b∏

a

C.

In the general case when A ∈ L∗([a, b],Rn×n), we rewrite the above equation with
simple functions Ak in place of A, and then pass to the limit k →∞.

3.7 Double and contour product integrals
A considerable part of the paper [LS2] is devoted to double and contour product
integrals (in R2 as well as in C). Probably the most remarkable achievement is
Schlesinger’s proof of the “Green’s theorem” for product integral, which is repro-
duced in the following text.

Definition 3.7.1. Let G be the rectangle [a, b]× [c, d] in R2 and A : G→ Rn×n a
matrix function on G. The double product integral of A over G is defined as

(I +A(x, y) dxdy)
∏

G

=

(
I +

(∫ b

a

A(x, y) dx

)
dy

)
d∏

c

,

1 [LS2], p. 489
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provided both integrals on the right hand side exist (in the sense of Lebesgue).

Definition 3.7.2. Let G be the rectangle [a, b]× [c, d] in R2 and P,Q : G→ Rn×n

continuous functions on G. We denote

U(x, y) = (I + P (t, c) dt)
x∏

a

(I +Q(x, t) dt)
y∏

c

,

T (x, y) = (I +Q(a, t) dt)
y∏

c

(I + P (t, y) dt)
x∏

a

for every x ∈ [a, b], y ∈ [c, d]. The contour product integral over the boundary of
rectangle G is defined as the matrix

(I + P (x, y) dx+Q(x, y) dy)
∏

∂G

= U(b, d)T (b, d)−1. (3.7.1)

Remark 3.7.3. Schlesinger refers to the matrices U(b, d) and T (b, d) as to the
“integral over the lower step” and “integral over the upper step” of the rectangle G.
They are clearly a special case of the contour product integral as defined by Volterra
(see definition 2.6.8); the matrix (3.7.1) corresponds to the value of contour product
integral along the (anticlockwise oriented) boundary of G.

Theorem 3.7.4.1 Let G be the rectangle [a, b]× [c, d] in R2 and P,Q : G→ Rn×n

continuous matrix functions on G. Assume that the derivatives

∂P

∂y
,

∂Q

∂x

exist and are continuous on G. Then

(I + P (x, y) dx+Q(x, y) dy)
∏

∂G

=(I + T ·∆∗(P,Q) · T−1 dxdy)
∏

G

,

where

∆∗(P,Q) =
∂Q

∂x
− ∂P

∂y
+ PQ−QP,

T (x, y) = (I +Q(a, t) dt)
y∏

c

(I + P (t, y) dt)
x∏

a

.

Proof. A simple calculation reveals that (compare to Lemma 2.6.4)

T ·∆∗(P,Q) · T−1 =
∂

∂x

(
T

(
Q− T d

dy

)
T−1

)
.

1 [LS2], p. 496–497
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Taking the product integral over G we obtain

(I + T ·∆∗(P,Q) · T−1 dxdy)
∏

G

=

=

(
I +

[
T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1

]b

a

dy

)
d∏

c

. (3.7.2)

According to the rules for differentiating a product of functions (see Theorem 2.3.2),

T
d
dy

= (I + P (t, y) dt)
a∏

x

Q(a, y)(I + P (t, y) dt)
x∏

a

+

(
(I + P (t, y) dt)

x∏

a

)
d
dy
.

Theorem 3.6.14 on differentiating the product integral with respect to a parameter
yields

lim
x→a

(
(I + P (t, y) dt)

x∏

a

)
d
dy

= 0,

and consequently

lim
x→a

T
d
dy

= Q(a, y). (3.7.3)

The equalities (3.7.2) and (3.7.3) imply

(I + T ·∆∗(P,Q) · T−1 dxdy)
∏

G

=

=

(
I + lim

x→b

(
T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1

)
dy

) d∏

c

=

= lim
x→b

(
I + T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1dy

) d∏

c

(3.7.4)

(we have used Theorem 3.6.3 on interchanging the order of limit and integral). For
every x ∈ [a, b] we have

T (x, y)
d
dy

=
(
T (x, d)−1T (x, y)

) d
dy

and also

T (x, d)−1T (x, y) =

(
I + T (x, u)

d
du

du

) y∏

d

=

(
I +

(
T (x, d)−1T (x, u)

) d
du

du

) y∏

d

.

Using Theorem 3.6.15 and Equation (3.6.6) we arrive at

(
I + T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1dy

) d∏

c

= T (x, d)·
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·
(
I + T (x, d)−1T (x, y)

(
Q(x, y)−

(
T (x, d)−1T (x, y)

) d
dy

)
T (x, y)−1T (x, d) dy

) d∏

c

·

·T (x, d)−1 = T (x, d)

(
I +

(
T (x, d)−1T (x, y)

) d
dy

dy

) c∏

d

·

·(I +Q(x, y) dy)
d∏

c

T (x, d)−1 = T (x, d)T (x, d)−1T (x, c)(I +Q(x, y) dy)
d∏

c

·

·T (x, d)−1 = T (x, c)(I +Q(x, y) dy)
d∏

c

T (x, d)−1.

Finally, Equation (3.7.4) gives

(I + T ·∆∗(P,Q) · T−1 dxdy)
∏

G

= lim
x→b

(
T (x, c)(I +Q(x, y) dy)

d∏

c

T (x, d)−1

)
=

= T (b, c)(I +Q(b, y) dy)
d∏

c

T (b, d)−1 = (I + P (x, y) dx+Q(x, y) dy)
∏

∂G

.

Remark 3.7.5. The previous theorem represents an analogy of Green’s theorem
for the product integral; we have already encountered a similar statement when
discussing Volterra’s work. Volterra’s analogy of the curl operator was

∆(P,Q) =
∂Q

∂x
− ∂P

∂y
+QP − PQ,

while Schlesinger’s curl has the form

∆∗(P,Q) =
∂Q

∂x
− ∂P

∂y
+ PQ−QP.

The reason is that Volterra stated his theorem for the left product integral, while
Schlesinger was concerned with the right product integral (see Theorem 2.6.15 and
Remark 2.6.7). Whereas Volterra worked with a simply connected domain G (see
definition 2.6.12), Schlesinger considers only rectangles.

Consider functions P , Q that satisfy assumptions of Theorem 3.7.4 and such that

∆∗(P,Q) = 0 (3.7.5)

everywhere in G. Then

(I + P (x, y) dx+Q(x, y) dy)
∏

∂G

= I,
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which in consequence means that the values of contour product integral over the
lower step and over the upper step are the same. Schlesinger then denotes the
common value of the matrices U(x, y) and T (x, y) (see definition 3.7.2) by the
symbol

(I + P (x, y) dx+Q(x, y) dy)
(b,d)∏

(a,c)

.

Clearly

(I + P (u, v) du+Q(u, v) dv)

(x,y)∏

(a,c)


 d

dx
= T (x, y)

d
dx

= P (x, y),


(I + P (u, v) du+Q(u, v) dv)

(x,y)∏

(a,c)


 d

dy
= U(x, y)

d
dy

= Q(x, y).

Schlesinger now proceeds to define product integral along a contour and shows
that (in a simply connected domain) the condition (3.7.5) implies that the value
of product integral depends only on the endpoints of the contour. His method is
almost the same as Volterra’s and we don’t repeat it here.

At the end of paper [LS2] Schlesinger treats matrix functions of a complex variable.
He defines the contour product integral in complex domain and recapitulates the
results proved earlier by Volterra (theorems 2.7.4, 2.7.7, and 2.7.6).

3.8 Generalization of Schlesinger’s definition

Thanks to the definition proposed by Ludwig Schlesinger it is possible to extend
the class of product integrable functions and to work with bounded measurable
functions instead of Riemann integrable functions. At this place we remind the
notation

L∗([a, b],Rn×n) =
{
A : [a, b]→ Rn×n; A is measurable and bounded

}
.

Schlesinger was aware that his definition might be extended to all matrix functions
with Lebesgue integrable (not necessarily bounded) entries, i. e. to the class

L([a, b],Rn×n) =

{
A : [a, b]→ Rn×n; (L)

∫ b

a

‖A(t)‖ dt <∞
}
,

where the symbol (L) emphasizes that we are dealing with the Lebesgue integral.
Clearly L∗ ⊂ L. If {Ak}∞k=1 is a uniformly bounded sequence of functions which
converge to A almost everywhere, then according to lemma 3.5.4

lim
k→∞

‖Ak −A‖1 = lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx = 0,
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i.e. Ak converge to A also in the norm of space L([a, b],Rn×n). Taking account of
Theorem 3.5.5 it is natural to state the following definition.

Definition 3.8.1. A function A : [a, b] → Rn×n is called product integrable if
there exists a sequence of step functions {Ak}∞k=1 such that

lim
k→∞

‖Ak −A‖1 = 0.

We define

(I +A(t) dt)
b∏

a

= lim
k→∞

(I +Ak(t) dt)
b∏

a

.

Remark 3.8.2. The correctness of the previous definition is ensured by theorem
3.5.5. Since step functions belong to the space L([a, b],Rn×n), which is complete,
every product integrable function also belongs to this space. Moreover, step func-
tions form a dense subset in this space1, and therefore (I + A(t) dt)

∏b
a exists iff

A ∈ L([a, b],Rn×n), i. e. iff the integral (L)
∫ b
a
A(t) dt exists.

Interested readers are referred to the book [DF] for more details about the theory
of product integral based on definition 3.8.1. As an interesting example we present
the proof of theorem on differentiating the product integral with respect to the
upper bound of integration. We start with a preliminary lemma (which follows also
from Theorem 3.3.2, but we don’t want to use it as we are seeking another way to
prove it).

Lemma 3.8.3. If A : [a, b]→ Rn×n is a step function, then

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b].

Proof. There exist a partition a = t0 < t1 < · · · < tm = b and matrices
A1, . . . , Am ∈ Rn×n such that

A(x) = Ak, x ∈ (tk−1, tk).

Then

Y (x) = (I +A(t) dt)
x∏

a

= eA1(t2−t1) · · · eAk−1(tk−1−tk−2)eAk(x−tk−1)

for every x ∈ [tk−1, tk]. The function Y is continuous on [a, b] and differentiable
except a finite number of points; we have

Y ′(x) = Y (x)A(x) (3.8.1)

1 [RG], Corollary 3.29, p. 47
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for x ∈ [a, b]\{t0, t1, . . . , tm}. This implies

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b].

Theorem 3.8.4.1 Consider function A ∈ L([a, b],Rn×n). For every x ∈ [a, b] the
integral

Y (x) = (I +A(t) dt)
x∏

a

(3.8.2)

exists and the function Y satisfies the equation

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b]. (3.8.3)

Proof. Let Ak : [a, b]→ Rn×n, k ∈ N be a sequence of step functions such that

lim
k→∞

‖Ak −A‖1 = lim
k→∞

∫ b

a

‖Ak(t)−A(t)‖ dt = 0. (3.8.4)

Then clearly

lim
k→∞

∫ x

a

‖Ak(t)−A(t)‖ dt = 0, x ∈ [a, b],

i. e. the definition (3.8.2) is correct. Denote

Yk(x) = (I +Ak(t) dt)
x∏

a

.

Because Ak are step functions, Lemma 3.8.3 implies

Yk(x) = I +
∫ x

a

Yk(t)Ak(t) dt, x ∈ [a, b]. (3.8.5)

According to Corollary 3.4.3,

‖Yl(x)− Ym(x)‖ ≤ exp

(∫ b

a

‖Al(t)‖ dt

)(
exp

(∫ b

a

‖Al(t)−Am(t)‖ dt

)
− 1

)
=

= exp ‖Al‖1 (exp ‖Al(t)−Am(t)‖1 − 1) .

From Equation (3.8.4) we see that {Ak}∞k=1 is a bounded and Cauchy sequence
with respect to the norm ‖ · ‖1. The previous inequality therefore implies that Yk
converge uniformly to Y , i. e.

‖Yk − Y ‖∞ = sup
x∈[a,b]

‖Yk(x)− Y (x)‖ → 0 pro k →∞.

1 [DF], p. 54–55

97



We now estimate∥∥∥∥
∫ x

a

Yk(t)Ak(t) dt−
∫ x

a

Y (t)A(t) dt

∥∥∥∥ ≤ ‖YkAk − Y A‖1 ≤

≤ ‖(Yk − Y )Ak‖1 + ‖Y (Ak −A)‖1 ≤ ‖Ak‖1‖Yk − Y ‖∞ + ‖(Ak −A)‖1‖Y ‖∞,
and consequently

lim
k→∞

∫ x

a

Yk(t)Ak(t) dt =
∫ x

a

Y (t)A(t) dt.

The equality (3.8.3) is obtained by passing to the limit in equation (3.8.5).

Corollary 3.8.5. If A ∈ L([a, b],Rn×n), then the function

Y (x) = (I +A(t) dt)
x∏

a

, x ∈ [a, b],

is absolutely continuous on [a, b] and

Y (x)−1 · Y ′(x) = A(x)

almost everywhere on [a, b].

Remark 3.8.6. In our proof of the previous theorem we have employed Schlesin-
ger’s estimate from Corollary 3.4.3, whose proof is somewhat laborious. The authors
of [DF] instead make use of a different inequality, which is easier to demonstrate.
Let A, B : [a, b]→ Rn×n be two step functions. Denoting

Y (x) = (I +A(t) dt)
x∏

a

, Z(x) = (I +B(t) dt)
x∏

a

,

we see that the function Y Z−1 is continuous on [a, b] and differentiable except a
finite number of points. Using Equation (3.8.1) we calculate

(Y Z−1)′ = Y ′Z−1 + Y (Z−1)′ = Y Y −1Y ′Z−1 − Y Z−1Z ′Z−1 = Y (A−B)Z−1,

and consequently

Y (x)Z−1(x) = I +
∫ x

a

(Y Z−1)′(t) dt = I +
∫ x

a

Y (t)(A(t)−B(t))Z−1(t) dt.

Multiplying this equation by Z from right and substituting x = b we obtain
∥∥∥∥∥(I +A(t) dt)

b∏

a

−(I +B(t) dt)
b∏

a

∥∥∥∥∥ = ‖Y (b)− Z(b)‖ ≤

≤
∫ b

a

‖Y (t)‖ · ‖A(t)−B(t)‖ · ‖Z−1(t)‖ dt · ‖Z(b)‖ ≤ e2‖B‖1e‖A‖1‖A−B‖1

(we have used Lemma 3.4.1 to estimate ‖Y (t)‖, ‖Z−1(t)‖ and ‖Z(b)‖). The meaning
of the last inequality is similar to the meaning of inequality from Corollary 3.4.3:
“If two step functions A, B are close with respect to the norm ‖·‖1, then the values
of their product integrals are also close to each other.”
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