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Chapter 4

Operator-valued functions

In the previous chapters we have encountered various definitions of product integral
of a matrix function A : [a, b] → Rn×n. It is known that every n × n matrix
represents a linear transformation on the space Rn, and that the composition of
two linear transformations corresponds to multiplication of their matrices.

It is thus natural to ask whether it is possible to define the product integral of a
function A defined on [a, b] whose values are operators on a certain (possibly infinite-
dimensional) vector space X. This pioneering idea (although in a less general scope)
can be already found in the second part of the book [VH] written by Bohuslav
Hostinský. He studies certain special linear operators on the space of continuous
functions (he calls them “linear functional transformations”) and calculates their
product integrals as well as their left and right derivatives. Hostinský imagines a
function as a vector with infinitely many coordinates; the linear operator on Rn

given by

yi =
n∑

j=1

aijxj

then goes over to the operator on continuous functions given by

y(t) =
∫ q

p

A(t, u)x(u) du.

This idea was not a new one – already Volterra noted1 that integral equations can be
treated as limiting cases of systems of linear algebraic equations. His observation
was also later used by Ivar Fredholm, who obtained the solution of an integral
equation as a limit of the solutions of linear algebraic equations.

Bohuslav Hostinský was born on the 5th December 1884 in Prague. He stud-
ied mathematics and physics at the philosophical faculty of Charles University in
Prague and obtained his doctoral degree in 1907 (his dissertation thesis was devoted
to geometry). He spent a short time as a high school teacher and visited Paris in
1908–09 (he cooperated especially with Gaston Darboux). Since 1912 he gave lec-
tures as privatdozent at the philosophical faculty in Prague and was promoted to
professor of theoretical physics at the faculty of natural sciences in Brno in 1920;
he held this position until his death on the 12th April 1951.

1 [Kl], Chapter 45
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Bohuslav Hostinský1

Hostinský initially devoted himself to pure mathematics, especially to differential
geometry. However, his interest gradually moved to theoretical physics, in particu-
lar to the kinetic theory of gases (being influenced mainly by Borel, Ehrenfest and
Poincaré). Of course, this discipline requires a good knowledge of probability the-
ory; Hostinský is considered one of the pioneers of the theory of Markov processes
and their application in physics. Apart from that he also worked on differential
and integral equations and is known for his critical attitude towards the theory of
relativity. A good overview of the life and work of Bohuslav Hostinský is given in
[Ber].

4.1 Integral operators
In the following discussion we focus our attention to the space C([p, q]) of continuous
functions defined on [p, q]. Every mapping T : C([p, q]) → C([p, q]) is called an
operator on C([p, q]); we will often write Tf instead of T (f). The operator is called
linear if

T (af1 + bf2) = aT (f1) + bT (f2)

for each pair of functions f1, f2 ∈ C([p, q]) and each pair of numbers a, b ∈ R. The
inverse operator of T , which is denoted by T−1, satisfies

T−1(T (f)) = T (T−1(f)) = f (4.1.1)

for every function f ∈ C([p, q]); note that the inverse operator need not always
exist. The last equation can be shortened to

T−1 · T = T · T−1 = I,

1 Photo provided by Tomáš Hostinský
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where · denotes the composition of operators and I is the identity operator, which
satisfies If = f for every function f .

Bohuslav Hostinský was concerned especially with integral operators of the first
kind

Tf(x) =
∫ q

p

K(x, y)f(y) dy

and with the operators of the second kind

Tf(x) = f(x) +
∫ q

p

K(x, y)f(y) dy,

where the function K (the so-called kernel) is continuous on [p, q] × [p, q]. Thus
if f ∈ C([p, q]), then also Tf ∈ C([p, q]). These operators play an important role
in the theory of integral equations and have been studied by Vito Volterra, Ivar
Fredholm, David Hilbert and others since the end of the 19th century (see [Kl],
Chapter 45).

Hostinský starts1 with a recapitulation of the basic properties of the integral oper-
ators. If K(x, y) = 0 for y > x, we obtain either the Volterra operator of the first
kind

Tf(x) =
∫ x

p

K(x, y)f(y) dy,

or the Volterra operator of the second kind

Tf(x) = f(x) +
∫ x

p

K(x, y)f(y) dy.

Composition of two integral operators of the second kind

T1f(x) = f(x) +
∫ q

p

K1(x, y)f(y) dy,

T2f(x) = f(x) +
∫ q

p

K2(x, y)f(y) dy,

produces another operator of the second kind

(T2 · T1)f(x) = f(x) +
∫ q

p

J(x, y)f(y) dy,

whose kernel is

J(x, y) = K1(x, y) +K2(x, y) +
∫ q

p

K2(x, z)K1(z, y) dz. (4.1.2)

1 [VH], p. 182–186
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An important question is the existence of inverse operators (which corresponds to
solvability of the corresponding integral equations). The Volterra operator of the
second kind always has an inverse operator

T−1f(x) = f(x) +
∫ x

p

N(x, y)f(y) dy,

which is again a Volterra operator of the second kind whose kernel N(x, y) (usually
called the resolvent kernel) can be found using the method of successive approx-
imations. Several sufficient conditions are known for the existence of the inverse
operator to the Fredholm operator of the second kind; we do not dwell into the
details and only mention that the inverse operator is again a Fredholm operator of
the second kind

T−1f(x) = f(x) +
∫ q

p

N(x, y)f(y) dy,

with a kernel N(x, y). Equations (4.1.1) and (4.1.2) imply that the kernel satisfies

K(x, y) +N(x, y) = −
∫ q

p

K(x, t)N(t, y) dt = −
∫ q

p

N(x, t)K(t, y) dt. (4.1.3)

Generally, the operators of the first kind need not have an inverse operator.

4.2 Product integral of an operator-valued function

We now assume that the integral operator kernel depends on a parameter u ∈ [a, b]:

T (u)f(x) = f(x) +
∫ q

p

K(x, y, u)f(y) dy

Thus T is a function defined on [a, b] whose values are operators on (C([p, q])).
Hostinský now proceeds1 to calculate its left derivative. He doesn’t state any def-
inition, but his calculation follows Volterra’s definition of the left derivative of a
matrix function. Assume that K is continuous on [p, q]× [p, q]× [a, b] and that the
derivative

∂K

∂u
(x, y, u)

exists and is continuous for every u ∈ [a, b] and x, y ∈ [p, q]. We choose a partic-
ular u ∈ [a, b] and assume that the inverse operator T−1(u) exists. According to
Equation (4.1.2), the kernel of the operator T (u+ ∆u) · T−1(u) is

J(x, y, u,∆u) = K(x, y, u+ ∆u) +N(x, y, u) +
∫ q

p

K(x, t, u+ ∆u)N(t, y, u) dt =

= K(x, y, u+ ∆u)−K(x, y, u) +K(x, y, u) +N(x, y, u)+

1 [VH], p. 186–188
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+
∫ q

p

K(x, t, u+ ∆u)N(t, y, u) dt =

= K(x, y, u+ ∆u)−K(x, y, u) +
∫ q

p

(K(x, t, u+ ∆u)−K(x, t, u))N(t, y, u) dt

(we have used Equation (4.1.3)). Denote

M(x, y, u) = lim
∆u→0

J(x, y, u,∆u)
∆u

=

=
∂K

∂u
(x, y, u) +

∫ q

p

∂K

∂u
(x, t, u)N(t, y, u) dt. (4.2.1)

According to Bohuslav Hostinský, the left derivative of T at u is an operator of the
second kind whose kernel is M(x, y, u). By a similar method he deduces that the
right derivative of T at u is an operator of the second kind with the kernel

M∗(x, y, u) =
∂K

∂u
(x, y, u) +

∫ q

p

N(x, t, u)
∂K

∂u
(t, y, u) dt.

These statements are somewhat confusing, because the left derivative should be the
operator

lim
∆u→0

T (u+ ∆u) · T−1(u)− I
∆u

,

which is an operator of the first kind with kernel M(x, y, u). Similarly, the right
derivative should be rather

lim
∆u→0

T−1(u) · T (u+ ∆u)− I
∆u

,

i.e. an operator of the first kind with kernel M∗(x, y, u).

The next problem tackled by Hostinský is the calculation of the left integral of the
operator-valued function

T (u)f(x) = f(x) +
∫ q

p

K(x, y, u)f(y) dy.

We again assume that the function K is continuous on [p, q] × [p, q] × [a, b]. As in
the case of derivatives, Hostinský provides no definition and starts1 directly with
the calculation, which is again somewhat strange: He chooses a tagged partition
D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti], and forms the operator

T (ξm)∆tm · · ·T (ξ1)∆t1,

1 [VH], p. 188–191
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where ∆ti = ti − ti−1. He now claims it is an operator of the second kind, which
is not true. The correct procedure that he probably has in mind is to take the
operator-valued function

S(u)f(x) =
∫ q

p

K(x, y, u)f(y) dy

and to form the operator

P (S,D) = (I + S(ξm)∆tm) · · · (I + S(ξ1)∆t1),

which is an operator of the second kind with the kernel

m∑

s=1

∑

1≤i1<···<is≤m

∫ q

p

· · ·
∫ q

p

K(x, z1, ξis) · · ·K(zs−1, y, ξi1)∆tis · · ·∆ti1 dz1 · · · dzs−1

(we have used Equation (4.1.2)). Passing to the limit for ν(D) → 0 we calculate
that the left product integral of the function S is an operator of the second kind
with the kernel

L(x, y, a, b) = (4.2.2)

=
∞∑

s=1

∫ q

p

· · ·
∫ q

p

∫ b

a

∫ ts

a

· · ·
∫ t2

a

K(x, z1, ts) · · ·K(zs−1, y, t1) dt1 · · · dts dz1 · · · dzs−1.

In a similar way can calculate the right product integral of S, which is obtained as
the limit of operators

P ∗(S,D) = (I + S(ξ1)∆t1) · · · (I + S(ξm)∆tm)

for ν(D)→ 0; the result is an operator of the second kind with the kernel

R(x, y, a, b) = (4.2.3)

=
∞∑

s=1

∫ q

p

· · ·
∫ q

p

∫ b

a

∫ ts

a

· · ·
∫ t2

a

K(x, z1, t1) · · ·K(zs−1, y, ts) dt1 · · · dts dz1 · · · dzs−1.

In analogy with product integrals of matrix functions we use the symbols

b∏

a

(I + S(t) dt) and (I + S(t) dt)
b∏

a

to denote the left and right product integrals, respectively. Let us briefly summarize
their properties:

If the operator-valued function S is defined on [a, c] and b ∈ [a, c], then1

c∏

a

(I + S(t) dt) =
c∏

b

(I + S(t) dt) ·
b∏

a

(I + S(t) dt).

1 [VH], p. 193
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The left side of the last equality represents an operator of the second kind whose
kernel is L(x, y, a, c), while the right side is a composition of two second-kind oper-
ators with kernels L(x, y, a, b) and L(x, y, b, c). Thus according to Equation (4.1.2)
we have

L(x, y, a, c) = L(x, y, a, b) + L(x, y, b, c) +
∫ q

p

L(x, z, b, c)L(z, y, a, b) dz. (4.2.4)

Similarly, the right integral satisfies

(I + S(t) dt)
c∏

a

= (I + S(t) dt)
b∏

a

· (I + S(t) dt)
c∏

b

,

and we consequently

R(x, y, a, c) = R(x, y, a, b) +R(x, y, b, c) +
∫ q

p

R(x, z, a, b)R(z, y, b, c) dz. (4.2.5)

Hostinský next demonstrates1 that the derivative and the integral are reverse op-
erations; this means that if we consider the left (right) integral as a function of its
upper bound, then its left (right) derivative is the original function.
If f is an arbitrary continuous function, then

lim
c→b

∫ c

b

f = f(b).

Using this result and the definition of L we conclude

lim
c→b

L(x, y, b, c)
c− b = K(x, y, b)

(the series in the definition of L is uniformly convergent and we can interchange
the order of limit and summation). Consequently, Equation (4.2.4) gives

∂L(x, y, a, b)
∂b

= lim
c→b

L(x, y, a, c)− L(x, y, a, b)
c− b =

= lim
c→b

1
c− b

(
L(x, y, b, c) +

∫ q

p

L(x, z, b, c)L(z, y, a, b) dz

)
=

= K(x, y, b) +
∫ q

p

K(x, z, b)L(z, y, a, b) dz.

If NL(x, y, a, b) is the resolvent kernel corresponding to L(x, y, a, b), then, according
to Equation (4.2.1), the left derivative of the left integral of function S is an operator
of the first kind with kernel

∂L

∂b
(x, y, a, b) +

∫ q

p

∂L

∂b
(x, t, a, b)NL(t, y, a, b) dt =

1 [VH], p. 199–200
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= K(x, y, b) +
∫ q

p

K(x, z, b)L(z, y, a, b) dz+

+
∫ q

p

(
K(x, t, b) +

∫ q

p

K(x, z, b)L(z, t, a, b) dz

)
NL(t, y, a, b) dt = K(x, y, b)

(we have applied Equation (4.1.3) to functions L and NL), which completes the
proof.

Finally let us note that in case when S is a constant function, i.e. if the kernel K
does not depend on u, we obtain

L(x, y, a, b) = R(x, y, a, b) =
∞∑

s=1

(b− a)s

s!
Ks(x, y), (4.2.6)

where

Ks(x, y) =
∫ q

p

· · ·
∫ q

p

K(x, z1)K(z1, z2) · · ·K(zs−1, y) dz1 · · · dzs−1.

Remark 4.2.1. There exists a close relationship between the formulas derived by
Hostinský and those obtained by Volterra. Recall that if A : [a, b] → Rn×n is a
continuous matrix function, then

b∏

a

(I +A(t) dt) = I + L(a, b),

where L(a, b) is a matrix with components

Lij(a, b) =
∞∑

s=1




n∑

z1,...,zs−1=1

∫ b

a

∫ ts

a

· · ·
∫ t2

a

ai,z1(ts) · · · azs−1,j(t1) dt1 · · · dts


 .

This resembles Equation (4.2.2) – the only difference is that in (4.2.2) we integrate
over interval [p, q] instead of taking a sum over {1, . . . , n}. Similarly, the right
integral of a matrix function satisfies

(I +A(t) dt)
b∏

a

= I +R(a, b),

where

Rij(a, b) =
∞∑

s=1




n∑

z1,...,zs−1=1

∫ b

a

∫ ts

a

· · ·
∫ t2

a

ai,z1(t1) · · · azs−1,j(ts) dt1 · · · dts


 ,

which is an analogy of Equation (4.2.3).
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Also the formula

c∏

a

(I +A(t) dt) =
c∏

b

(I +A(t) dt)
b∏

a

(I +A(t) dt)

implies
I + L(a, c) = (I + L(b, c))(I + L(a, b)),

i.e. the components satisfy

Lij(a, c) = Lij(a, b) + Lij(b, c) +
n∑

z=1

Li,z(b, c)Lz,j(a, b).

In a similar way we obtain that the components of the right integral satisfy

Rij(a, c) = Rij(a, b) +Rij(b, c) +
n∑

z=1

Ri,z(a, b)Rz,j(b, c).

These relations resemble Equations (4.2.4) and (4.2.5).

Remark 4.2.2. Product integration of operator-valued functions can be used to
solve certain integro-differential equations. Hostinský considers1 the equation

∂f

∂t
(x, t) =

∫ q

p

K(x, y)f(y, t) dt,

whose kernel is independent of t; as he remarks, its solution was found by Volterra
(without using product integration) in 1914. More generally, we can consider the
integro-differential equation

∂f

∂t
(x, t) =

∫ q

p

K(x, y, t)f(y, t) dt

with the initial condition

f(x, t0) = f0(x), x ∈ [p, q].

This equation can be rewritten using the operator notation to

∂f

∂t
(t) = S(t)f(t),

where S(t) is an integral operator of the first kind for every t. Thus, for small ∆t
we have

f(t+ ∆t) = f(t) + ∆tS(t)f(t) = (I + S(t)∆t)f(t).

1 [VH, p. 192]
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Arguing similarly as in the case of matrix functions, we conclude that

f(t) =
t∏

t0

(I + S(u) du)f0,

i.e.

f(x, t) = f0(x) +
∫ q

p

L(x, y, t0, t)f0(y) dt.

However, the effort of Bohuslav Hostinský is not primarily directed towards integro-
differential equations. He shows that the right product integral kernel R(x, y, a, b)
can be used to obtain the solution of a certain differential equation known from the
work of Jacques Hadamard.
The last chapter of [VH] is devoted to integral operators of the first kind. By an
appropriate choice of the kernel, Hostinský is able to produce infinitesimal operators
of the first kind, i.e. operators that differ infinitesimally from the identity operator
(thus the kernel is something like the Dirac δ-function). The composition of such
infinitesimal operators leads to an operator whose kernel K provides a solution of
the equation

K(x, y, u, v) =
∫ q

p

K(x, z, u, w)K(z, y, w, v) dz.

This equation is known as the Chapman or Chapman-Kolmogorov equation and
is often encountered in the theory of stochastic processes (see also Section 1.4 and
Equation (1.4.7), which represents a discrete version of the Chapman equation).
The topic is rather special and we don’t discuss it here.

4.3 General definition of product integral

Although Hostinský is interested only in integral operators on the space C([p, q]),
it is possible to work more generally with linear operators on an arbitrary Banach
space X. Before proceeding to the corresponding definitions we recall that the
norm of a linear operator T on the space X is defined as

‖T‖ = sup{‖T (x)‖; ‖x‖ = 1}.

Let L(X) denote the space of all bounded linear operators on X, i.e. operators
whose norm is finite; L(X) is a normed vector space.

Definition 4.3.1. Let X be a Banach space, A : [a, b]→ L(X), t ∈ [a, b]. Assume
that A(t)−1 exists. We define the left and right derivatives of A at t as

d
dt
A(t) = lim

h→0

A(t+ h)A(t)−1 − I
h

,

A(t)
d
dt

= lim
h→0

A(t)−1A(t+ h)− I
h

,
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provided the limits exist. Of course, at the endpoints of [a, b] we require only the
existence of the corresponding one-sided limits.

To every function A : [a, b]→ L(X) and every tagged partition

D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti],

we assign the operators

P (A,D) =
1∏

i=m

(I +A(ξi)∆ti) = (I +A(ξm)∆tm) · · · (I +A(ξ1)∆t1),

P ∗(A,D) =
m∏

i=1

(I +A(ξi)∆ti) = (I +A(ξ1)∆t1) · · · (I +A(ξm)∆tm).

Definition 4.3.2. Consider function A : [a, b]→ L(X). The left and right product
integrals of A are the operators

b∏

a

(I +A(t) dt) = lim
ν(D)→0

P (A,D),

(I +A(t) dt)
b∏

a

= lim
ν(D)→0

P ∗(A,D),

provided the limits exist.

Example 4.3.3. Recall that for every A ∈ L(X) we define the exponential eA ∈
L(X) by

eA =
∞∑

n=0

An

n!
,

where A0 = I is the identity operator, A1 = A and An+1 = An ·A for every n ∈ N.
It can be proved (see Theorem 5.5.11) that

b∏

a

(I +A dt) = (I +Adt)
b∏

a

= eA(b−a)

(the special case for integral operators with a constant kernel follows also from
Equation (4.2.6)).

We state the next theorem without proof; a more general version will be proved in
Chapter 5 (see Theorem 5.6.2).

Theorem 4.3.4. Let A : [a, b] → L(X) be a continuous function. Then the
functions

Y (t) =
t∏

a

(I +A(u) du),
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Z(t) = (I +A(u) du)
t∏

a

satisfy
d
dt
Y (t) = A(t), Z(t)

d
dt

= A(t)

for every t ∈ [a, b].

Definition 4.3.2 represents a straightforward generalization of the Riemann product
integral as defined by Volterra. In the following chapter we provide an even more
general definition applicable to functions A : [a, b] → X, where X is a Banach
algebra. It is also possible to proceed in a different way and try to generalize the
Lebesgue product integral from Chapter 3; the following paragraphs outline this
possibility.

Definition 4.3.5. A function A : [a, b] → L(X) is called a step function if there
exists a partition a = t0 < t1 < · · · < tm = b and operators A1, . . . , Am ∈ L(X)
such that A(t) = Ai for t ∈ (ti−1, ti), i = 1, . . . ,m. For such a step function we
define

b∏

a

(I +A(t) dt) =
1∏

i=m

eAi(ti−ti−1),

(I +A(t) dt)
b∏

a

=
m∏

i=1

eAi(ti−ti−1).

Definition 4.3.6. A function A : [a, b] → L(X) is called product integrable if
there exists a sequence of step functions An : [a, b]→ L(X), n ∈ N such that

lim
n→∞

(L)
∫ b

a

‖An(t)−A(t)‖dt = 0

(where (L) denotes the Lebesgue integral of a real function). We then define

b∏

a

(I +A(t) dt) = lim
n→∞

b∏

a

(I +An(t) dt),

(I +A(t) dt)
b∏

a

= lim
n→∞

(I +An(t) dt)
b∏

a

.

The method from Chapter 3 can be again used to show that the value of product
integral does not depend on the choice of a particular sequence of step functions
{An}∞n=1. The above defined integral is called the Lebesgue product integral or the
Bochner product integral; the class of integrable functions is larger as compared
to Definition 4.3.2. More information about this type of product integral can be
found in [DF, Sch1].
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