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Chapter 5

Product integration in Banach algebras

A final treatment of Riemann product integration is given in the article [Mas] by
Pesi Rustom Masani; it was published in 1947. Consider a matrix-valued function
f : [a, b] → Rn×n and recall that Volterra defined the product integral of f as the
limit of products

P (f,D) =
1∏

k=m

(I + f(ξk)∆xk)

corresponding to tagged partitions D of interval [a, b]. This definition is also ap-
plicable to operator-valued functions f : [a, b]→ L(X), where L(X) is the space of
all bounded linear operators on a Banach space X. It is just sufficient to replace
multiplication by composition of operators in the definition of P (f,D); the role of
identity matrix is now played by the identity operator I.

Masani’s intent was to define the product integral of a function f : [a, b] → X
for the most general space X possible. Let X be a normed vector space equipped
with the operation of multiplication. Assuming there is a vector 1 ∈ X such that
1 · x = x · 1 = x for every x ∈ X and ‖1‖ = 1, we let

P (f,D) =
1∏

k=m

(1 + f(ξk)∆xk),

where D is an arbitrary tagged partition of [a, b]. We would like to define the
product integral as the limit

b∏

a

(1 + f(t) dt) = lim
ν(D)→0

P (f,D).

To obtain a reasonable theory it is necessary that the space X is complete, i.e. it
is a Banach space.

Before giving an overview of Masani’s result let’s start with a short biography (see
also [PRM, IMS]). Pesi Rustom Masani was born in Bombay, 1919. He obtained
his doctoral degree at Harvard in 1946; the thesis concerned product integration
in Banach algebras and it was supervised by Garrett Birkhoff 1. During the years
1948–58 Masani held the chairs of professor of mathematics and science researcher
in Bombay and then he returned to the United States. In the 1970’s he accepted
the position at the University of Pittsburgh. Masani was active in mathematics
even after his retirement in 1989. He died in Pittsburgh on the 15th October 1999.

1 G. Birkhoff also devoted himself to product integration, see [GB].
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Pesi R. Masani1

Masani contributed to the development of integration theory, functional analysis,
theory of probability and mathematical statistics. The appendix in [DF] written by
Masani also concerns product integration. He collaborated with Norbert Wiener
and edited his collected works after Wiener’s death. Masani was also interested in
history, philosophy, theology and politics.

5.1 Riemann-Graves integral

We begin with a brief recapitulation of facts concerning integration of vector-valued
functions (see also [Mas]). The notion of Graves integral is a direct generalization
of Riemann integral and was presented by Lawrence M. Graves in 1927.

Let X be a Banach space, f : [a, b] → X. To every tagged partition D : a = t0 <
t1 < · · · < tm = b of interval [a, b] with tags ξi ∈ [ti−1, ti], i = 1, . . . ,m we assign
the sum

S(f,D) =
m∑

i=1

f(ξi)∆ti,

where ∆ti = ti − ti−1. We recall that if T (D) ∈ X is a vector dependent on the
choice of a tagged partition D, then

lim
ν(D)→0

T (D) = T

means that to every ε > 0 there is δ > 0 such that ‖T (D) − T‖ < ε for every
partition D of [a, b] such that ν(D) < δ.

Definition 5.1.1. A function f : [a, b]→ X is called integrable if

lim
ν(D)→0

S(f,D) = Sf

1 Photo from http://www.york.ac.uk/depts/maths/histstat/people/
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for some Sf ∈ X. We speak of Riemann-Graves integral of function f on [a, b] and

denote Sf =
∫ b
a
f(t) dt.

The following theorem provides additional two equivalent characterizations of inte-
grable functions; recall that the notation D′ ≺ D means that the partition D′ is a
refinement of partition D (see Definition 3.1.8).

Theorem 5.1.2. Let f : [a, b]→ X. The following statements are equivalent:

1) f is integrable and
∫ b
a
f(t) dt = Sf .

2) Every sequence of partitions {Dn}∞n=1 of [a, b] such that ν(Dn) → 0 satisfies
limn→∞ S(f,Dn) = Sf .
3) For every ε > 0 there is a partition Dε of [a, b] such that ‖S(f,D)− Sf‖ < ε for
every D ≺ Dε.

The proof proceeds in the same way as in the case when f is a real function. The
rest of this section summarizes the basic results concerning the Riemann-Graves
integral; again, the proofs can be carried out in the classical way.

Theorem 5.1.3. Let f : [a, b]→ X. Then the following statements are equivalent:

1) f is integrable.
2) For every ε > 0 there exists δ > 0 such that ‖S(f,D1)−S(f,D2)‖ < ε whenever
D1 and D2 are tagged partitions of [a, b] satisfying ν(D1) < δ, ν(D2) < δ.

Theorem 5.1.4. If f : [a, b]→ X is an integrable function, then it is bounded and

∥∥∥∥∥

∫ b

a

f(t) dt

∥∥∥∥∥ ≤ (b− a) sup
t∈[a,b]

‖f(t)‖.

Theorem 5.1.5. Let f : [a, b]→ X. If the integral
∫ b
a
f(t) dt exists and if [c, d] ⊂

[a, b], then the integral
∫ d
c
f(t) dt exists as well.

Theorem 5.1.6. Let f : [a, c] → X, a < b < c. Suppose that the integrals∫ b
a
f(t) dt and

∫ c
b
f(t) dt exists. Then the integral

∫ c
a
f(t) dt also exists and

∫ c

a

f(t) dt =
∫ b

a

f(t) dt+
∫ c

b

f(t) dt.

The following two statements generalize the fundamental theorem of calculus to the
case of vector-valued functions f : [a, b]→ X. The derivative of such a function is
of course defined as

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

provided the limit exists (in the case when x0 is one of the boundary points of
[a, b] we require only existence of the corresponding one-sided limit). Since X is a
normed space, the last equation means that

lim
x→x0

∥∥∥∥
f(x)− f(x0)

x− x0
− f ′(x0)

∥∥∥∥ = 0.
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Theorem 5.1.7. Let f : [a, b]→ X be integrable and put F (x) =
∫ x
a
f(t) dt. If f

is continuous at x0 ∈ [a, b], then F ′(x0) = f(x0).

Theorem 5.1.8. Let F : [a, b]→ X and F ′(t) = f(t) for every t ∈ [a, b]. If f is an
integrable function, then

∫ b

a

f(t) dt = F (b)− F (a).

Theorem 5.1.9. Let f, g : [a, b]→ X be integrable functions, α, β ∈ R. Then

∫ b

a

(αf(t) + βg(t)) dt = α

∫ b

a

f(t) dt+ β

∫ b

a

g(t) dt.

The set of all integrable functions is thus a vector space; it is interesting to note that
if the space X is equipped with the operation of multiplication (i.e. it is a Banach
algebra, see the next section), then a product of two integrable functions need not
be an integrable function. Another surprising fact concerning the Riemann-Graves
integral is that every bounded function which is almost everywhere continuous is
also integrable, but the converse statement is no longer true (it holds only in finite-
dimensional spaces X).

5.2 Definition of product integral

Masani turns his attention to the product analogy of the Riemann-Graves integral.
In the sequel we assume that X is a Banach algebra (Masani uses the term normed
ring), i.e. that

1) X is a Banach space,
2) X is an associative algebra with a unit vector 1 ∈ X, ‖1‖ = 1,
3) ‖x · y‖ ≤ ‖x‖‖y‖ for every x, y ∈ X.

The second condition means that for every pair x, y ∈ X the product x · y ∈ X is
defined, that the multiplication is associative and that there exists a vector 1 ∈ X
such that 1 · x = x · 1 = x for every x ∈ X and ‖1‖ = 1; we use the same symbol
1 to denote the unit vector of X as well as the number 1 ∈ R; the meaning should
be always clear from the context.

Let f : [a, b]→ X. To every partition D of [a, b] we assign the product

P (f,D) =
1∏

i=m

(1 + f(ξi)∆ti) = (1 + f(ξm)∆tm) · · · (1 + f(ξ1)∆t1).

Definition 5.2.1. A function f : [a, b]→ X is called product integrable if there is
a vector Pf ∈ X such that for every ε > 0 there exists a partition Dε of [a, b] such
that

‖P (f,D)− Pf‖ < ε
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whenever D ≺ Dε. The vector Pf is called the (left) product integral of f and we
use the notation

∏b
a(1 + f(t) dt) = Pf .

Remark 5.2.2. Masani also defines the right product integral as the limit of the
products

P ∗(f,D) =
m∏

i=1

(1 + f(ξi)∆ti) = (1 + f(ξ1)∆t1) · · · (1 + f(ξm)∆tm),

which are obtained by reversing the order of factors in P (f,D). Masani uses the
symbols

∫ b

a

︷︷
(1 + f(t) dt),

∫ b

a

︸︸
(1 + f(t) dt)

to denote left and right product integrals. As he remarks, it is sufficient to study ei-
ther the left integral or the right integral, respectively. This is because the following
principle of duality holds:

To every Banach algebra X there is a dual algebra X∗ which is identical with X
except the operation of multiplication: We define the product x · y in X∗ as the
vector y · x, where the last multiplication is carried out in X. Every statement C
about Banach algebra X has a corresponding dual statement C∗, which is obtained
by reversing the order of all products in C. Consequently, every occurence of the
term “left product integral” must be replaced by “right product integral” and vice
versa. A dual statement C∗ is true in X∗ if and only if C is true in X. In case C
is true in every Banach algebra, the same can be said of C∗.

Theorem 5.2.3.1 Let f : [a, b] → X be a bounded function. The following
statements are equivalent:

1) f is product integrable and
∏b
a(1 + f(t) dt) = Pf .

2) Every sequence of partitions {Dn}∞n=1 of interval [a, b] such that ν(Dn) → 0
satisfies limn→∞ P (f,Dn) = Pf .
3) limν(D)→0 P (f,D) = Pf .

Proof. The equivalence of statements 2) and 3) is proved in the same way as in
the case of ordinary integral. Assume that 3) holds, i.e. to every ε > 0 there exists
δ > 0 such that ‖P (f,D) − Pf‖ < ε for every partition D of interval [a, b] which
satisfies ν(D) < δ. Let Dε be such a partition. Then for every D ≺ Dε we have
ν(D) ≤ ν(Dε) < δ, and therefore ‖P (f,D) − Pf‖ < ε; thus we have proved the
implication 3) ⇒ 1). Masani gives only a brief indication of the proof of 1) ⇒ 3),
details are left to the reader; boundedness of f is important here.

The following theorem represents a “Cauchy condition” for the existence of product
integral.

Theorem 5.2.4. Let f : [a, b] → X be bounded. The following statements are
equivalent:

1 [Mas], p. 157–159
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1) f is product integrable.
2) To every ε > 0 there is a partition Dε such that ‖P (f,D) − P (f,Dε)‖ < ε
whenever D ≺ Dε.
3) To every ε > 0 there exists δ > 0 such that ‖P (f,D1)−P (f,D2)‖ < ε whenever
D1, D2 are partitions of [a, b] satisfying ν(D1) < δ, ν(D2) < δ.

Proof. The equivalence of statements 1) and 2) is proved in the same way as in the
case of ordinary integral. The statement 3) is clearly equivalent to the statement
3) of the previous theorem.

5.3 Useful inequalities

We now present five inequalities which will be useful later. Masani didn’t prove the
first three; we have however met the first two in Chapter 3 – see the Lemmas 3.1.3
and 3.4.2. Although we have proved them only for matrices, the proofs are valid
even for elements of an arbitrary Banach algebra X.

Lemma 5.3.1.1 Let xk ∈ X for k = 1, . . . ,m. Then
∥∥∥∥∥
m∏

k=1

(1 + xk)

∥∥∥∥∥ ≤ exp

(
m∑

k=1

‖xk‖
)
.

Lemma 5.3.2.2 Let xk, yk ∈ X for k = 1, . . . ,m. Then
∥∥∥∥∥
m∏

k=1

(1 + xk)−
m∏

k=1

(1 + yk)

∥∥∥∥∥ ≤ exp

(
m∑

k=1

‖xk‖
)(

exp
m∑

k=1

‖xk − yk‖ − 1

)
.

Lemma 5.3.3.3 Let xk ∈ X for k = 1, . . . ,m. Then
∥∥∥∥∥
m∏

k=1

(1 + xk)− 1

∥∥∥∥∥ ≤ exp

(
m∑

k=1

‖xk‖
)
− 1.

Proof. Elementary calculation yields

∥∥∥∥∥
m∏

k=1

(1 + xk)− 1

∥∥∥∥∥ =

∥∥∥∥∥∥

m∑

j=1


 ∑

1≤i1<···<ij≤m
xi1 · · ·xij



∥∥∥∥∥∥
≤

≤
m∑

j=1


 ∑

1≤i1<···<ij≤m
‖xi1‖ · · · ‖xij‖


 ≤

m∑

j=1

1
j!




m∑

i1,...,ij=1

‖xi1‖ · · · ‖xij‖


 =

1 [Mas], p. 153
2 [Mas], p. 154
3 [Mas], p. 153
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=
m∑

j=1

1
j!

(‖x1‖+ · · ·+ ‖xm‖)j ≤ exp

(
m∑

k=1

‖xk‖
)
− 1.

Lemma 5.3.4.1 Let xk ∈ X for k = 1, . . . ,m. Then
∥∥∥∥∥
m∏

k=1

(1 + xk)−
(

1 +
m∑

k=1

xk

)∥∥∥∥∥ ≤
(

exp
m∑

k=1

‖xk‖ − 1

)
m∑

k=1

‖xk‖.

Proof. The statement is a simple consequence of the inequality

m∏

k=1

(1 + xk)−
(

1 +
m∑

k=1

xk

)
=

m∑

k=1

xk




m∏

j=k+1

(1 + xj)− 1




and Lemma 5.3.3.

Lemma 5.3.5.2 Let m,n ∈ N, u, v, xj , yk ∈ X, ‖xj‖, ‖yk‖ ≤ 1/2 for every j =
1, . . . ,m and k = 1, . . . , n. Then
∥∥∥∥∥∥

m∏

j=1

(1 + xj) · (u− v) ·
n∏

k=1

(1 + yk)

∥∥∥∥∥∥
≥ exp


−2




m∑

j=1

‖xj‖+
n∑

k=1

‖yk‖




‖u− v‖.

Proof. Define f(t) = e2t − te2t − 1. Then

f ′(t) = e2t(1− 2t) ≥ 0, t ∈ [0, 1/2],

and therefore
e2t − te2t − 1 = f(t) ≥ f(0) = 0, t ∈ [0, 1/2].

We get
1− t ≥ e−2t, t ∈ [0, 1/2].

Now let x,w ∈ X, ‖x‖ ≤ 1/2. Then

‖w‖ ≤ ‖w + x · w‖+ ‖x · w‖ ≤ ‖(1 + x) · w‖+ ‖x‖ · ‖w‖,

which implies

‖(1 + x) · w‖ ≥ ‖w‖(1− ‖x‖) ≥ ‖w‖ exp(−2‖x‖). (5.3.1)

For y ∈ X, ‖y‖ ≤ 1/2 we obtain in a similar way

‖w‖ ≤ ‖w + w · y‖+ ‖w · y‖ ≤ ‖w · (1 + y)‖+ ‖y‖ · ‖w‖,
1 [Mas], p. 153
2 [Mas], p. 152–153
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‖w · (1 + y)‖ ≥ ‖w‖(1− ‖y‖) ≥ ‖w‖ exp(−2‖y‖). (5.3.2)

To complete the proof it is sufficient to use m times the Inequality (5.3.1) and n
times the Inequality (5.3.2).

5.4 Properties of product integral

This section summarizes the basic properties of product integrable functions. We
first prove that every product integrable function is necessarily bounded.

Lemma 5.4.1.1 To every ∆ : [a, b] → (0,∞) there exists a tagged partition
D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti], such that ti − ti−1 ≤ ∆(ξi).

Proof. The system of intervals {(t−∆(t)/2, t+ ∆(t)/2), t ∈ [a, b]} forms an open
covering of [a, b] and the result follows from the Heine–Borel theorem. It is also a
simple consequence of Cousin’s lemma (see [Sch2], p. 55 or [RG], Lemma 9.2).

Theorem 5.4.2.2 Every product integrable function f is bounded and
∥∥∥∥∥
b∏

a

(1 + f(t) dt)

∥∥∥∥∥ ≤ exp

(
(b− a) sup

t∈[a,b]
‖f(t)‖

)
.

Proof. Assume that f is not bounded. Choose N ∈ N and δ > 0. Define

∆(x) =

{
min(δ, (2‖f(x)‖)−1) if ‖f(x)‖ > 0,
δ if f(x) = 0.

According to Lemma 5.4.1 there exists a tagged partition D : a = t0 < t1 < · · · <
tm = b, ξi ∈ [ti−1, ti], such that

ti − ti−1 ≤ ∆(ξi). (5.4.1)

Clearly ν(D) ≤ δ. Since f is not bounded, we can find a sequence of points
{xn}∞n=1 from [a, b] such that xn → x ∈ [a, b] and ‖f(xn)‖ ≥ n. There must be a
point y ∈ {xn}∞n=1, which lies in the same interval [tj−1, tj ] as the point x and such
that

‖f(y)− f(x)‖ ≥ ‖f(y)‖ − ‖f(x)‖ ≥ N ·
(

exp(−m) · min
1≤i≤m

(ti − ti−1)

)−1

.

Let D1 and D2 be tagged partitions that are obtained from D by replacing the tag
ξj by x and y, respectively. Then, according to Lemma 5.3.5 and Inequality (5.4.1),

‖P (f,D1)−P (f,D2)‖ ≥ exp


−2

∑

i6=j
‖f(ξi)‖(ti − ti−1)


‖f(x)−f(y)‖(tj−tj−1) ≥

1 [Mas], p. 162
2 [Mas], p. 163
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≥ exp(−m)‖f(x)− f(y)‖(tj − tj−1) ≥ N.
Since ν(D1) = ν(D2) = ν(D) ≤ δ, the number δ can be arbitrarily small and N
arbitrarily large, we arrive at a contradiction with Theorem 5.2.4. The second part
of the theorem is easily proved using Lemma 5.3.1, which guarantees that

‖P (f,D)‖ ≤ exp

(
m∑

i=1

‖f(ξi)‖(ti − ti−1)

)
≤ exp

(
(b− a) sup

t∈[a,b]
‖f(t)‖

)

for every tagged partition D of [a, b].

Theorem 5.4.3.1 Assume that
∏b
a(1 + f(t) dt) exists. If [c, d] ⊂ [a, b], then∏d

c(1 + f(t) dt) exists as well.

Proof. Denote M = supt∈[a,b] ‖f(t)‖ < ∞. Let D1, D2 be tagged partitions of
[c, d], DA a tagged partition of [a, c] satisfying ν(DA) < 1/(2M) and DB a tagged
partition of [d, b] satisfying ν(DB) < 1/(2M). Letting

D∗1 = DA ∪D1 ∪DB , D∗2 = DA ∪D2 ∪DB ,

we obtain (using Lemma 5.3.5)

‖P (f,D∗1)− P (f,D∗2)‖ = ‖P (f,DB) (P (f,D1)− P (f,D2))P (f,DA)‖ ≥

≥ exp

(
−2

∑

DA∪DB
f(ξi)(ti − ti−1)

)
‖P (f,D1)− P (f,D2)‖ ≥

≥ exp(−2M(b− a))‖P (f,D1)− P (f,D2)‖,
therefore

‖P (f,D1)− P (f,D2)‖ ≤ exp(2M(b− a))‖P (f,D∗1)− P (f,D∗2)‖.

Because f is product integrable, to every ε > 0 there is a tagged partition D∗ε of
interval [a, b] such that

‖P (f,D∗)− P (f,D∗ε)‖ < ε

exp(2M(b− a))

whenever D∗ ≺ D∗ε . Without loss of generality assume that D∗ε = DA ∪Dε ∪DB ,
where DA is a partition of [a, c] satisfying ν(DA) < 1/(2M), Dε is a partition of
[c, d] and DB is a partition of [d, b] satisfying ν(DB) < 1/(2M). If D ≺ Dε, we
construct the partition D∗ = DA ∪D ∪DB . Then

‖P (f,D)− P (f,Dε)‖ ≤ exp(2M(b− a))‖P (f,D∗)− P (f,D∗ε)‖ < ε.

1 [Mas], p. 163–165
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Theorem 5.4.4.1 If a < b < c and the integrals
∏b
a(1+f(t) dt) and

∏c
b(1+f(t) dt)

exist, then the integral
∏c
a(1 + f(t) dt) exists as well and

c∏

a

(1 + f(t) dt) =
c∏

b

(1 + f(t) dt) ·
b∏

a

(1 + f(t) dt).

Proof. Masani’s proof is somewhat incomplete; we present a modified version.
The assumptions imply the existence of a tagged partition D1

ε of [a, b] and a tagged
partition D2

ε of [b, c] such that

∥∥∥∥∥P (f,D1)−
b∏

a

(1 + f(t) dt)

∥∥∥∥∥ < ε,

∥∥∥∥∥P (f,D2)−
c∏

b

(1 + f(t) dt)

∥∥∥∥∥ < ε

whenever D1 ≺ D1
ε and D2 ≺ D2

ε . Let Dε = D1
ε ∪D2

ε . Then every tagged partition
D ≺ Dε can be written as D = D1 ∪D2, where D1 ≺ D1

ε and D2 ≺ D2
ε . We have

P (f,D) = P (f,D2) · P (f,D1) and

∥∥∥∥∥P (f,D)−
c∏

b

(1 + f(t) dt) ·
b∏

a

(1 + f(t) dt)

∥∥∥∥∥ ≤

≤
∥∥∥∥∥P (f,D2)

(
P (f,D1)−

b∏

a

(1 + f(t) dt)

)∥∥∥∥∥+

+

∥∥∥∥∥

(
P (f,D2)−

c∏

b

(1 + f(t) dt)

)
b∏

a

(1 + f(t) dt)

∥∥∥∥∥ ≤

≤
(∥∥∥∥∥

c∏

b

(1 + f(t) dt)

∥∥∥∥∥+ ε

)
ε+ ε

∥∥∥∥∥
b∏

a

(1 + f(t) dt)

∥∥∥∥∥ ,

which completes the proof.

Statements similar to Theorem 5.4.4 have already appeared in the work of Volterra
and Schlesinger. Their versions are however less general: They assume that f is
Riemann integrable on [a, c], which implies the existence of product integral on
[a, c] and the rest of the proof is trivial. Masani on the other hand proves that the
existence of product integral on [a, b] and on [b, c] implies the existence of product
integral on [a, c]. The same remark also applies to Theorem 5.4.3. In the following
section we prove that the product integral exists if and only if the function is

1 [Mas], p. 165
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(Riemann-Graves) integrable; the proof of this fact is nevertheless based on the use
of Theorem 5.4.3.

Lemma 5.4.5. Every x ∈ X such that ‖x− 1‖ < 1 has an inverse element and

x−1 =
∞∑

n=0

(1− x)n.

Proof. The condition ‖x − 1‖ < 1 implies that the infinite series given above is
absolutely convergent; let x−1 be defined as the sum of that series. If

sk =
k∑

n=0

(1− x)n,

then sk+1 = 1 + (1− x) · sk = 1 + sk · (1− x).
Passing to the limit k →∞ we obtain

x−1 = 1 + (1− x) · x−1 = 1 + x−1 · (1− x),

i.e. x−1 · x = x · x−1 = 1.

Theorem 5.4.6.1 If f : [a, b] → X is a product integrable function, then
∏b
a(1 +

f(t) dt) is an invertible element of the Banach algebra X.

Proof. Denote M = supt∈[a,b] ‖f(t)‖ < ∞. Choose δ > 0 such that exp(Mδ) < 2
and a partition D : a = t0 < t1 < · · · < tm = b such that ν(D) ≤ δ. Then

b∏

a

(1 + f(t) dt) =
1∏

i=m

ti∏

ti−1

(1 + f(t) dt) (5.4.2)

Lemma 5.3.3 implies that for every i = 1, . . . ,m

∥∥∥∥∥∥

ti∏

ti−1

(1 + f(t) dt)− 1

∥∥∥∥∥∥
≤ exp(M(ti − ti−1))− 1 < 1,

i.e.
∏ti
ti−1

(1 + f(t) dt) is (according to Lemma 5.4.5) an invertible element of the
algebra X. As a consequence of (5.4.2) we obtain

(
b∏

a

(1 + f(t) dt)

)−1

=
m∏

i=1




ti∏

ti−1

(1 + f(t) dt)



−1

.

1 [Mas], p. 165–166
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5.5 Integrable and product integrable functions

Masani now proceeds to prove an important theorem which states that the classes
of integrable and product integrable functions coincide. The fact that the existence
of Riemann integral implies the existence of product integral was already known to
Volterra; the reverse implication appears for the first time in Masani’s paper.

Lemma 5.5.1. Let f : [a, b] → X be a bounded function. For every ε > 0 there
exists δ > 0 such that if [c, d] ⊆ [a, b], d− c < δ and D is a tagged partition of [c, d],
then

‖P (f,D)− (1 + S(f,D))‖ ≤ ε(d− c).

Proof. Denote M = supt∈[a,b] ‖f(t)‖. Choose δ > 0 such that

(exp(Mδ)− 1) < ε/M.

Then according to Lemma 5.3.4

‖P (f,D)− (1 + S(f,D))‖ ≤ (exp(M(d− c))− 1)M(d− c) ≤ ε(d− c).

Definition 5.5.2. Let Y ⊆ X. The diameter of the set Y is the number

diam Y = sup{‖y1 − y2‖; y1, y2 ∈ Y }.

The convex closure of Y is the set

conv Y =

{
k∑

i=1

αiyi; k ∈ N, yi ∈ Y, αi ≥ 0,
k∑

i=1

αi = 1

}
.

Theorem 5.5.3.1 If Y ⊆ X, then

diam conv Y = diam Y.

Proof. The proof is not difficult, although it’s not included in Masani’s paper.
Since Y ⊆ conv Y , it is sufficient to prove that

diam conv Y ≤ diam Y.

Let y1, y2 ∈ conv Y ,

y1 =
l∑

i=1

αiy
1
i , y2 =

m∑

j=1

βjy
2
j ,

1 [Mas], p. 159
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where y1
i , y

2
j ∈ Y , i = 1, . . . , l, j = 1, . . . ,m,

l∑

i=1

αi =
m∑

j=1

βj = 1.

Then

‖y1−y2‖ =

∥∥∥∥∥∥

m∑

j=1

βj

(
l∑

i=1

αiy
1
i

)
−

l∑

i=1

αi




m∑

j=1

βjy
2
j



∥∥∥∥∥∥

=

∥∥∥∥∥∥

l∑

i=1

m∑

j=1

αiβj(y
1
i − y2

j )

∥∥∥∥∥∥
≤

≤
l∑

i=1

m∑

j=1

αiβj‖y1
i − y2

j ‖ ≤
l∑

i=1

m∑

j=1

αiβj diam Y = diam Y.

Lemma 5.5.4.1 Let f : [a, b] → X be a product integrable function. Then for
every ε > 0 there is a partition D : a = t0 < t1 < · · · < tm−1 < tm = b such that

∥∥∥∥∥
1∏

i=m

(1 + f(ξi)∆ti)−
1∏

k=m

(1 + f(ηi)∆ti)

∥∥∥∥∥ < ε

for every choice of ξi, ηi ∈ [ti−1, ti], i = 1, . . . ,m.

Proof. Follows from Theorem 5.2.4.

Remark 5.5.5. Masani notes that the reverse implication is not valid; his coun-
terexample is

f(x) =





0 if x = 0,
1/x if x ∈ (0, 1/2),
−2 if x ∈ [1/2, 1].

Taking the partition t0 = 0 < t1 = 1/2 < t2 = 1 we obtain

1∏

i=2

(1 + f(ξi)∆ti) = 0

for every choice of ξi ∈ [ti−1, ti], but f is not product integrable (because it is not
bounded).

Lemma 5.5.6.2 Consider function f : [a, b] → X. Assume that for every ε > 0
there is a partition Dε : a = t0 < t1 < · · · < tn−1 < tn = b such that

∥∥∥∥∥
n∑

i=1

f(ξi)∆ti −
n∑

i=1

f(ηi)∆ti

∥∥∥∥∥ < ε

1 [Mas], p. 160–161
2 [Mas], p. 159–160

123



for every choice of ξi, ηi ∈ [ti−1, ti]. Then f is an integrable function.

Proof. If we introduce the notation

n∑

i=1

f([ti−1, ti])∆ti =

{
n∑

i=1

f(ξi)∆ti; ξi ∈ [ti−1, ti]

}
,

then the assumption of the lemma might be written as

diam

(
n∑

i=1

f([ti−1, ti])∆ti

)
< ε.

To prove that f is integrable it is sufficient to verify that for every partition D ≺ Dε

which consists of division points

ti−1 = ti0 < ti1 < · · · < tim(i) = ti, i = 1, . . . , n

and for every choice of ξij ∈ [tij−1, t
i
j ], ηi ∈ [ti−1, ti] we have

‖P (f,D)− P (f,Dε)‖ =

∥∥∥∥∥∥

n∑

i=1

m(i)∑

j=1

f(ξij)∆t
i
j −

n∑

i=1

f(ηi)∆ti

∥∥∥∥∥∥
< ε.

But

n∑

i=1

m(i)∑

j=1

f(ξij)∆t
i
j =

n∑

i=1

m(i)∑

j=1

∆tij
∆ti

f(ξij)∆ti ∈ conv

(
n∑

i=1

f([ti−1, ti])∆ti

)
,

and the proof is completed by using Theorem 5.5.3.

Theorem 5.5.7.1 Every product integrable function f : [a, b]→ X is integrable.

Proof. We verify that the assumption of Theorem 5.5.6 is fulfilled. According to
Lemma 5.5.1 it is possible to choose numbers a = s0 < s1 < · · · < sn−1 < sn = b
in such a way that

‖P (f,Dk)− (1 + S(f,Dk))‖ ≤ ε

3
(sk − sk−1)

(b− a)

for every tagged partition Dk of interval [sk−1, sk]. Since f is product integrable
on [sk−1, sk], there exists (according to Lemma 5.5.4) a partition

sk−1 = tk0 < tk1 < · · · < tkm(k) = sk

such that
∥∥∥∥∥∥

1∏

i=m(k)

(1 + f(ξki )∆tki )−
1∏

i=m(k)

(1 + f(ηki )∆tki )

∥∥∥∥∥∥
<
ε

3
(sk − sk−1)

(b− a)

1 [Mas], p. 167–169
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for every choice of ξki , η
k
i ∈ [tki−1, t

k
i ]. For such ξki , η

k
i we have

∥∥∥∥∥∥

m(k)∑

i=1

f(ξki )∆tki −
m(k)∑

k=1

f(ηki )∆tki

∥∥∥∥∥∥
≤

∥∥∥∥∥∥


1 +

m(k)∑

i=1

f(ξki )∆tki


−

1∏

i=m(k)

(1 + f(ξki )∆tki )

∥∥∥∥∥∥
+

+

∥∥∥∥∥∥

1∏

i=m(k)

(1 + f(ξki )∆tki )−
1∏

i=m(k)

(1 + f(ηki )∆tki )

∥∥∥∥∥∥
+

+

∥∥∥∥∥∥

1∏

i=m(k)

(1 + f(ηki )∆tki )−


1 +

m(k)∑

k=1

f(ηki )∆tki



∥∥∥∥∥∥
<
ε(sk − sk−1)

(b− a)
.

Adding these inequalities for k = 1, . . . , n and using the triangle inequality leads to
∥∥∥∥∥∥

n∑

k=1

m(k)∑

i=1

f(ξki )∆tki −
n∑

k=1

m(k)∑

k=1

f(ηki )∆tki

∥∥∥∥∥∥
< ε.

This means that the partition D can be chosen as

a = t10 < t11 < · · · < t1m(1) = t20 < · · · < tn−1
m(n−1) = tn0 < tn1 < · · · < tnm(n) = b.

We now follow Masani’s proof of the reverse implication which says that every
integrable function is also product integrable and that the product integral might
be expressed using the Peano series. As we know, the history of the theorem can
be traced back to Volterra (in the case X = Rn×n). Masani was probably the first
one to give a rigorous proof.

We will be working with tagged partitions D : a = t0 < t1 < · · · < tm(D) = b,
ξi ∈ [ti−1, ti]. For every n ≤ m(D) we define

Tn(f,D) =
∑

m(D)≥i1>i2>···>in≥1

f(ξi1) · · · f(ξin)∆t1 · · ·∆tn

and
T (f,D) = T1(f,D) + · · ·+ Tm(D)(f,D).

We state the following lemma without proof; see Remark 2.4.4 for the proof in the
finite-dimensional case (the difficulty in the general case is hidden in the fact that
the product of two integrable functions need not be integrable).

Lemma 5.5.8.1 Let f : [a, b] → X be an integrable function, n ∈ N. Then the
limit Tn(f) = limν(D)→0 Tn(f,D) exists and

Tn(f) =
∫ b

a

∫ t1

a

· · ·
∫ tn−1

a

f(t1) · · · f(tn) dtn · · · dt1.

1 [Mas], p. 174–176
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Masani refers to the following lemma as to the extension of Tannery’s theorem.

Lemma 5.5.9.1 Consider function f : [a, b] → X and assume that the following
conditions are satisfied:

1) There exists Tn(f) = limν(D)→0 Tn(f,D) for every n ∈ N.
2) Mn = supD ‖Tn(f,D)‖ <∞ for every n ∈ N, where the supremum is taken over
all partitions D of interval [a, b] which consist of at least n division points.
3) The series

∑∞
n=1Mn is convergent.

Then

T (f) = lim
ν(D)→0

T (f,D) =
∞∑

n=1

Tn(f).

Proof. The series T (f) =
∑∞
n=1 Tn(f) is convergent, because ‖Tn(f)‖ ≤ Mn for

every n ∈ N. We will prove that T (f) = limν(D)→0 T (f,D). Choose ε > 0. There
exists a number n(ε) ∈ N such that

∞∑

k=n(ε)+1

Mk < ε/3.

According to the first assumption, there exists a δ > 0 such that

‖Tk(f,D)− Tk(f)‖ < ε

3n(ε)
, k = 1, . . . , n(ε),

for every tagged partition D of [a, b] that satisfies ν(D) < δ. Without loss of
generality we assume that δ is so small that D consists of at least n(ε) division
points, i.e. T1(f,D), . . ., Tn(ε)(f,D) are well-defined. Now for every tagged partition
D that satisfies ν(D) < δ we estimate

‖T (f,D)− T (f)‖ =

∥∥∥∥∥∥

m(D)∑

k=1

Tk(f,D)−
∞∑

k=1

Tk(f)

∥∥∥∥∥∥
≤
n(ε)∑

k=1

‖Tk(f,D)− Tk(f)‖+

+
m(D)∑

k=n(ε)+1

‖Tk(f,D)‖+
∞∑

k=n(ε)+1

‖Tk(f)‖ < n(ε)
ε

3n(ε)
+ 2

∞∑

k=n(ε)+1

Mk < ε.

Theorem 5.5.10.2 Let f : [a, b] → X be an integrable function. Then f is also
product integrable and

b∏

a

(1 + f(t) dt) = 1 +
∞∑

n=1

Tn(f).

1 [Mas], p. 189–191
2 [Mas], p. 176–177
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Proof. Denote M = supt∈[a,b] ‖f(t)‖ <∞. For every partition D of interval [a, b]
we have

P (f,D) = 1 + T (f,D),

b∏

a

(1 + f(t) dt) = 1 + lim
ν(D)→0

T (f,D),

‖Tn(f,D)‖ ≤ (b− a)nMn

n!
,

∞∑

n=1

(b− a)nMn

n!
= exp(M(b− a))− 1 <∞.

The statement of the theorem is therefore a consequence of the preceding two
lemmas.

We have proved that a function is product integrable if and only if it is integrable.
Thus, in the rest of this chapter we use the terms “integrable” and “product inte-
grable” as synonyms.

Theorem 5.5.11.1 Let f : [a, b] → X be an integrable function. Suppose that
f(x) · f(y) = f(y) · f(x) for each pair x, y ∈ X. Then

b∏

a

(1 + f(t) dt) = exp

(∫ b

a

f(t) dt

)
.

Proof. A simple consequence of Theorem 5.5.10 and the equality

∫ b

a

∫ t1

a

· · ·
∫ tn−1

a

f(t1) · · · f(tn) dtn · · · dt1 =
1
n!

(∫ b

a

f(t) dt

)n

(see Lemma 2.4.2).

5.6 Additional properties of product integral

This section is devoted to Masani’s versions of the fundamental theorem of calculus,
the uniform convergence theorem, and the change of variables theorem.

Theorem 5.6.1.2 Let f : [a, b]→ X be an integrable function. Denote

Y (x) =
x∏

a

(1 + f(t) dt), x ∈ [a, b].

1 [Mas], p. 179
2 [Mas], p. 178
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Then

Y (x) = 1 +
∫ x

a

f(t)Y (t) dt, x ∈ [a, b]. (5.6.1)

Proof. Using Theorem 5.5.10 we obtain

Y (t) = 1 +
∫ t

a

f(t1) dt1 +
∫ t

a

∫ t1

a

f(t1)f(t2) dt2 dt1 + · · · . (5.6.2)

Since ∥∥∥∥
∫ t

a

∫ t1

a

· · ·
∫ tn−1

a

f(t1) · · · f(tn) dtn · · · dt1

∥∥∥∥ ≤
(b− a)nMn

n!
,

the series (5.6.2) is uniformly convergent. Because f is bounded, the series

f(t)Y (t) = f(t) +
∫ t

a

f(t)f(t1) dt1 +
∫ x

a

∫ t1

a

f(t)f(t1)f(t2) dt2 dt1 + · · ·

is also uniformly convergent and might be integrated term by term on [a, x]; per-
forming this step leads to Equation (5.6.1).

Corollary 5.6.2.1 If f : [a, b]→ X is a continuous function, then

Y ′(x)Y (x)−1 = f(x)

for every x ∈ [a, b].

The previous corollary represents an analogy of the formula

d
dx

∫ x

a

f(t) dt = f(x)

(see Theorem 5.1.7). Also the Newton-Leibniz formula

∫ b

a

f ′(x) dt = f(b)− f(a)

(see Theorem 5.1.8) has the following product analogy (whose proof we omit).

Theorem 5.6.3.2 Assume that Z : [a, b] → X satisfies Z ′(x)Z(x)−1 = f(x) for
every x ∈ [a, b]. Then

b∏

a

(1 + f(t) dt) = Z(b)Z(a)−1

provided the function f is integrable.

1 [Mas], p. 181
2 [Mas], p. 182
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The next theorem establishes a criterion for interchanging the order of limit and
product integral, i.e. for the formula

lim
n→∞

b∏

a

(1 + fn(t) dt) =
b∏

a

(1 + lim
n→∞

fn(t) dt).

We have already encountered such a criterion in Chapter 3 when discussing the
Lebesgue product integral; Schlesinger’s statement represented in fact a product
analogy of the Lebesgue dominated convergence theorem. Masani’s theorem con-
cerns the Riemann product integral and requires uniform convergence to perform
the interchange of limit and integral.

Theorem 5.6.4.1 Let {fn}∞n=1 be a sequence of integrable functions which con-
verge uniformly to function f on interval [a, b]. Then

b∏

a

(1 + f(t) dt) = lim
n→∞

b∏

a

(1 + fn(t) dt).

Proof. The existence of
∏b
a(1+f(t) dt) follows from the fact that the limit of a uni-

formly convergent sequence of integrable functions is again an integrable function.
For an arbitrary tagged partition D we can use Lemma 5.3.2 to estimate

‖P (f,D)− P (fn, D)‖ ≤ exp(M(b− a)) ·
(

exp

(∑

i

‖f(ξi)− fn(ξi)‖∆ti
)
− 1

)
,

where M = supt∈[a,b] ‖f(t)‖. Choose ε > 0 and find a corresponding ε0 > 0 such
that

exp(M(b− a)) · (exp(ε0(b− a))− 1) < ε/3.

Let n0 ∈ N be such that ‖f(t) − fn(t)‖ < ε0 for every t ∈ [a, b] and n ≥ n0. The
partition D can be chosen so that the inequalities

∥∥∥∥∥P (f,D)−
b∏

a

(1 + f(t) dt)

∥∥∥∥∥ < ε/3,

∥∥∥∥∥P (fn, D)−
b∏

a

(1 + fn(t) dt)

∥∥∥∥∥ < ε/3

hold. Then for every n ≥ n0 we have

∥∥∥∥∥
b∏

a

(1 + fn(t) dt)−
b∏

a

(1 + f(t) dt)

∥∥∥∥∥ ≤
∥∥∥∥∥
b∏

a

(1 + f(t) dt)− P (f,D)

∥∥∥∥∥+

+

∥∥∥∥∥P (f,D)− P (fn, D)

∥∥∥∥∥+

∥∥∥∥∥P (fn, D)−
b∏

a

(1 + fn(t) dt)

∥∥∥∥∥ < ε.

1 [Mas], p. 171
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Masani also proved a generalized version of the change of variables theorem for the
product integral (compare to Theorem 2.5.10); we state it without proof.

Theorem 5.6.5.1 Let f : [a, b] → X be an integrable function, ϕ : [α, β] → [a, b]
increasing, ϕ(α) = a, ϕ(β) = b. If ϕ′ exists and is integrable on [a, b], then

b∏

a

(1 + f(t) dt) =
β∏

α

(1 + f(ϕ(u))ϕ′(u) du).

1 [Mas], p. 187–188

130


		webmaster@dml.cz
	2016-06-28T14:39:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




