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Chapter 7

Complements

This final chapter contains additional remarks on product integration theory. The
topics discussed here complement the previous chapters; however, most proofs are
omitted and the text is intended only to arouse reader’s interest (references to other
works are included).

7.1 Variation of constants
Product integral enables us to express solution of the differential equation

y′(x) = A(x)y(x), x ∈ [a, b],

where A : [a, b]→ Rn×n, y : [a, b]→ Rn. The fundamental matrix of this system is

Z(x) =
x∏

a

(I +A(t) dt) =



z1

1(x) · · · z1
n(x)

...
. . .

...
zn1 (x) · · · znn(x)




and its columns

zi(x) =



z1
i (x)
...

zni (x)


 , i = 1, . . . , n (7.1.1)

thus provide a fundamental system of solutions.

We now focus our attention to the inhomogeneous equation

y′(x) = A(x)y(x) + f(x), x ∈ [a, b],

y(a) = y0.
(7.1.2)

A method for solving this system using product integral (based on the well-known
method of variation of constants) was first proposed by G. Rasch in the paper [GR];
it can be also found in the monograph [DF].

We assume that the functions A : [a, b]→ Rn×n and f : [a, b]→ Rn are continuous,
and we try to find the solution of (7.1.2) in the form

y(x) =
n∑

i=1

zi(x)ci(x), (7.1.3)

where ci : [a, b]→ R, i = 1, . . . , n are certain unknown functions. If we denote

c(x) =



c1(x)

...
cn(x)


 ,
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then the equations (7.1.1) and (7.1.3) imply

y(x) = Z(x)c(x).

We obtain

y′(x) = Z ′(x)c(x)+Z(x)c′(x) = A(x)Z(x)c(x)+Z(x)c′(x) = A(x)y(x)+Z(x)c′(x),

and using Equation (7.1.2)
f(x) = Z(x)c′(x).

Consequently
c′(x) = Z(x)−1f(x),

c(a) = Z(a)−1y(a) = y0,

which implies

c(x) = y0 +
∫ x

a

Z(t)−1f(t) dt.

The solution of the system (7.1.2) is thus given by the explicit formula

y(x) = Z(x)c(x) = Z(x)y0 + Z(x)
∫ x

a

Z(t)−1f(t) dt =

=
x∏

a

(I +A(t) dt)y0 +
x∏

a

(I +A(t) dt)
∫ x

a

(
a∏

t

(I +A(s) ds)f(t)

)
dt =

=
x∏

a

(I +A(t) dt)y0 +
∫ x

a

(
x∏

t

(I +A(s) ds)f(t)

)
dt.

We summarize the result: The solution of the inhomogeneous system (7.1.2) has
the form

y(x) =
n∑

i=1

zi(x)ci(x),

where z1, . . . , zn : [a, b] → Rn is the fundamental system of solutions of the cor-
responding homogeneous equation, the functions ci : [a, b] → R, i = 1, . . . , n are
continuously differentiable and satisfy

n∑

i=1

c′i(x)zi(x) = f(x), x ∈ [a, b].

7.2 Equivalent definitions of product integral

Consider a tagged partition D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti],
i = 1, . . . ,m. Ludwig Schlesinger proved (see Theorem 3.2.2) that the product
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integral of a Riemann integrable function A : [a, b] → Rn×n can be calculated not
only as

b∏

a

(I +A(t) dt) = lim
ν(D)→0

(
1∏

k=m

(I +A(ξk)∆tk)

)
,

but also as
b∏

a

(I +A(t) dt) = lim
ν(D)→0

(
1∏

k=m

eA(ξk)∆tk

)
.

The equivalence of these definitions can be intuitively explained using the fact that

eA(ξk)∆tk = 1 +A(ξk)∆tk +O((∆tk)2),

and the terms of order (∆tk)2 and higher do not change the value of the integral. We
have also encountered a similar theorem applicable to the Kurzweil and McShane
integrals (see Theorem 6.2.4).
We now proceed to a more general theorem concerning equivalent definitions of
product integral, which was given in [DF].

Definition 7.2.1. A function

f(z) =
∞∑

k=0

ckz
k (7.2.1)

is called admissible, if the series (7.2.1) has a positive radius of convergence r > 0
and

f(0) = c0 = 1, f ′(0) = c1 = 1.

For example, the functions z 7→ exp z, z 7→ 1 + z and z 7→ (1− z)−1 are admissible.
For every matrix A ∈ Rn×n such that ‖A‖ < r we put

f(A) =
∞∑

k=0

ckA
k.

Theorem 7.2.2.1 If f is an admissible function and A : [a, b]→ Rn×n a continuous
matrix function, then

b∏

a

(I +A(t) dt) = lim
ν(D)→0

(
1∏

k=m

f(A(ξk)∆tk)

)
.

According to the previous theorem, the product integral of a function A can be
defined as the limit

lim
ν(D)→0

(
1∏

k=m

f(A(ξk)∆tk)

)
,

1 [DF], p. 50–53
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where f is an admissible function. Product integral defined in this way is usually
denoted by the symbol

∏b
a f(A(t) dt), e.g.

b∏

a

(I +A(t) dt),
b∏

a

eA(t) dt,

b∏

a

(I −A(t) dt)−1

etc. The integral
∏b
a e

A(t) dt is taken as a primary definition in the monograph
[DF]. We note that it is possible to prove an analogy of Theorem 7.2.2 even for the
Kurzweil and McShane product integrals (see [JK, Sch1]).

7.3 Riemann-Stieltjes product integral

Consider two functions f, g : [a, b] → R. Then the ordinary Riemann-Stieltjes
integral is defined as the limit

∫ b

a

f(x) dg(x) = lim
ν(D)→0

m∑

i=1

f(ξi)(g(ti)− g(ti−1)), (7.3.1)

where D : a = t0 < t1 < · · · < tm = b is a tagged partition of [a, b] with tags
ξi ∈ [ti−1, ti], i = 1, . . . ,m (provided the limit exists). This integral was introduced
in 1894 by Thomas Jan Stieltjes (see [Kl], Chapters 44 and 47), who was working
with continuous functions f and non-decreasing functions g. Later in 1909 Friedrich
Riesz discovered that the Stieltjes integral can be used to represent continuous linear
functionals on the space C([a, b]). Also, if g(x) = x, we obtain the ordinary Riemann
integral.

Assume that the function g is of bounded variation, i.e. that

sup

{
m∑

i=1

|g(ti)− g(ti−1)|
}
<∞,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tm = b of
interval [a, b]. Then (see e.g. [RG]) the Riemann-Stieltjes integral exists for every
continuous function f .
In particular, if f is continuous and g is a step function defined as

g = g1χ[t0,t1) + g2χ[t1,t2) + · · ·+ gm−1χ[tm−2,tm−1) + gmχ[tm−1,tm],

where a = t0 < t1 < · · · < tm = b, g1, . . . , gm ∈ R and χM denotes the characteris-
tic function of a set M , then

∫ b

a

f(x) dg(x) = f(t1)(g2 − g1) + · · ·+ f(tm−1)(gm − gm−1).
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Now consider a matrix function A : [a, b] → Rn×n. The product analogy of
Riemann-Stieltjes integral can be defined as

b∏

a

(I + dA(t)) = lim
ν(D)→0

1∏

i=m

(I +A(ti)−A(ti−1)) (7.3.2)

(see e.g. [Sch3, GJ, Gil, DN]), or even more generally as

b∏

a

(I + f(t)dA(t)) = lim
ν(D)→0

1∏

i=m

(I + f(ξi)(A(ti)−A(ti−1))),

where f : [a, b] → R (see the entry “Product integral” in [EM]). We now present
some basic statements concerning the Riemann-Stieltjes product integral (7.3.2).

Product integrals of the type (7.3.2) are encountered in survival analysis (when
working with the cumulative hazard A(t) =

∫ t
0 a(s) ds instead of the hazard rate

a(t); see Example 1.4.1) and in the theory of Markov processes (when working with
cumulative intensities Aij(t) =

∫ t
0 aij(s) ds for i 6= j and Aii(t) = −∑j 6=iAij(t)

instead of the transition rates aij(t); see Example 1.4.2).

A sufficient condition for the existence of the limit (7.3.2) is again that the variation
of A is finite. A different sufficient condition (see [DN]) says that the product
integral exists provided A is continuous and its p-variation is finite for some p ∈
(0, 2), i.e.

sup

{
m∑

i=1

‖A(ti)−A(ti−1)‖p
}
<∞,

where the supremum is again taken over all partitions a = t0 < t1 < · · · < tm = b
of interval [a, b].

If A : [a, b]→ Rn×n is a step function defined as

A = A1χ[t0,t1) +A2χ[t1,t2) + · · ·+Am−1χ[tm−2,tm−1) +Amχ[tm−1,tm],

where a = t0 < t1 < · · · < tm = b and A1, . . . , Am ∈ Rn×n, then

b∏

a

(I + dA(t)) = (I +Am −Am−1) · · · (I +A2 −A1). (7.3.3)

Thus, if Ak−1 −Ak = I for some k = 2, . . . ,m, then

b∏

a

(I + dA(t)) = 0,

i.e. the product integral need not be a regular matrix. Equation (7.3.3) also suggests
that the indefinite product integral

Y (x) =
x∏

a

(I + dA(t)), x ∈ [a, b],
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need not be a continuous function.

If A : [a, b]→ Rn×n is a continuously differentiable function, it can be proved that

b∏

a

(I + dA(t)) =
b∏

a

(I +A′(t) dt).

As we have seen in the previous chapters, the Riemann product integral provides
a solution of the differential equation

y′(x) = A(x)y(x),

y(a) = y0,

or the equivalent integral equation

y(x)− y0 =
∫ x

a

A(t)y(t) dt.

Similarly, the Riemann-Stieltjes product integral can be used as a tool for solving
the generalized differential equation

dy(x) = dA(x)y(x),

y(a) = y0,

or the equivalent integral equation

y(x)− y0 =
∫ x

a

dA(t)y(t).

The details are given in the paper [Sch3].

There exists a definition of product integral (see [JK, Sch1, Sch3]) that generalizes
both the Riemann and Riemann-Stieltjes product integrals: Consider a mapping V
that assigns a square matrix of order n to every point-interval pair (ξ, [x, y]), where
[x, y] ⊆ [a, b] and ξ ∈ [x, y]. We define

b∏

a

V (t, dt) = lim
ν(D)→0

1∏

i=m

V (ξi, [ti−1, ti]),

provided the limit exists. The choice

V (ξ, [x, y]) = I +A(ξ)(y − x)

leads to the Riemann product integral, whereas

V (ξ, [x, y]) = I +A(y)−A(x)

gives the Riemann-Stieltjes product integral.

We note that it is also possible to define the Kurzweil-Stieltjes and McShane-
Stieltjes product integrals (see [Sch3]), whose definitions are based on the notion
of ∆-fine M -partitions and K-partitions (see Chapter 6); these integrals generalize
the notion of Riemann-Stieltjes product integral.
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