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TWO ABEL’S THEOREMS

Witold Wiȩs law

1 Motivations. Abel’s anniversary

The bicentenary anniversary of the birth of Niels Henrik Abel (1802–
1829) was over in the foregoing year 2002. To celebrate it, I would like to
recall two important Abel’s theorems. Since the literature on the subject
is rather available, I am going to give here only a sketch of fundamental
research concerning these theorems.
Abel’s life is described in details in [22].

2 The First Theorem. Algebraic equations

Abel claims in the paper [2] that:

Bekanntlich kann man algebraische Gleichung bis zum vierten Grade all-
gemein aufzulösen, Gleichungen von höhern Graden aber nur in einzel-
nen Fällen, und irre ich nicht, so ist die Frage:
Ist es möglich Gleichung von höhern Graden als dem vierten Grade all-
gemein aufzulösen ?
noch nicht befriedigend beantwortet worden. Der gegenwärtige Aufsatz
hat diese Frage zum Gegenstande.

He was not right. Paolo Ruffini [20] gave rather satisfactory proof
using, in fact, combinatorial methods (cf. also [4], [5], [10], [17], [18]).
Ruffini presented later five modified versions of the proof. His book
[20] was written too early, in the sense, that in the last years of XVIII
century it was still believed that algebraic equations of any degree can
be, perhaps in very complicated ways, solved algebraically or, as we say
now, by radicals. Leonhard Euler, Joseph-Louis Lagrange and others
had many results dealing with algebraic equations, but without a definite
result. For example Euler found the form of roots of an equation of
degree five in the case when the equation is solvable by radicals and
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gave numerous examples, e. g.
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is the root of equation x5 − 2 625x − 61 500 = 0. However, Euler was
neither able to determine the problem nor to find conditions for the
solvability in such cases. Moreover, his activities in many other fields of
science fulfiled the rest of his days.
Let Sn be the symmetric group of n elements and Q [x1, x2, . . . , xn]

the ring of polynomials in n variables with rational coefficients. The
main idea of Ruffini’s proof lies in the fact, that there exists no poly-
nomial W ∈ Q [x1, x2, . . . , xn] (n > 4) taking three or four values when
permuting its variables, i.e. such that the cardinality of the set

{
W

(
xg(1), . . . , xg(n)

)
: g ∈ Sn

}
(1)

is three or four. Abel proved that if the set (1) has less than five elements,
its cardinality can be neither three nor four. Next he assumes that an
equation of degree five is solvable algebraically and finds a general form
of any element of degree five over the field Q (x1, . . . , x5) of rational
functions of five variables (I use our contemporary terminology). Finally
he applies his theory to the equation x5 − R = 0, concluding that its
root must have the form

s1
5
√

R = x1 + α4x2 + α3x3 + α2x4 + αx5 (2)

where s1 is a given element (for details consult [2]) and α is a fifth root
of unity (i.e. α5 = 1). Now permuting variables one can easily see that
the left side of (2) can take only five values (the roots of the binomial
equation x5 −R = 0) and the left side of (2) can take 120 values.
Now it is well-known that both proofs given by Ruffini and by Abel

have gaps, which, however, can be removed. A detailed analysis of
Abel’s proof was given by Hamilton [14] in the year 1839. The state and
methods used in the theory of algebraic equations in XIX century were
described in the papers [9] and [10]. Results of Ruffini and Abel can be
stated as
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The First Theorem (Ruffini [20], Abel [2])
A general algebraic equation of degree five cannot be solved alge-

braically [i. e. by radicals].

In the next paper on the subject [3] Abel found sufficient conditions
for solvability of equations by radicals. He was motivated by Gauss
equation ([12], Sectio Septima, DE AEQVATIONIBVS CIRCVLI SEC-
TIONES DEFINIENTIBVS) for the roots of unity of degree p (p being
prime), i. e. by the equation Xp − 1 = 0. The main result of [3] can be
formulated as follows.
Let x be a root of an irreducible algebraic equation f(X) = 0 such

that:

(i) every root of the equation has a form g(x), g being a rational
function of one variable,

(ii) gh(x) = hg(x) holds for every pair of roots g(x) and h(x) of the
equation f(X) = 0. Then the equation f(X) = 0 is solvable by
radicals.

For these reasons groups satisfying (ii) are called now Abelian, or
commutative. Note here that the notion of commutativity was intro-
duced for the first time by Servois ([21], page 101).
Abel formulated and proved in fact ten theorems in [2].

3 Elliptic functions as a method for solving al-
gebraic equations

Charles Hermite [15] solved an arbitrary equation of five degree by ap-
plying elliptic functions. Every equation of degree five can be reduced
to the form x5 − x − a = 0 using Georg Birch Jerrard method (1835).
Cockle and Harley also obtained this result (1858–59). Arthur Cayley
repeated the result in the year 1861. This theorem was obtained by anal-
ysis of identities for elliptic functions. Similar idea can be used to obtain
general formulae for the roots of algebraic equations of arbitrary degree
(cf. [8]). Practical application of these formulae is rather doubtful, since
hypergeometric series are very complicated. However, the above men-
tioned results on algebraic equations show that in any case roots of the
equation can be effectively calculated from its coefficients in finite or
infinite number of steps.
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A page from [21]
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4 The Second Theorem. Dividing Bernoulli’s
lemniscate

A lemniscate called now Bernoulli’s lemniscate was discovered by Jacob
Bernoulli in the year 1694 (cf. [7]). There are some equivalent definitions
of this curve.

Definition 1. The lemniscate is the locus of a point which moves so
that the product of the distances from the two given points in the plain
is a constant.
Taking (−a, 0) and (a, 0) for the points it is easily seen that

Definition 2. The lemniscate is given in Cartesian coordinates by the
equation

(
x2 + y2

)2
= a2 ·

(
x2 − y2

)
.

Definition 3. An arc of the lemniscate is determined by a flexible
elastic band constrained by its own weight (cf. [6], [7], [11]).
The definition 3 led Jacob Bernoulli [7] to the study of the lemniscate

integral, i. e. to
∫

dx√
1− x4

(3)

Many authors studied Bernoulli’s lemniscate in XVIII century, including
Giulio Carlo, Count de Fagnano (1682–1766) and Leonhard Euler (1707–
1783). It was conjectured in the XVIII century that the lemniscate
integral is not expressible by elementary functions, but no proof was
given.
The study of the integral (3) included two important problems:

I. calculate the length of an arc of Bernoulli’s lemniscate,

II. decide into how many parts the lemniscate can be divided by a
geometric construction with compasses and ruler.

Fagnano obtained relations between different elliptic integrals of the
form (3) and proved that Bernoulli’s lemniscate can be divided geomet-
rically into 2, 3 and 5 equal parts, and generally, into 2n, 3 · 2n and
5 · 2n for any natural number n. Euler stated in a paper published in
1756/57 (cf. [6]), that if N = 2n · (1 + 2m), then Bernoulli’s lemniscate
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can be divided into N equal parts. It is however not true, since the
lemniscate cannot be divided into 33 parts. Ayoub (loc. cit.) doubtes
whether Euler actually had a proof. However Euler published numerous
papers dealing with Bernoulli’s lemniscate, e. g. [11].
Gauss was interested in Bernoulli’s lemniscate already in the year

1797 (cf. [13]). He wrote in his Tagebuch (21th March 1797): Lemnis-
cata geometrice in quinque partes dividitur. He proved not only the
possibility of dividing lemniscate geometrically into five parts, but also
discovered fundamental properties of elliptic functions connected with
the lemniscate (loc. cit.). Unfortunately his results had no influence on
the development of mathematics, since Tagebuch was found many years
after Gauss’s death. A small trace of his research in this domain can be
found in [12]. Gauss states there ([12], Sectio Septima, page 593):

Ceterum principia theoriae, quam exponere aggredimur, multo latius
patent, quam hic extenduntur. Namque non solum ad functiones cir-
culares, sed pari successu ad multas alias functiones transscendendes

applicari possunt, e. g. ad eas quae ab integrali
∫ dx√

1− x4
pedent [. . .].

In other words, foundations of the theory [of a cicrle division] can
be extended [. . .] and can be applied not only to circular functions, but
also to many other transcendental functions, e.g. to these which depend
upon the integral [. . .].
An ultimate result of dividing Bernoulli’s lemniscate was obtained by

Abel. He knew the result already in 1826 (cf. [1], Correspondence) but
published it as a corollary from a general theory of elliptic functions ([1]
ed. 1838, vol.I, XII. Recherches sur les fonctions elliptiques, 141–252).
Abel’s research can be stated as

The Second Theorem (Abel [1], ed. 1839, vol. I, p. 229–230)
If N = 2np1 . . . ps, where pk are pairwise different Fermat primes (i.e.
every prime has a form 2m + 1), then Bernoulli’s lemniscate can be
geometrically divided into N equal parts and conversly: if the lemniscate
can be geometrically divided into N equal parts, then N is the product
of some power of two and different Fermat primes.
Abel proved the first part of the theorem. The converse theorem was

discovered later (for details see [19], where some additional references
are given). Fagnano knew geometric divisions of the lemniscate into
two, three and five equal parts. Gauss rediscovered the division into
five parts. Kiepert [16] gave an effective construction for division the
lemniscate into seventeen equal parts.
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A page from [1]
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5 Why Gauss’s condition for dividing a circle is
the same as Abel’s condition for a lemniscate?

It is easy to see that in the circle case (applying some elementary Galois
theory) the geometric division of the circle into N equal arcs is possible,
if and only if, φ(N) = 2n for some n, where φ is Euler’s arithmetical
function. It is also a standard number theory exercise that it holds
exactly in the case when N is the product of a power of two and different
Fermat primes.
In the case of the lemniscate, the situation is much more complicated

(cf. e. g. [19]). In this case the result follows from the properties of elliptic
functions connected with the lemniscate. But why we obtain the same
conditions for an integer N? It seems to be mysterious. Perhaps the
circle and the lemniscate have common properties implying the result.
Maybe there are other curves with this property.
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