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Chapter 1

Introduction

1.1 Objectives of the paper

Lattice theory has become an important, and we could say a traditional,
part of research of Czech and Slovak mathematicians, it is therefore
interesting to follow the process of establishing its position within at that
time Czechoslovak mathematics. This work, based to a large extend on
the author’s Ph.D. thesis, describes the context in which lattice theory
entered Czech mathematics at the end of 1930’s, Slovak mathematics
after WWII and analyzes the papers and activities connected with this
field appearing in both Czech and Slovak mathematics until the year
1963 when an international conference on ordered sets, which included
contributions on lattice theory, was held in Czechoslovakia.
The primary materials for the work consisted of original papers, the

ones which were analyzed as well as the ones which the authors referred
to so that the previous results could be checked. As the literature con-
tained works in several languages, the author provides a free translation
into English where no English version of the quotation exists. As far
as the notions are concerned, either a standard English terminology is
used (based on [Grä2]), or a suitable English translation is given.

1.2 From the history of lattice theory

The origin of lattice theory and Garrett Birkhoff

The creation and development of lattice theory has a lot of interesting
and specific features. Although the roots of this theory can be found in
the second half of 19th century, within the areas of algebraic logic and

193
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number theory, those early attempts to study abstract mathematical
structures called lattices today remained largely unnoticed. It was only
in the 1930’s that we can see a vivid interest in this field which resulted in
a fast establishment of lattice theory during a surprisingly short period
of 1933–1940.

The first ideas related to lattice theory can be found in the work
of G. Boole on algebra of logic, The Mathematical Analysis of Logic,
1847. They were further improved by C. S. Peirce, and later incor-
porated into Vorlesungen über die Algebra der Logik (1890–1905) by
E. Schröder. Independently of the investigation in algebraic logic,
lattice structures were studied in the field of number theory, namely in
the work of R. Dedekind from the last decade of 19th century, who ar-
rived at a number of concepts, examples, and properties of lattice theory.
Neither of the results, however, found strong interests to be followed.

At the end of 1920’s and the beginning of 1930’s several mathemati-
cians came to new formulations of the notion lattice. This happened
in more areas: projective geometry, logic and algebra. Those new be-
ginnings did not seem to attract a lot of attention either, however, in
the course of 1930’s the situation was changing in the favor of studying
abstract algebraic structures.

An environment suitable for the development of lattice theory was
created by Van der Waerden’s book Moderne algebra which set a
model and provided methods and concepts for the new type of investi-
gation. The idea of universal algebra enabling the treatment of general
algebraic structures became a crucial concept of the period and several
mathematicians believed the role of universal algebra would be played
by lattices.

The first description of lattice theory is considered to be given in two
papers from the first half of 1930’s: G. Birkhoff’s [Bir1] and O. Ore’s
[Ore1]. In the years 1935 to 1939 a number of articles were published
which showed wide applications of this theory; the concept of lattice
appeared in investigations within universal algebras, the foundation of
geometry, continuous geometry, partly ordered linear spaces, group the-
ory, topology, functional analysis, probability; Boolean algebras found
applications to metamathematics and measure theory.

The name which is connected with the origin of lattice theory most
closely is G. Birkhoff, who is sometimes called Father of Lattice The-
ory. He deserved this attribute not only for his significant contributions
to the subject, but mainly for providing a unifying framework for the
emerging lattice theoretic results, trends and applications. This frame-
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work was achieved through the first publication of his famous monograph
Lattice theory [LT–40] in 1940, which, in a way, marks the formal estab-
lishing of this theory. Although this first edition was more a collection
of contemporary results than a self–contained study of the subject, it
was the first treatment of lattices presented as a theory.

H. Mehrtens [Meh] identifies several factors which played role in a
fast establishing of lattice theory as an autonomous mathematical field
during the 1930’s. Abstract algebraic structures became a new trend in
algebra after van der Waerden’s book. The adoption of set theoretical
language and axiomatic methods resulted in the fact that lattice theory
became apparent in nearly all fields of mathematics and thus showed
its various forms of applications of the theory. The next factor which
helped to move this subject to the centre of attention was that several
outstanding mathematicians (e. g. J. von Neumann, M. H. Stone,
O. Ore, A. Tarski) produced papers in which they built respective
concepts upon lattice theoretical basis. The integrating role was played
by the young mathematician G. Birkhoff whose talents and enthu-
siasm resulted in consolidating the obtained results and presenting the
theory as a more or less unified aggregate. G. Birkhoff’s role in the
development of lattice theory is quite unique, he did not belong to the
mathematicians who were attracted to lattices because of motivations
from other fields, he played the role of an ”organizer” ([Meh], p. 295) of
the theory.

Thus, we can witness a very quick development of a new mathe-
matical theory during the 1930’s, the theory which is rich in material,
recognized and promising. From 1939 more and more mathematicians
started their research in pure lattice theory without being justified by
its applications in traditional areas and we can, therefore, speak about
the beginning of autonomous position of this mathematical field.

The following development of the new theory was, to a large extent,
set in the directions put forward by the book Lattice Theory, which
confirmed its world–wide success and the second, enlarged, edition of
the book ([LT–48], 1948) continued to inspire new generations of ma-
thematicians. The monograph was published in another enlarged and
revised edition in 1967 [LT–67].

Lattice theory has continued to grow significantly especially since
1960’s and by now many of its parts have become research areas on
their own. We can say that the mentioned third edition of Lattice The-
ory is the last of works which deal with the theory in a broad sense,
discussing also its many applications and abundant relations to other
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fields of mathematics. The series of books on lattice theory that have
been published since that time treat the theory in its restricted sense,
i. e. lattice theory proper, or concentrate on its specific branches.
Another important monograph on lattice theory was written byG. Grät-

zer and published for the first time in 1978: General Lattice Theory
[Grä1]. This book includes what the author considered to be the most
important results and research methods of lattice theory proper. As it
treats the basics of the theory in depth, it does not include chapters
on applications or the areas that had become separate fields of study,
the author, however, provides appropriate further references to allied
investigations throughout the book. G. Grätzer’s monograph was
published again in 1998 ([Grä2]). The 20 years between the two editions
meant a tremendous progress in lattice theory, however, ”the change is
in the superstructure not in the foundation” ([Grä2], p. xv), so the au-
thor managed to keep the content of the first edition unchanged and to
present new results and developments in the form of appendices which
include essays on several topics written by various mathematicians.



Chapter 2

Mathematical background

In this chapter basic concepts and their properties concerning lattice
theory and topology are presented in order to facilitate further reading.
The choice of concepts was guided solely by their appearance in the
following chapters. We suppose basic knowledge of binary relations,
partially ordered sets (posets) and algebras. In the whole of the work
the abbreviation ”iff” stands for ”if and only if”.

2.1 Basic concepts in lattice theory

2.1.1 Two definitions of a lattice

A lattice can be viewed as a special type of poset, or as an algebra
with two binary operations. These descriptions enable us to apply the
concepts and methods of both the theory of posets and universal algebra
depending on a particular situation. First, we state a definition of a
lattice as an ordered set, for which reason we use the usual symbol ”≤”
to denote a relation of partial ordering.

Let L be a nonempty set with partial ordering ≤. (L,≤)
is called a lattice iff there exist the infimum (greatest lower
bound, called meet), inf{a, b}, and the supremum (least up-
per bound, called join), sup{a, b}, for any two elements a, b ∈
L. L is called a complete lattice iff there exist the infimum
and the supremum for every subset of L.

We shall use the notations

a ∧ b = inf{a, b},
a ∨ b = sup{a, b}.

197



198 Štěpánka Bilová

The supremum (infimum) of a set H will be denoted by
∨

H(
∧

H).
A lattice in which every countable lattice subset has an infimum and
supremum is called a σ–lattice. The join and meet have the following
properties:

(L1) Idempotent identity: a ∧ a = a, a ∨ a = a,

(L2) Commutative identity: a ∧ b = b ∧ a, a ∨ b = b ∨ a,

(L3) Associative identity: (a∧b)∧c = a∧(b∧c), (a∨b)∨c =
a ∨ (b ∨ c),

(L4) Absorption identity: a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a.

We can define lattices as algebras in the following way: an algebra
(L,∧,∨) is called a lattice iff L is a nonempty set, ∧ and ∨ are binary
operations which satisfy (L1)–(L4). The following theorem states that
a lattice as an algebra and a lattice as a poset are equivalent concepts
and shows how we obtain an algebra from a poset and inverse:

(i) Let the poset L = (L,≤) be a lattice. Set

a ∧ b = inf{a, b},
a ∨ b = sup{a, b}.

Then the algebra La = (L,∧,∨) is a lattice.
(ii) Let the algebra L = (L,∧,∨) be a lattice. Set

a ≤ b iff a ∧ b = a.

Then Lp = (L,≤) is a poset which is a lattice.
(iii) Let the poset L = (L,≤) be a lattice. Then (La)p = L.
(iv) Let the algebra L = (L,∧,∨) be a lattice. Then (Lp)a =
L.

The starting definition could have been preceded by a more general
concepts of meet–semilattice and join–semilattice: a poset is called a
meet–semilattice, dually join–semilattice, iff inf{a, b}, dually sup{a, b},
exists for any two element a and b of the poset. A lattice would then be
defined as a poset which is both a meet– and join–semilattice.
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2.1.2 Some order–theoretic notions

If a lattice has a greatest element, we shall denote it by 1, if it has a
least element, it will be denoted by 0. A bounded lattice means a lattice
with 0 and 1. We say that a covers b (in notation a ≻ b, or b ≺ a) iff
b < a and there exists no x such that b < x < a. An element a is called
an atom iff a ≻ 0 and a dual atom iff a ≺ 1.
A poset is said to satisfy the ascending chain condition iff all in-

creasing chains terminate; dually it is said to satisfy the descending
chain condition. A chain C(a, b), or denoted just C, between elements
a and b of a poset P :

a = a0 < a1 < · · · < an−1 < an = b

is called a maximal chain between a and b iff ai covers ai−1 for all
i = 1, . . . , n. The length l(C) of a finite chain C is |C| − 1. By the
length of a poset P we mean the supremum length of a chain in P . A
poset is said to satisfy the finite chain condition (or is of finite length)
iff all chains are finite.
One of important properties a finite poset S may have, and a pro-

perty which will be also discussed in the papers analyzed in this work,
is the Jordan–Dedekind chain condition:

(JD) If a, b ∈ S, a < b, and C1(a, b), C2(a, b) are maximal
chains with the least element a and the greatest element b,
then these chains have the same length.

Let C1(a, b) : a = a0 ≤ a1 ≤ · · · ≤ an−1 ≤ an = b be a chain between
a and b. We call a chain C2(a, b) : a = b0 ≤ b1 ≤ · · · ≤ bm−1 ≤ bm = b
a refinement of C1(a, b) iff for each ai, i = 0, . . . , n there exists bj, j =
0, . . . ,m such that ai = bj . The refinement is called proper iff there
exists bk such that bk 6= ai for all ai.
By a quotient a/b of L we mean an ordered pair of elements a, b ∈ L

satisfying b ≤ a. We call a/b a prime quotient iff b ≺ a. By the interval
[a, b], a, b ∈ L, a ≤ b, we mean the set: [a, b] = {x|a ≤ x ≤ b}.
A lattice L is said to satisfy the Upper Covering Condition iff a � b

implies a ∨ c � b ∨ c, for all a, b, c ∈ L. The Lower Covering Condition
is the dual.

2.1.3 Some algebraic concepts

We can introduce some common algebraic concepts for lattices in their
usual meaning. There are two isomorphism concepts which coincide:
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• lattices (L1,∧,∨) and (L2,∧,∨) are isomorphic, denoted by L1
∼=

L2, and the mapping ϕ : L1 → L2 is an isomorphism iff ϕ is one–
to–one and onto and ϕ(a∧b) = ϕ(a)∧ϕ(b), ϕ(a∨b) = ϕ(a)∨ϕ(b);

• lattices (L1,≤) and (L2,≤) are isomorphic, denoted by L1
∼= L2,

and the mapping ϕ : L1 → L2 is an isomorphism iff ϕ is one–to–
one and onto and a ≤ b in L1 iff ϕ(a) ≤ ϕ(b) in L2.

An isomorphism of a lattice into itself is called an automorphism. A
mapping ϕ : P1 → P2 is an isotone mapping of a poset P1 into a poset P2

iff a ≤ b in P1 implies that ϕ(a) ≤ ϕ(b) in P2. A (lattice) homomorphism
is a mapping of a lattice L1 into a lattice L2 satisfying ϕ(a ∧ b) =
ϕ(a)∧ϕ(b) and ϕ(a∨ b) = ϕ(a)∨ϕ(b) (i. e. it is a meet–homomorphism
and join–homomorphism). A homomorphism of a lattice into itself is
called an endomorphism, a one–to–one homomorphism is also called an
embedding.
We also apply the notion of subalgebra: a nonempty subset K of a

lattice (L,∧,∨) is called a sublattice of L iff a ∧ b, a ∨ b ∈ K for each
a, b ∈ K.1 The subset K of a lattice L is called convex iff a, b ∈ K, c ∈ L
such that a ≤ c ≤ b imply c ∈ K. An important example of a convex
sublattice is an interval. A sublattice I of L is called an ideal iff i ∈ I
and a ∈ L imply that a∧ i ∈ I. An ideal I is proper iff I 6= L. A proper
ideal I is prime iff a, b ∈ L and a ∧ b ∈ I imply that a ∈ I or b ∈ I.
An ideal generated by a one–element set is called a principal ideal. Let
IdL denote the set of all ideals of L, then IdL is a poset under the set
inclusion which is a lattice (I ∧ J = I ∩ J, I ∨ J = [I ∪ J ], where [I ∪ J ]
means the ideal generated by I ∪ J). By dualizing the concept of ideal,
we obtain the notions of dual ideal, principal dual ideal, prime dual ideal.

2.1.4 Congruence relations

An equivalence relation Θ on L is called a congruence relation L iff

a1 ≡ b1(modΘ), a2 ≡ b2(modΘ)

imply that

a1 ∧ a2 ≡ b1 ∧ b2(modΘ), a1 ∨ a2 ≡ b1 ∨ b2(modΘ).2

Let ConL denote the set of all congruence relations on L partially
ordered by set inclusion. Then ConL is a lattice, called the congruence

1We remind that a subset of a lattice L may be a lattice with respect to the
inclusion relation ≤ of L, without being a sublattice of L.

2We can leave out the symbol ”mod” in denoting a congruence equation.
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lattice of L (Θ ∧ Φ = Θ ∩ Φ and x ≡ y(Θ ∨ Φ) iff there is a sequence
z0 = x ∧ y, z1, . . . , zn−1 = x ∨ y of elements of L such that z0 ≤ z1 ≤
· · · ≤ zn−1 and for each i, 0 ≤ i ≤ n − 1, zi ≡ zi+1(Θ) or zi ≡ zi+1(Φ).
We say that two congruences Θ and Φ of L permute (or are permutable)
iff Θ ∨ Φ = Θ · Φ, where Θ · Φ is the binary relation defined by

a ≡ b(Θ · Φ) iff there exists a c ∈ L such that a ≡ c(Θ) and c ≡ b(Φ).

An equivalent definition is that Θ and Φ permute iff Θ ·Φ = Φ ·Θ, which
is equivalent to Θ · Φ being a congruence relation. A lattice L is called
a simple iff it has only the two trivial congruences ι and ω (x ≡ x(ι) iff
x = y and x ≡ y(ω) for all x, y ∈ L).
Another algebraic concept is a quotient lattice: Let L be a lattice,

Θ a congruence relation on L. Let L/Θ denote the set of blocks of
the partition of L induced by Θ, i. e. L/Θ = {Θa|a ∈L}. We define
Θa∧Θb = Θa∧b,Θa∨Θb = Θa∨b, and obtain a lattice, called the quotient
lattice (or factor lattice) of L (modulo Θ).
Congruence relations can be used for defining perspectivity and pro-

jectivity of quotients. Let Θ be a congruence relation on a lattice L, let
a/b, c/d be quotients in L. We say that the quotient a/b is perspective
to the quotient c/d iff the following holds:

a ≡ b(Θ) iff c ≡ d(Θ).

We say that a/b is projective to c/d iff for some natural number n, there
exist quotients ei/fi:

a/b = e0/f0, e1/f1, . . . , en/fn = c/d

such that ei/fi is perspective to ei+1/fi+1, for each i = 0, . . . , n− 1.

2.1.5 Direct and subdirect products

A number of papers analyzed in this work deals with the problem of rep-
resentation of lattices as direct product of indecomposable lattices. Such
representation, or factorization, theorems present important tools in in-
vestigating the properties of any algebraic structure, and also methods
of constructing new algebras.
Let Li, i ∈ I be a family of lattices. By the Cartesian product of the

sets Li, we mean the set of all functions

f : I →
⋃

i∈I
Li
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such that f(i) ∈ Li for all i ∈ I. We define ∧ and ∨ ”componentwise”
in the Cartesian product, i. e. f ∧ g = h, f ∨ g = k mean:

f(i) ∧ g(i) = h(i), f(i) ∨ g(i) = k(i),

for all i ∈ I. The resulting lattice is the direct product, denoted by∏
i∈I

Li, or L1 × L2 × . . . . The lattices Li are called factors. If Li = L

for all i ∈ I, we get the direct power LI . A lattice A is called (directly)
indecomposable iff it has no representation in the form A = A1 × A2,
where both A1, A2 have more than one element. If such representation
exists, we call A (directly) decomposable.
A weakened form of direct product is the concept of subdirect prod-

uct. Let us define a mapping eIi of
∏
i∈I

Li into Li by eIi : f → f(i) for

i ∈ I and call eIi a projection. A sublattice S of a direct product
∏
i∈I

Li

is called a subdirect product of
∏
i∈I

Li iff eIi (S) = Li for all i ∈ I, where

eIi is the i-th projection.

2.1.6 Types of lattices and their elements

Complements

Let L be a bounded lattice, a ∈ L is called a complement of b ∈ L iff
a ∧ b = 0, a ∨ b = 1. Let a ∈ [x, y]; b is a relative complement of a in
[x, y] iff a∧b = x, a∨b = y. A complemented lattice is a bounded lattice
in which every element has a complement. A relatively complemented
lattice is a lattice in which every element has a relative complement in
any interval containing it. Let L be a lattice with 0; an element a∗ is
a pseudocomplement of a ∈ L iff a ∧ a∗ = 0 and a ∧ x = 0 implies
that x ≤ a∗. A pseudocomplemented lattice is a lattice in which every
element has a pseudocomplement.

Modularity and semimodularity

A lattice L is called modular iff any a, b, c,∈ L, a ≤ c satisfy the modular
identity, i. e.

a ∨ (b ∧ c) = (a ∨ b) ∧ c.

There are various conditions describing modular lattices: A lattice L is
modular iff it does not contain a sublattice isomorphic to the lattice in
Figure 2.1 (we shall call a lattice isomorphic to this lattice a pentagon).
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A modular lattice satisfies both the Upper Covering Condition and the
Lower Covering Condition. If L is a lattice of finite length, it is modular
iff it satisfies the Upper and Lower Covering Conditions.
A lattice L is called (upper) semimodular iff it satisfies the Upper

Covering Condition, i. e. for a, b ∈ L:

a ≺ b implies that a ∨ c ≺ b ∨ c or a ∨ c = b ∨ c.

If L is a semimodular lattice of finite length, then any two maximal
chains of L are of the same length.

Figure 2.1: A pentagon

Figure 2.2: A diamond

Distributivity

A lattice L is called distributive iff all elements a, b, c ∈ L satisfy the
distributive identity:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

The stated distributivity identity is equivalent to its dual, and we could
present a number of other equivalent conditions for a lattice to be dis-
tributive, the most typical is: A lattice L is distributive iff it does not
contain a sublattice isomorphic to a pentagon or a diamond, i. e. the lat-
tice in Figure 2.2. As a consequence we get that L is distributive iff every
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element has at most one relative complement in any interval, or that L
is distributive iff for any two ideals I, J of L: I∨J = {i∨ j|i ∈ I, j ∈ J}.
In any distributive lattice and any finite index–set S, we have by

induction:

x ∧
∨

S

yσ =
∨

S

(x ∧ yσ), σ ∈ S, (2.1)

x ∨
∧

S

yσ =
∧

S

(x ∧ yσ), σ ∈ S. (2.2)

However, the formulas (2.1) and (2.2) do not hold generally for any arbi-
trary set S, not even in every complete distributive lattice. A lattice in
which (2.1) and (2.2) hold for any set S is called an infinitely distributive
lattice. The distributive identities can be further generalized, we call a
(complete) lattice completely distributive iff it satisfies the extended dis-
tributive identities:

∧

C

[
∨

Aγ

xγ,α] =
∨

F

[
∧

C

xγ,φ(γ)], (2.3)

∨

C

[
∧

Aγ

xγ,α] =
∧

F

[
∨

C

xγ,φ(γ)], (2.4)

for any nonvoid family of index–sets Aγ , one for each γ ∈ C, provided
F is the set of all functions φ with domain C and φ(γ) ∈ Aγ .

Boolean lattices and Boolean algebras

A complemented distributive lattice L is called a Boolean lattice. In
a Boolean lattice, each element x has one and only one complement,
denoted by x′, and for each x, y ∈ L: 1. (x′)′ = x, and 2. (x ∧ y)′ =
x′∨ y′; (x∨ y)′ = x′∧ y′. Every Boolean lattice is dually isomorphic with
itself (i. e. it is self–dual). Since the complements are unique in Boolean
lattices, we can regard the latter as algebras with two binary operations
∧,∨, and one unary operation ′. When considered in this way, we call
them Boolean algebras. A distributive lattice in which every element
has a relative complement is called a generalized Boolean algebra.
All complete Boolean lattices satisfy the distributive identities (2.1)

and (2.2) for any index–set S, however, they do not generally fulfill
the extended distributive identities (2.3) and (2.4). The class of all
completely distributive (complete) lattices contains many non–Boolean
lattices, e. g. every complete chain or any closed sublattice of a direct
product of complete chains.
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Neutral elements and the centre

An element a is called neutral iff for all x, y ∈ L:

(a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a) = (a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a).

An ideal I of a lattice L is called neutral iff I is neutral as an element of
IdL. The centre of a bounded lattice is the sublattice of complemented
neutral elements.

2.1.7 Examples of lattices

Examples of lattices include:

• the subsets of a given set, ordered by inclusion (the supremum
is given by the union and the infimum by the intersection of the
subsets), which form a Boolean lattice;

• the unit interval [0, 1] and the extended real number line with the
familiar total order and the ordinary suprema and infima, which
are distributive lattices;

• the subgroups of a group, ordered by inclusion (the supremum is
given by a subgroup generated by the union of the groups and
the infimum is given by their intersection); the lattice of normal
subgroups of a group is modular;

• the set of natural numbers, ordered by divisibility (the supremum
is given by the least common multiple and the infimum by the
greatest common divisor), which is a distributive lattice;

• the submodules of a module, ordered by inclusion (the supremum
is given by the sum of submodules and the infimum by the inter-
section), which form a modular lattice;

• the open sets of a topological space, ordered by inclusion (the
supremum is given by the union of open sets and the infimum by
the intersection);

• the topologies on a set, ordered by inclusion (the infimum is given
by the intersection of the topologies, the supremum by the topol-
ogy generated by the union of topologies);

• the convex subsets of a real or complex vector space, ordered by
inclusion (the infimum is given by the intersection, the supremum
by the convex hull of the union).
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2.2 Basic concepts in topology

A topological space can be defined as a set T together with a family of
”closed” subsets of T having the following three properties:

(1) The sum of any two closed sets is closed;

(2) Any intersection of closed sets is closed;

(3) T and empty set ∅ are closed.

Thus in any topological space there is defined a closure operation satis-
fying:

(C1) X ⊂ X ;

(C2) X = X ;

(C3) If X ⊂ Y , then X ⊂ Y ;

(C3’) X ∪ Y = X ∪ Y .

A set is called open iff its complement is closed. Let G be a subset
of a topological space T , we say that G is dense in T iff G = T . A
one–element subset {x} of T will be called a point and denoted by x.
A neighborhood U(x) of a point x is an open set containing x. The
system of neighborhoods of a point x in the space T is the collection of
all neighborhoods of the point x.
A topological space is called a T1–space iff it satisfies:

(C4) If p is a point, then p = p.

A topological space is called a T0–space iff it satisfies:

(C4’) For two points p and q: p = q implies p = q.

A topological space is called a Hausdorff space iff it satisfies:

If p and q are two distinct points, then there exist disjoint
open sets U and V such that p ∈ U and q ∈ V (Hausdorff
condition).

A topological space is called normal iff it satisfies:

If A and B are disjoint closed sets, then there exist open
sets A ⊂ U and B ⊂ V such that U ∩ V = ∅ (Normality
condition).
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A family R of closed sets in a T0–space T is called a basis of closed sets
(closed basis) iff every closed subset of T is an intersection of members
of R. Dually, a family S of open sets is called a basis of open sets (open
basis) iff every open subset of T is a sum of sets of R.
A homeomorphism between topological spaces X,Y is a continuous,

one–to–one and onto mapping f : X → Y such that the inverse f−1 :
Y → X is also continuous (a mapping f : X → Y is continuous iff the
completely inverse image f−1(U) of every open set in Y is an open set
in X). The continuity of the inverse function does not in general follow
from the other; it does, however, if X is compact and Y is Hausdorff.
A topological space X is called compact (in early literature re-

ferred to as bicompact) iff from any family R of open sets Sr such
that

⋃
R
Sr = X, we can extract a finite subfamily P from R such that

⋃
P
Sp = X. X is called totally disconnected iff any two distinct points lie

in complementary closed sets. A totally disconnected compact Hausdorff
space is called a Boolean space.

Metric spaces

The theory of metric spaces is a part of general topology although it is
built upon the notion of a metric, which is not a topological concept.
A metric space is a collection M of elements (points) with a defined
real–valued distance function (a metric) δ(x, y) which satisfies:

(M1) δ(x, x) = 0, while δ(x, y) > 0 iff x 6= y,

(M2) δ(x, y) = δ(y, x),

(M3) δ(x, y) + δ(y, z) ≥ δ(x, z).

Every metric induces in a natural way a metric topology on an nonempty
set: a subset S of a metric space is called open iff for any a ∈ S, a
constant ε > 0 can be found such that |x − a| < ε implies x ∈ S; the
system of all open sets generates a topology called a metric topology. An
infinite sequence x1, x2, . . . of points of a metric space is said to converge
to the limit a iff lim

n→∞
δ(xn, a) = 0.



Chapter 3

Lattice theory in Czech
mathematics until 1963

3.1 Introduction

3.1.1 The situation in Czech algebra from 1930’s until the
beginning of 1960’s

The implementation of ideas of modern algebra in Czech mathematics, in
particular the tendency to study general algebraic structures, is closely
connected with the names of V. Kořínek in Prague and O. Borůvka
in Brno. In the mid–1930’s V. Kořínek started to be interested in
problems of the theory of algebras and group theory, which also led him
to an investigation concerning questions of lattice theory a few years
later. At the end of 1930’s O. Borůvka’s began his work on set par-
tition theory and the theory of groupoids and groups and his theory of
partitions rates among the first on this topic in the world.
The end of 1930’s was the time when Czech algebraic research was

advancing in the directions initiated by Van der Waerden’s book
Modern Algebra, however, the life of the whole country was soon to be
irretrievably disturbed by the political situation. The closure of Czech
universities on November 17, 1939 meant a disruption of the official
research centers, and led to considerable limitations in scientific life. The
mathematicians who continued working found themselves in isolation
not being able to maintain adequate contacts with the latest results in
their fields.
The situation after WWII was improving slowly, it was necessary to

rebuilt both pedagogical and scientific activities. Several years after the

208
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war can, in many respects, be labeled as a transitional period, although
the professors at the re–opened universities did their best to provide the
coming generation with scientific education and guidance in research ac-
tivities. In the following years the number of mathematicians, as well as
mathematics students and teachers increased, new institutions, schools,
and research work places were created and the range of investigated ar-
eas expanded. To characterize the period 1945–1960, we can say that
algebra was developing in the topical directions, however, it was to a
certain extent isolated, which resulted from the continuing lack of ne-
cessary contacts and literature. The international contacts were very
scarce, and they were restricted mainly to the countries with suitable
political systems: Poland, Hungary, the German Democratic Republic,
the U.S.S.R., Romania and Bulgaria. The overall situation improved in
many ways with the 1960’s, mainly as far as the availability of literature
and possibilities to publish were concerned, which especially the young,
coming generations of mathematicians could profit from.1

Both V. Kořínek and O. Borůvka also played an important role
in educating new generations of mathematicians, dissemination of new
algebraic trends and encouraging further research. During several years
after WWII V. Kořínek’s ”advanced” seminar was the only place in
Prague where algebra was systematically studied. The work in the sem-
inar focused on up–to–date problems, mainly abelean groups, universal
algebras and lattice theory. A series of theses supervised by V. Kořínek
were inspired by the problems discussed there. The textbook Founda-
tions of algebra (1953, 1956) written by V. Kořínek became the basic
algebraic study material for many years to come.
Brno algebraic research is characteristics for studying abstract alge-

braic structures initiated by the work of O. Borůvka. His textbook An
introduction to group theory (1944, enlarged edition 1952) set a model
for the formation of theories of general algebras and provided readers
not only with the author’s original exposition of the topic but also with
an inspiration for further investigation. This textbook became the basis
for his renowned monograph Foundations of the theory of groupoids and
groups (1960, 1962, 1975).
Ordered sets (both totally and partially) became another traditional

Brno area of research, which was originated by Josef Novák after
WWII. He had been led to this field by topological problems and his in-
vestigation attracted the attention of young scientists, among them the
outstanding mathematician M. Novotný, who was particularly inter-

1Drbohlav, K., ”Algebra, logika a teorie množin” in [CM], pp. 54–69 and [Koř5].
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ested in studying cardinal operations within different types of ordered
sets in his early period of research. In 1963M. Novotný founded a suc-
cessful seminar on ordered sets and general algebraic structures, and at
the beginning of 1960’s he initiated organizing regular summer schools
on the theory of ordered sets which played an important role in commu-
nicating ideas and results in the field and whose early development is
described in the following subsection. In the late 1950’s F. Šik started
the investigation of ordered groups and l–groups which also belong to a
traditional field of Brno algebraic research.2

As the beginning of 1960’s marked a change in the development of
mathematical research in the sense that the efforts for improvements
from the previous years brought their results, and the coming years
became characteristic for fast growth of intensive work with significant
contributions of the young generation, it is natural to end our analysis of
initial activities connected with lattice theory at that time. The ending
year was set to be 1963 because that year an international conference
on ordered sets, the first in Czechoslovakia, was organized in Brno.

3.1.2 Summer schools and the international Conference
on Ordered Sets

The roots of summer schools on ordered sets and general algebras are
attributed to J. Novák. He was appointed Professor at Masaryk Uni-
versity in 1945 and, in a certain way, continued in the investigation of
topological problems which had been started by E. Čech in his Brno
topological seminar 1936–39. J. Novák commenced systematic studies
of topologies on ordered sets and introduced this topic also to young
researchers interested in the field. He organized summer seminars on
ordered sets in 1950 and 1951, which can be considered the first stage
in the tradition of the later summer schools on partially ordered sets
and general algebras. These two seminars were characteristic for a small
number of participants (the first three, the second four), which enabled
an individual care for the young participants and resulted in intensive
and fruitful work. The main topic was ordered continua and the prob-
lems discussed there became an inspiration for the participants further
research. J. Novák’s departure to Prague ended the sessions. However,
11 years later he inspired a resumption of the seminars.
The summer school (still called a seminar) of 1962 was on the one

hand a continuation of the previous seminars, on the other hand its

2[UB], pp. 207–209.
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new form and content reflected the new period: areas of investigation
shifted from totally ordered sets to partially ordered sets (an influence
of G. Birkhoff’s Lattice Theory) and the number of mathematicians
interested in the research increased. The system of work took form of
lectures, which focused mainly on partially ordered sets and partially or-
dered sets with algebraic operations (lattices, l–groups) or with topology.
The following year, 1963, brought another new feature which became a
tradition of summer schools: participation of young talented students
who had an opportunity to present their own results there. The two
seminars proved the usefulness of such sessions, they were seen as a
highly beneficial contribution in many directions, generally improving
the quality of research work. Thus, the summer schools on ordered sets
and general algebras became an annual event. Though the initial orga-
nization came from Brno departments of mathematics, the participants
included also mathematicians from Slovakia.

The success of the two summer schools convinced the organizers that
they could prepare an international conference on partially ordered sets.
It was held in Brno in November 1963 as a part of the celebration of 50
years of Brno branch of the Union of Czechoslovak Mathematicians and
Physicists. The conference enabled personal meetings of Czechoslovak
mathematicians with algebraists from several other countries (Hungary,
Romania, Bulgaria, Yugoslavia, the Soviet Union, the German Demo-
cratic Republic, the choice being limited for obvious political reasons),
which was at that time a rare event. Sharing the results showed that
the research on ordered sets in the Czechoslovak Republic could be com-
pared internationally.

The topics of the conference talks can be divided into four groups:
general questions concerning partially ordered sets, lattice theory, or-
dered algebraic structures and the relations between partial order and
topology. The following Czech and Slovak mathematicians actively par-
ticipated in the conference: O. Borůvka, J. Jakubík, M. Katětov,
M. Kolibiar, K. Koutský, V. Novák, M. Novotný, B. Riečan,
M. Sekanina, L. Skula. The success of the conference brought the
idea of organizing summer schools with foreign participation, however,
this was realized only several years later.3

3This subsection is based upon the information from [Nov7], [Nov8], [N–S].
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3.1.3 An outline in the development connected to lattice
theory until 1963

Although the emergence of lattices in Czech literature is reflected in the
work of O. Borůvka as well as V. Kořínek, the two mathematicians
approached the new theory differently. While O. Borůvka recognized
it as a theory which provided a structural framework for his partition
theory, V. Kořínek became interested in one of the problems within
this theory, namely the Jordan–Hölder–Schreier–Zassenhaus theorem.
O. Borůvka’s first reference to lattice theory is recorded in his paper
from 1939, V. Kořínek’s first paper in this field was published in 1941.
Another mathematician whose work was in a way connected to lattice
theory in the early 1940’s was B. Pospíšil. Although he was involved in
the problems of general topological spaces, his results produce important
consequences for Boolean rings as well.
Both O. Borůvka and V. Kořínek deserve a great merit for en-

couraging, supporting and providing suitable topics for young mathe-
maticians’ research, including topics from lattice theory. In the first half
of 1950’s the students of V. Kořínek’s seminar: L. Janoš, Č. Vit-
ner, V. Vilhelm, and V. Havel wrote theses which continued in
V. Kořínek’s study on lattice theory. O. Borůvka, apart from in-
fluencing Brno algebra, ”exported” lattice theory to Bratislava after
WWII when recommending G. Birkhoff’s monograph as a possible
source of inspiration for young Slovak researches.
Brno mathematics is typical for the treatment of lattice theory in

its applications, or working on the border–areas dealing with questions
related to lattice theory as well. K. Koutský, who was engaged in
topology, created an original theory of topological lattices. In the 1950’s
several researchers working on ordered sets and general algebraic struc-
tures produced results connected to lattice theory, of which the follow-
ing should be mentioned: M. Novotný’s studies of cardinal arithmetic
and isotone functionals on ordered sets, F. Šik’s research on l–groups,
K. Čulík’s works concerning lexicographic sum of partially ordered
sets. In the first half of 1960’s other two mathematicians, V. Novák
and L. Skula, joined the group of Brno mathematicians working on
abstract algebraic structures and started their research activities.
A very specific contribution to lattice theory is attributed to L. Rie-

ger, who was the first Czech mathematician to work systematically in
mathematical logic. As he was interested in problems concerning alge-
braic methods in this field, his results concern to a great extent Boolean
algebras. He dealt mainly with special kinds of Boolean algebras, ap-
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plied his results to mathematical logic, and his conclusions also solve
some problems stated by G. Birkhoff in [LT–48].
The following sections present the works of Czech mathematicians

concerning lattice theory, they are divided mainly according to indivi-
dual mathematicians and we analyze their particular papers. The first
one is devoted to O. Borůvka. We follow the way in which he related
the theory of partitions of sets and partitions in sets to lattice theory,
when preparing them as a starting point for the theory of groupoids
and groups. V. Kořínek’s papers are analyzed in the next section. As
the topic he was working on, the Jordan–Hölder–Schreier–Zassenhaus
theorem, belonged to very popular themes, various approaches to the
theorem are discussed in more detail there. The papers of L. Janoš,
Č. Vitner, and V. Vilhelm are dealt with in one section as they in-
clude a continuation of V. Kořínek’s results. Next five sections describe
the contributions of L. Rieger, K. Koutský, M. Mikulík, O. Há-
jek and V. Havel. The following section is devoted to mathematicians
not dealing directly with lattice theory, it consists of short overviews of
results related to this field. The last section briefly comments on the
development of Czech lattice theoretical terminology.

3.2 Otakar Borůvka and lattices

Otakar Borůvka (1899–1995) was, for decades, one of the leading
mathematician in Czechoslovakia. His mathematical work included the
areas of differential geometry, algebra and differential equations, and he
became truly a legend among Brno mathematicians.
In 1918–1922 Otakar Borůvka studied at the Czech Technical

College in Brno, and from 1920 also at Masaryk University (where he
was also working as an assistant to Professor M. Lerch) from which he
graduated in 1922 studying mathematics and physics. He finished his
doctoral studies there the following year. He spent two years (1926–1927,
1930–1931) at Professor E. Cartane in Paris, and six months (1930–
1931) in a course with W. Blaschke in Hamburk. In 1934 O. Bo-
růvka was appointed Assistant Professor, in 1946 (with the effect from
1940) Professor at Masaryk University in Brno. The first works (1923–
1925), which were inspired by his teacher M. Lerch, deal with classical
mathematical analysis, in 1925–1935 he became engaged in differential
geometry. In the middle of 1930’s he started the studies concerning
modern algebra, formed the theory of set decomposition, the theory of
groupoids and laid the foundation of a theory of scientific classification.
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In the 1950’s he purposefully turned to an investigation of differential
equations and created a theory of global transformations of linear dif-
ferential equations of the second order. O. Borůvka’s mathematical
achievements met with favorable recognition even abroad and the world
literature was affected by a number of his methods and results.4

O. Borůvka was the first Czech mathematician who turned his at-
tention to the emerging lattice theory in his papers, which happened
while he was developing his theory of partitions of and in a set. He
founded the theory around 1939 independently of equivalence theory of
P. Dubreil. These two theories are equal, the differences are in meth-
ods of work: partitions are more suitable for some applications because
they are based on a notion of set, compared to a more complicated
concept of equivalence (O. Borůvka, the preface of [Bor7a]). When
forming his set partition theory O. Borůvka from the very beginning
makes clear its connection to lattice theory, and even stated the aim to
present the general theory of partitions in a set as a realization of lattice
theory.
O. Borůvka was creating his partition theory with the view of its

application to groupoid theory which he saw as a basis for building group
theory. We can follow the process of shaping his unique exposition of
this topic as it is recorded in several publications started by a paper on
groupoid theory in 1939 and completed by the famous monograph Foun-
dations of the theory of groupoids and groups first published in 1960. In
his earliest paper concerning partition theory [Bor1] the author outlines
the first ideas of this theory with regard to its application to groupoid
theory, then he develops the theory of partitions of a set [Bor3a], and
the theory of partitions in a set [Bor5] in more detail. Group theory is
presented in [Bor4, Bor6]. As our objective here is not to analyze these
works thoroughly, we shall only show in the following paragraphs how
O. Borůvka relates his results to lattice theory.

3.2.1 Groupoid theory [Bor1] (1939)

The paper presents an investigation of groupoids defined in the usual
sense as a pair consisting of a non–void set G and a multiplication in
G. In the previous literature there had already existed a number of
publications dealing with groupoids, though, usually with disconnected
results. O. Borůvka mentions the papers treating the subject more

4We refer the reader to the monograph Otakar Borůvka, Universitas Masarykiana,
Brno 1996 for a detailed description of the life and work of O. Borůvka.
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systematically: B. H. Hausmann andO. Ore5 used the term groupoids
in the same sense as we have mentioned and G. Birkhoff ([Bir3])
in a somewhat restricted sense. O. Borůvka became interested in
groupoids when recognizing there areas parallel to group theory. The
main concepts of this paper are a homomorphism and factoroid (as a
generalization of factor group).
The first part of the paper is devoted to set partition theory because

it is considered to be a theory that finds an immediate application in
groupoid theory. The author distinguishes a partition of a set and a
partition in a set. A partition of a set G is defined in the usual way as a
set G of non–empty pairwise disjoint subsets of G (we shall use the term
classes) whose union is G. A partition in a set G need not satisfy the
condition that the union of the classes is the whole set G. In the case of
partitions of a set, the author partially orders a system of partitions in
the following way:

Definition 3.1. Let G1, G2 be two partitions of a set G 6= ∅, then
G1 ≥ G2 iff G1 consists only of classes which are unions (or equal to)
classes of G2. In that case we say that G1(G2) is a covering (refinement)
of G2(G1).

O. Borůvka defines the least (common) covering and the greatest
(common) refinement of a system of partitions of a set (which are the
realizations of join and meet of a non–void set of partitions in a partition
lattice) and makes a remark that the set of all partitions of a set with
the given partial ordering presents an example of a complete lattice. He
gives the definition of a lattice only in terms of the partial ordering and
refers the reader for more details to G. Birkhoff’s paper [Bir3]. There
is no specific denotation either for lattice operations, or for partition
operations in this paper.
O. Borůvka continues in the investigation of groupoids and fac-

toroids in the next paper [Bor2] in which he concentrates on chains in
factoroids.

3.2.2 On partitions of sets [Bor3a] (1943)

This paper continues to develop the ideas of [Bor1] concerning set parti-
tions. O. Borůvka views a systematic investigation of partition theory
as meaningful because a number of mathematical theorems (especially
in set theory, topology and algebra) are closely connected to the concept

5Hausmann, B. A., Ore, O., Theory of quasi–groups, Amer. J. Math. 59 (1937),
983–1004.
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of set partition. He stresses the facts that, although on the one hand
partition theory belongs to lattice theory, as it is one of its realization,
on the other hand lattice theory cannot provide an exhaustive picture
of partition theory because it only describes the properties of partitions
as the lattice elements and leaves the relationship between the elements
of the partitions aside.
Compared to [Bor1] O. Borůvka presents a far more detailed expo-

sition of the basic notions of partitions, which is the content of the first
part of the article. He develops the properties of set partitions partially
ordered in the usual sense, proving the properties corresponding to lat-
tice elements properties: the commutativity, idempotency and associa-
tivity. While discussing the modularity law he distinguishes three types
of modular elements (α–, β–, γ– modular) according to V. Kořínek (see
the analysis of [Koř1]). This time O. Borůvka provides a definition of
a lattice in terms of lattice operations. He denotes ”a∨b” by ”[a, b]” and
”a∧ b” by ”(a, b),” which corresponds to the notation used by O. Ore.
O. Borůvka chooses the same denotation also for partition operations
(the least covering and the greatest refinement).
The second part of the paper concentrates on permutable partitions

which the author defines as follows:

Definition 3.2. Partitions G1, G2 are called permutable iffX ∈ G1, Y ∈
G2 such that X,Y ⊆ Z ∈ G1 ∨G2 imply that X = Y .

O. Borůvka proves various properties of permutable partitions and
their elements, shows some applications to group theory and investigates
the properties of partition mappings. The following relation to modu-
larity is proved:

Theorem 3.1. Let G1, G2 be two permutable partitions of G 6= ∅. Then
G1 is α–modular with respect to G2 and G3, where G3 ≥ G1.

The third part of the paper deals with partition sequences, i. e.
chains, in a partition lattice. The author shows that all permutable
maximal chains6 in a partition lattice have the same length.
This paper written in Czech has also its German version [Bor3b]

which consists of the same results, it is, however, shortened by leaving
out details of the proofs.

6Two chains of partitions are called permutable iff every partition included in one
chain is permutable with every partition of the other chain.
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3.2.3 The theory of partitions in a set [Bor5] (1946)

The paper contains an exposition of the theory of partitions in a set,
which is meant to form the basis of the general groupoid theory. The
theory is again presented as a realization of lattice theory. The first
chapter deals with congruences and lattices. As O. Borůvka points
out the content is not new, however, the subject is treated in a way
formally different from the other authors, with the view of the following
applications. The second chapter investigates the notions of the least
covering and the greatest refinement of a system of partitions in a set
with regard to lattice theory, and studies also some special systems of
partitions. The third, last, chapter, includes the theory of associated
partitions which play an important role in groupoid theory.
O. Borůvka defines a congruence relation as a binary relation on a

non–empty set which is reflexive and transitive and distinguishes sym-
metric and antisymmetric congruences. He develops the concepts of a
lower (upper) bound and a lattice in relation with the antisymmetric
congruence. He defines a (complete) lattice in terms of two binary op-
erations, and shows the connection between lattices and antisymmetric
congruences. The author also speaks of lattice homomorphism and iso-
morphism.
An important step in the theory of partitions in a set is made by

introducing the notions of a least (common) covering and a greatest
(common) refinement of a system of partitions. Let A be a non–void
system of partitions in a set Γ,Γ 6= ∅. ⋃A denotes the sum of all subsets
in Γ which are elements of the partitions included in the system A. A
finite sequence of subsets A1, . . . , An of Γ, Ai ∈

⋃A, will be called a
chain in

⋃A from A1 to An iff Ai ∩Ai+1 6= ∅ for each i = 1, . . . , n− 1.
The least covering of the system A is defined by the following way: we
construct a partition P on the set

⋃A in such a way that two subsets
belong to the same class of P iff there exists a chain in

⋃A from one
to the other; the least covering of the system A is then the system of
all subsets of Γ which are the sum of all elements of

⋃A belonging to
the same class of the partition P . O. Borůvka shows that the least
covering of the system A is the least upper bound of this system in terms
of a naturally defined congruence.
The concept of the greatest refinement of a system A is connected to

the notion of the center of a beam7 in A. The author defines a beam in A
as a subset of

⋃A including one and only one element of each partition
belonging to A if their intersection is not void. The centre of a beam is

7”Beam” in Czech: ”trs”.
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defined as the intersection of all elements of the beam. Then we define
the greatest refinement of the system A as the system of the centers of
all beams in the system A providing it is not void. In case it is void we
say that the system A does not have a greatest refinement. Thus, while
a least covering exists for all non–void systems of refinements in Γ, a
greatest refinement exists only in special cases. The author also shows
that the greatest refinement of the system A is the greatest lower bound
of this system in terms of a naturally defined congruence.
O. Borůvka investigates behaviour of special types of partitions in

a set and applies his results to group theory. A more detailed study
is devoted to systems which always have the greatest refinement. An
important group of partitions are associated partitions:

Definition 3.3. Let A be a partition in a Γ,Γ 6= ∅. The partition
associated to A (denoted by socA) is defined as the partition in the set
Γ×Γ consisting of the productsX×Y formed by all pairs (X,Y ), X, Y ∈
A.
We define the Cartesian mapping as a mapping f : A = socA for

every A.

The author shows which properties of partitions are invariant under
the Cartesian mapping and proves that if we consider the partitions of
Γ, the Cartesian mapping is a lattice isomorphism.

3.2.4 An introduction to group theory [Bor6] (1952)

The textbook An introduction to group theory was first published in
1944 [Bor4], although it had been prepared for printing already in 1941.
We shall be interested in its second, enlarged, edition from 1952 because
it concerns also lattice theory.
The book is meant to give an elementary introduction to group the-

ory, however, there are two important remarks to be made: O. Bo-
růvka consciously presents the topic in a way which differs from other
contemporary writers and he also includes his own original results. The
properties of groups are based on the properties of groupoids, and the
part concerning groupoid theory consists to a great extent of O. Bo-
růvka’s own investigation. The revised edition [Bor6] is enlarged by in-
cluding his results about partitions of a set from [Bor3a] and by an expo-
sition on congruences and lattices. For the purpose of the book a lattice
is here introduced in a part dealing with special types of groupoids; it
is defined algebraically as a pair of two groupoids (defined on the same
set) whose operations (called upper and lower multiplications) satisfy
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the commutative, associative, idempotent and absorption laws. The
author shows the relation between the two operations and the partial
ordering defined by them, and devote some space also to modular lat-
tices. This time (compared to the previous works) O. Borůvka uses
the more standard notation ⌣,⌢ for the lattice operations, however,
preserving the symbols [ ], ( ) for the partition operations.

3.2.5 Foundations of the theory of groupoids and groups
[Bor7a]

This monograph is based on the Introduction to group theory, its content
is, however, substantially enlarged and includes a number of O. Borův-
ka’s original results concerning the topic. The first publication of Foun-
dations of the theory of groupoids and groups was in German in 1960
[Bor7a], the second in Czech in 1962 [Bor7b], and the third in English
in 1975 [Bor7c]. The development of the topic follows the principles of
[Bor6] but as we have mentioned the extent is far greater.
In the part dealing with chains of partitions O. Borůvka proves

a theorem on refinements of two chains which found its generalization
in lattice theoretic form in a paper by V. Havel (for details see the
analysis of [Hav3]). The introduction of lattice concepts corresponds
to the one in [Bor6], however, in the chapter concerning group theory
O. Borůvka points out to several examples of modular lattices, e. g.:

Theorem 3.2. Let S(G) be a nonempty system of subgroups of a group
G, let every two elements of S(G) be interchangeable, and let S(G) be
closed with respect to the intersections and the products of the pairs of
subgroups. Then S(G) is a modular lattice (with the operations of inter-
sections and products). The system of the left (right) decompositions of
G, generated by the individual elements of this lattice, forms a modular
lattice (with respect to the operations of the least common covering and
the greatest common refinement of the decompositions) which is isomor-
phic to the former one.

3.3 Vladimír Kořínek and lattices

Vladimír Kořínek (1899–1981) studied mathematics and physics at
Charles University in Prague where he graduated in 1923. In 1925–1931
he worked as an assistant at the Czech Technical University in Prague,
the first two years for physics, then for mathematics. He was the assis-
tant to Professor K. Rychlík who encouraged him in research work. In
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1931 V. Kořínekmade his ”habilitation” in mathematics at the Faculty
of Science of Charles University, however, due to the economic situation
in the country the chances for pursuing academic career were scarce. It
was only in 1935 that he was appointed Associate Professor of mathe-
matics (at the Faculty of Science of Charles University). Immediately
after WWII he returned to Charles University, where he was appointed
Professor with the effect from 1940. He remained in this position (from
1952 at the newly established Faculty of Mathematics and Physics) until
his retirement in 1970, though he continued in working part–time at the
faculty up to 1975/76.8

V. Kořínek’s research activities can be divided into five groups:
arithmetic theory of quadratic forms, theory of algebras, group theory,
lattice theory and the Frattini subgroups. His most famous work from
group theory9 deals with a decomposition of groups in a direct prod-
uct of subgroups. This paper was cited in the distinguished books on
group theory of the period and it is interesting to notice that its re-
sults were re–formulated for the case of completely modular lattice by
A. G. Kuroš in his Teoria grupp [Kur2]. V. Kořínek’s work in lat-
tice theory was commenced by the paper on the Zassenhaus refinements
[Koř1] published in 1941 and shows a clear influence of O. Ore. Due to
the complications in obtaining literature at that time, he obviously did
not have access to G. Birkhoff’s works; he did not get into the pos-
session of the monograph Lattice Theory until autumn 1947.10 Inspired
by this book (which was soon to be replaced by its enlarged edition) he
produced the second paper on lattice theory [Koř2a]. The work deals
with the problem of the Jordan–Hölder theorem, which means a topic
closely related to his first paper. Another influence which might have
contributed to the choice of the theme for the second paper was again
O. Ore. He visited Prague at the end of May in 1947 to give three
lectures. One of the topics was the development of the Jordan–Hölder
theorem.11

In this section we shall present the content of V. Kořínek’s articles
on lattice theory in more details.

8For a detailed description of the life and work of V. Kořínek we refer the reader
to [Koh].

9Kořínek, V., Sur la décomposition d’un groupe en produit direct des sousgroupes,
Časopis pro pěstování matematiky 66 (1937), 261–286.
10O. Borůvka’s archive, the correspondence betweenV. Kořínek andO. Borůvka:
V. Kořínek obtained a copy of this book from O. Borůvka.
11O. Borůvka’s archive, the correspondence between V. Kořínek and O. Bo-
růvka.
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3.3.1 The Schreier Theorem and the Zassenhaus refine-
ment in lattices [Koř1] (1941)

This paper is the first work of a Czech mathematician dealing exclu-
sively with a problem of lattice theory. V. Kořínek follows the ideas of
O. Ore [Ore1, Ore2, Ore3, Ore4] and A. I. Uzkov12 in which he found
the very impulse for his own investigation. His other sources of lattice
theoretic concepts were [Köt] and [H–K].
V. Kořínek treats the so called Jordan–Hölder–Schreier–Zassenhaus

theorem (JHSZ theorem) in lattices. This theorem describes an impor-
tant property in group theory. The first result concerning the theorem
belongs to C. Jordan13 (with numerical interpretation) and O. Höl-
der.14 A generalization (from which the Jordan–Hölder theorem comes
as a consequence) was produced by O. Schreier15 and further im-
proved by H. Zassenhaus.16 The original Jordan–Hölder theorem says
that two composition series17 of a finite group have the same length
and their factor groups are isomorphic (the proof made by induction).
O. Schreier showed that to every two subnormal series of a group there
exist their refinements which are factor isomorphic, and these refine-
ments and isomorphic factor groups were then constructed byH. Zassen-
haus.
The JHSZ theorem attracted a great deal of attention in lattice the-

ory as well. A number of papers investigated possibilities of producing
its lattice theoretic analogue, the first one being R. Dedekind,18, we
shall recall mainly the results connected with V. Kořínek’s work.
O. Ore treated the theorem for groups [Ore4], and made attempts to

extend it for lattices [Ore1, Ore3]. First he investigated the theorem in
modular lattices [Ore1]: he calls a chain principal iff each of its elements
covers the preceding element (i.e. there is no element between them) and

12Uzkov, A, I., O teoreme Jordana-Höldera, Matematičeskij sbornik n.s. 4 (1938),
31-43.
13Jordan, C., Commentaire sur Galois, Mathematische Annalen 1 (1869), 141–
160.
14Hölder, O., Zurückführung einer beliebigen Gleichung . . . Math. Annalen 34
(1889), 26–56.
15Schreier, O., Über den Jordan–Hölderschen Satz, Abh. Hamb. 6 (1928), 300–
302.
16Zassenhaus, H., Zum Satz von Jordan–Hölder–Schreier, Abh. Hamb. 10 (1934),
106–108.
17A composition series in a group is defined as a normal series without a proper
refinement.
18Dedekind, R., Über die von drei Moduln erzeugte Dualgruppe, Math. Annalen
53 (1900), 371–403.
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states the theorems:

Theorem 3.3. Let L be a modular lattice, a, b ∈ L. If there exists
a finite principal chain between a and b, then all principal chains be-
tween a and b have the same length and can be obtained from another
by successive prime transpositions.19

Theorem 3.4. Let L be a modular lattice, a, b ∈ L, a ≤ b. Let there
exist two finite chains between a and b:

a = a0 ≤ a1 ≤ · · · ≤ an−1 ≤ an = b,

a = b0 ≤ b1 ≤ · · · ≤ bm−1 ≤ bm = b.

Then each of the chains has such a refinement that the refined chains
have the same length and their quotients are similar20 in pairs.
The terms of the refined chains have the following form (the so called

Zassenhaus refinement, or construction):

aij = ai ∨ (ai+1 ∧ bj), i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m,

bji = bj ∨ (bj+1 ∧ ai), i = 0, 1, . . . , n, j = 0, 1, . . . ,m− 1,

the similar quotients being ai,j+1/aij ∼ bj,i+1/bji.

This application of the JHSZ Theorem to lattices, however, does
not fully satisfy O. Ore, he asks about its generalization to arbitrary
lattices, not only modular. The problem is to find an analogue to the
concept of normal subgroup and subnormal series. In [Ore3] he intro-
duces more types of normal elements:

Definition 3.4. Let L be a lattice, a0,m, b, c ∈ L.
An element a0 ≤ m shall be called α–normal in m iff for any b ≥

c; b, c ≤ m it holds:

b ∧ (a0 ∨ c) = (b ∧ a0) ∨ c.

An element a0 ≤ m shall be called β–normal in m iff for any b, c ≤
m, b ≥ a0 it holds:

b ∧ (c ∨ a0) = (b ∧ c) ∨ a0.

An element a0 shall be called seminormal in m iff it is both α–normal
and β–normal in m.

19By prime transpositions in modular lattices O. Ore means transpositions in the
form [a ∧ b, a] → [b, a ∨ b].
20Similar quotients are used in the sense of projective quotients by O. Ore.
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With the defined concepts O. Ore proves the following version of
the JHSZ Theorem:

Theorem 3.5. Let L be a lattice, a, b ∈ L. Let there exist two chains
between a and b such that each term is seminormal in the preceding
one. Then there exist such refinements of the two chains that the refined
chains are quotient isomorphic.21

Comparing this theorem to its original version in group theory, O. O-
re still finds one deficiency: we cannot prove that the terms of the
refined chains are seminormal in the preceding ones.
Another approach to the problem of defining normal elements in

lattices can be found in the mentioned paper by A. I. Uzkov in which
the author assigns to each element a set of normal elements and looks
for the properties which these sets must satisfy so that the Zassenhaus
refinements of two normal chains would be also normal and quotient
isomorphic. His definition is the following:

Definition 3.5. Let L be a lattice. Let a set Na ⊆ L be assigned to
each a ∈ L. For elements x ∈ Na holds x ≤ a and we call them normal
in a.
A chain in L will be called normal iff each term is normal in the

preceding term.

The construction of the Zassenhaus refinements is the same as given
by O. Ore. A. I.Uzkov places the following condition (U) on the
elements of L:

(U) Na
⋂

Nb 6= ∅ for every a, b ∈ L.

After analyzing the properties of normal chains A. I. Uzkov states five
conditions which are necessary and sufficient for the validity of the JHSZ
Theorem:

Theorem 3.6. Let L be a lattice with the defined normality satisfying
(U). Let a, b ∈ L and let there exist two finite chains between a and b:

a = a0 ≤ a1 ≤ · · · ≤ an−1 ≤ an = b,

a = b0 ≤ b1 ≤ · · · ≤ bm−1 ≤ bm = b.

21The correspondence determining the isomorphism is the following:

a′ → bj ∨ (bj−1 ∧ a′), b′ → ai ∨ (ai−1 ∧ b′),

for ai ∨ (ai−1 ∧ bj−1) ≥ a′ ≥ ai ∨ (ai−1 ∧ bj), bj ∨ (bj−1 ∧ ai−1) ≥ b′ ≥ bj ∨ (bj−1 ∧ ai).
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Then the Zassenhaus refinements of these two chains are normal and
quotient isomorphic iff the following conditions are satisfied:
(i) for each a ∈ L : a ∈ Na,

(ii) if a, b ∈ Nx, then a ∨ b ∈ Nx,
(iii) if a, b ∈ Nx, then a ∧ b ∈ Nx,

(iv) in b ∈ Na, b ∧ c ≤ d ≤ c, d ∈ Nc, then b ∨ d ∈ Nb∨c,
(v) every element of Na is Ma–Dedekindean.22

It was this paper of A. I. Uzkov’s that inspired V. Kořínek to pro-
duce an article improving A. I. Uzkov’s investigation. He intended to
make the results more general and more elegant: he formulated normal
elements in a lattice differently, generalized the initial condition (U),
simplified other conditions, distinguished upper and lower Zassenhaus
refinements, and upper and lower similar quotients, provided shorter
proofs and generalized the Zassenhaus method for chains which do not
have the same start and endpoints.
V. Kořínek was not fully satisfied with the definition of normal ele-

ments in term of sets, especially because of their complicated treatment
in proving some properties. He replaces A. I. Uzkov’s formulation by
a different one, again abstract, in terms of a relation (which need not be
transitive):

Definition 3.6. Let L be a lattice with a relation N which satisfies:
a N b (we say b is normal in a) ⇒ a ≥ b.
A normal chain between a0 and an is defined as a finite sequence of

elements a0 N a1 N . . .N an.

Apart from the defined normality, V. Kořínek introduces other
types of elements which are similar to O. Ore’s normal elements:

Definition 3.7. Let L be a lattice, b, c ∈ L. An element a ∈ L will be
called α–modular with respect to b and c, b ≥ c iff

b ∧ (a ∨ c) = (b ∧ a) ∨ c.

An element a ∈ L will be called β–modular with respect to b and c, b ≥ a
iff

b ∧ (c ∨ a) = (b ∧ c) ∨ a.

22x ∈ L is called M–Dedekindean iff (a, c ∈ M ⊆ L, a ≥ b or a ≥ c) ⇒ a∧ (b∨ c) =
(a ∧ b) ∨ (a ∧ c).

Ma is the set of all elements y ≤ a such that there exists a normal chain between
y and a.
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An element a ∈ L will be called γ–modular with respect to b and c, a ≥ b
iff

a ∧ (c ∨ b) = (a ∧ c) ∨ b.

V. Kořínek uses Ore’s concepts of similar quotients, however, he
finds it effective to make some alterations to his definitions23 and dis-
tinguish lower and upper similarity:

Definition 3.8. Let L be a lattice, a, b, c, d, u, v ∈ L. The quotients
a/b, c/d will be called directly similar iff either a = b ∨ c and d = b ∧ c,
or c = d ∨ a and b = d ∧ a.
The quotients a/b, c/d will be called upper simply similar iff there

exist a quotient u/v such that

u = a ∨ v, u = c ∨ v, b = a ∧ v, d = c ∧ v.

The quotients a/b, c/d will be called lower simply similar iff there
exist a quotient u/v such that

a = b ∨ u, c = d ∨ u, v = b ∧ u, v = d ∧ u.

The quotient u/v will be called a middle quotient.

V. Kořínek applies the Zassenhaus method of refinement to his nor-
mal chains in the common way, however he distinguishes the refinement
as lower:

Definition 3.9. Let

a0 N a1 N . . .N ar (3.1)

b0 N b1 N . . .N bs (3.2)

be two normal chains in a lattice L. Then the following r chains will be
called the (lower) Zassenhaus chains of (3.1) with respect to (3.2):

ai ∨ (ai−1 ∧ b0) ≥ ai ∨ (ai−1 ∧ b0) ≥ · · · ≥ ai ∨ (ai−1 ∧ bs), i = 1, 2, . . . , r.

Analogously the following s chains will be called (lower) Zassenhaus
chains of (3.2) with respect to (3.1):

bj ∨ (bj−1∧a0) ≥ bj ∨ (bj−1∧a0) ≥ · · · ≥ bj ∨ (bj−1∧ar), j = 1, 2, . . . , s.

If a0 = b0 and ar = bs the chains will merge into one, and thus we
obtain a (lower) Zassenhaus refinement of the chain (3.1) and a (lower)
Zassenhaus refinement of the chain (3.2).

23Direct similarity is called expansion, contraction and similarity transposition by
O. Ore.
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After rewriting A. I.Uzkov’s results in terms of the relation N,
V. Kořínek investigates various properties of the defined concepts and
looks for solutions of the following problems:

• what are necessary and sufficient conditions for the relation N so
that the Zassenhaus chains created from two normal chains (3.1)
and (3.2) be also normal,

• under which conditions are the quotients of Zassenhaus chains from
(3.1) and (3.2) lower simple similar, with the given middle quo-
tient,

• when is the regular correspondence of [a, a∨ b]→ [a∧ b, b] a lattice
isomorphism?

V. Kořínek argues that all these problems cannot be solved for the
relation N generally, therefore in some theorems he places one more
condition upon the relation (which is weaker than A. I. Uzkov’s con-
dition (U)):

(A) to each arbitrary elements a, b ∈ L there exists at least
one element v ∈ L such that a N v and b ≥ v.

In his paper, V. Kořínek analyzes 10 conditions relating to the in-
dividual problems. His conditions for solving all the problems are the
following:

Theorem 3.7. Let L be a lattice with a relation N satisfying the con-
dition (A). Let (3.1) and (3.2) be two normal chains in L. Then the
corresponding Zassenhaus chains are normal, the quotients ai,j−1/ai,j
and bj,i−1/bj,i, i = 1, 2, . . . , r; j = 1, 2, . . . , s are lower simply similar
with the middle quotient

(ai−1 ∧ bj−1)/((ai−1 ∧ bj) ∨ (ai ∧ bj−1))

and the chains are quotient isomorphic iff the following conditions are
satisfied:
(i) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, c1 ≤ d1 N d2 holds:

(c2 ∨ d1) N (c2 ∨ d2),
(ii) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, d1 N d2 ≥ c2 holds:

(c1 ∧ d1) N (c1 ∧ d2),
(iii) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, d1 N d2, c1/c2 and

d1/d2 directly similar holds: every element x such that c1 ≥ x ≥ c2 is
γ–modular with respect to c2 and d1,
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(iv) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, d1 N d2, c1/c2 and
d1/d2 directly similar holds: every element y such that d1 ≥ x ≥ d2 is
β–modular with respect to d1 and c2.

V. Kořínek’s results found further generalization in a paper by
A. Ch. Livšic24 who points out that the condition (A) is not neces-
sary for the validity of the JHSZ Theorem. He gives an example of a
four-element lattice: a, b, a ∧ b, a ∨ b in which every element is normal
in itself and in the very preceding one. Then the JHSZ Theorem is
satisfied, however there does not exist an element which is normal in
a ∨ b and is smaller than or equal to a ∧ b. He, therefore, finds condi-
tions for V. Kořínek’s problems without the relation N satisfying the
assumption (A):

Theorem 3.8. Let L be a lattice with a relation N. Let (3.1) and (3.2)
be two normal chains in L. Then the corresponding Zassenhaus chains
are normal, the quotients ai,j−1/ai,j and bj,i−1/bj,i, i = 1, 2, . . . , r; j =
1, 2, . . . , s are lower simply similar with the middle quotient

(ai−1 ∧ bj−1)/((ai−1 ∧ bj) ∨ (ai ∧ bj−1))

and the chains are quotient isomorphic iff the following conditions are
satisfied:
(i) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, c1 ≤ d1 N d2 holds:

(c2 ∨ d1) N (c2 ∨ d2),
(ii) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, d1 N d2 holds:

(c1 ∧ d1) N ((c1 ∧ d2) ∨ (c2 ∧ d1)),
(iii) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, d1 N d2 holds: every

element x such that (c2 ∨ (c1 ∧ d1) ≥ x ≥ (c2 ∨ (c1 ∧ d2)) is γ–modular
with respect to c2 and c1 ∧ d1,
(iv) for each c1, c2, d1, d2 ∈ L satisfying c1 N c2, d1 N d2 holds: every

element y such that c1 ∧ d1 ≥ x ≥ ((c1 ∧ d2) ∨ (c2 ∧ d1)) is β–modular
with respect to c1 ∧ d1 and c2.

V. Kořínek’s paper is cited by several Romanian mathematicians
who based some of their results on [Koř1]: ”D. Barbilian25 and his
students generalized the notion of normality; the paper was, however,
published in Romanian” [Koh]. V. Kořínek’s results are often referred
to in contemporary papers by M. Benado (e. g. [Ben1, Ben2]).

24A. Ch. Livšic, O teoreme Jordana-Höldera v strukturach, Matematičeskij sbornik
n. s. 24 (1949), 227-235.
25Barbilian, D., Normalités localement ou intégralement involutives, Acad. Re-
pub. Pop. Romane Stud. Cerc. Mat. 4 (1953), 29–67.
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It is interesting that although V. Kořínek uses the notation for
lattice operation based upon O. Ore, the symbols are applied exactly
the other way round compared toOre. He denotes ”a∧b” by ”[a, b]” and
”a ∨ b” by ”(a, b)”. V. Kořínek gives an explanation that he follows
the notation from ideal theory. As the paper is written in German,
V. Kořínek uses the current German lattice theoretic terminology of
[Köt, H–K] and, with some alterations, German translations of O. Ore’s
concepts.

3.3.2 Lattices in which the theorem of Jordan–Hölder is
generally true [Koř2a] (1949)

The second paper of V. Kořínek concerning lattices also deals with
the JHSZ Theorem, though, this time the author does not investigate
it from the point of view of the Zassenhaus refinements. He shows
the relationship between the validity of this theorem and the covering
conditions. The inspiration for this investigation came from [LT–40], in
particular from a search for the meaning of covering conditions.
V. Kořínek investigates how the covering conditions are related to

the similarity of quotients, for which purpose he distinquishes two types
similar quotients in a lattice:

Definition 3.10. We say that a quotient a/b is downwards directly
similar to a quotient c/d by (denoted a/bց c/d) iff a = b∨c, d = b∧c.
We say that a quotient a/b is upwards directly similar to a quotient

c/d (denoted by a/bր c/d) iff b = a ∧ d, c = a ∨ d.
We say that a quotient a/b is similar to a quotient c/d iff there is a

finite number of quotients ai/bi, i = 1, 2, . . . , r such that in the sequence
a/b, a1/b1, . . . ,
ar/br = c/d each two subsequent quotients are directly similar.

The notions of upper and lower simple similarity is used in the same
meaning as defined in [Koř1]. V. Kořínek points out thatG. Birkhoff
[LT–40] uses the terms ”transposes” for ”directly similar quotients”
and ”projective quotients” for ”similar quotients”, however, he himself
prefers Ore’s terminology which he finds more convenient in the case of
general lattices.
In [LT–40] the Jordan–Hölder Theorem (JH Theorem) was proved

for modular lattices, and the modularity in lattices of finite chains was
shown to be equivalent to the covering conditions. V. Kořínek calls
them (in accordance with O. Ore) the Birkhoff conditions:
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Definition 3.11. We say that a lattice L satisfies the lower Birkhoff
condition (l.B.c.) iff (a covers b and c, b 6= c) implies (a and b cover
a ∧ b).
Dually, we say that a lattice L satisfies the upper Birkhoff condition

(u.B.c.) iff (b and c cover a, b 6= c) implies (b ∨ c covers b and c).

V. Kořínek shows the meaning of l.B.c. and u.B.c. in the relation
to the direct similarity of prime quotients:

Definition 3.12. We say that a lattice L satisfies the lower prime quo-
tient condition (l.p.q.c) iff a/bց c/d and a/b is a prime quotient imply
that c/d is also prime.
Dually, we define upper prime quotient condition (u.p.q.c.).

Figure 3.1: A lattice in which the l.B.c. and u.B.c. are true, but neither
the l.p.q.c. nor the u.p.q.c.

It is obvious that the l.p.q.c. implies the l.B.c. and the u.p.q.c.
implies the u.B.c. V. Kořínek shows that the converse is not gene-
rally true (only in lattices with finite chains) because of the example in
Figure 3.1 in which both l.B.c. and u.B.c. are true, but neither the
l.p.q.c. nor the u.p.q.c. He proves various other properties concerning
these conditions and then looks for their relation to the JH Theorem,
for the investigation of which he finds useful to distinguish two types of
this theorem:

Definition 3.13. Let L be a lattice with finite chains. Let a, b ∈ L, a >
b, let the chains (3.3), (3.4) be two maximal chains between a and b:

a = a0 > a1 > · · · > ar = b, (3.3)

a = b0 > b1 > · · · > bs = b. (3.4)

If for every two elements a > b of L and every two maximal chains (3.3),
(3.4) between them holds 1. r = s, and 2. there exists a one–to–one
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mapping between the quotients ai/ai+1, i = 0, 1, . . . , r − 1 and the quo-
tients bj/bj+1, j = 0, 1, . . . , r − 1 such that the corresponding quotients
are lower simply similar to each other, we shall say that L satisfies the
Jordan–Hölder theorem with lower simple similarity of quotients. Du-
ally we define the Jordan–Hölder theorem with upper simple similarity
of quotients.

By induction V. Kořínek proves the main theorem of the paper:

Theorem 3.9. Let L be a lattice with finite chains. The Jordan–Hölder
theorem with lower simple similarity of quotients holds in L iff L satisfies
the l.p.q.c. And dually.

V. Kořínek also shows that the corresponding quotients of the
chains (3.3) and (3.4) are determined uniquely in a lattice with the
l.p.q.c.:

Theorem 3.10. Let L be a lattice with finite chains satisfying the
l.p.q.c. Let (3.3), (3.4) be two maximal chains between a and b, a, b ∈
L, a > b. There exists one and only one mapping of the quotients of
the chain (3.3) onto the quotients of the chain (3.4) such that the cor-
responding quotients are lower simply similar. If a quotient ai/ai+1 is
lower simply similar to several quotients bj/bj+1, then it corresponds
to the quotient bj/bj+1 with the greatest index j in this mapping. And
dually.

The final part of the paper analyzes the JH Theorem in modular
and distributive lattices. V. Kořínek proves the following theorem by
applying the lower and upper Zassenhaus refinements of the chains:

Theorem 3.11. Let L be a modular lattice with finite chains, a ≥
b, a, b ∈ L and let (3.3), (3.4) be two maximal chains between a and b.
Then the lower simply similar mapping of the quotients of (3.3) onto
the quotients of (3.4) is identical with the upper simply similar mapping
of the quotients of (3.3) onto the quotients of (3.4). Therefore there
exists only one mapping of the quotients of (3.3) onto the quotients of
(3.4) such that the corresponding quotients are at the same time upper
and lower simply similar.

As this paper is written in Czech, V. Kořínek devotes the first part
to presenting the basic lattice theoretic concepts in Czech terminology
(mentioning also expressions used in other languages) as there had been
written little about lattices in Czech before his paper. He was criticized
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by O. Borůvka’s review in Mathematical Reviews 12 (1951), pp. 667,
668 for not mentioning his papers [Bor1, Bor3a, Bor5] in which ”the fun-
damental Czech terminology had been introduced”. As for the notation,
V. Kořínek chooses the symbols ”∧” and ”∨” in this work.
The results of this paper were cited or followed by several mathemati-

cians. Apart from the Czech ones whose work is described in the next
section, let us mention W. Felscher26 who generalized V. Kořínek’s
results to partially ordered sets and M. Benado who cited both this
and the previous work of V. Kořínek.
V. Kořínek produced also an English version of this paper (with

some amendments and simplifications): [Koř2b]. A summary of his
investigations concerning the JHSZ Theorem from [Koř1] and [Koř2a] is
the content of his other two papers: [Koř3], [Koř4].

3.4 Mathematicians influenced by V. Kořínek

Several papers of young Czech mathematicians of 1950’s either continued
in V. Kořínek’s investigations on lattice theory, or were inspired by dis-
cussions in his seminar. His students L. Janoš, Č. Vitner and V. Vil-
helm refer in their papers to some unpublished results of V. Kořínek
presented in the seminar ”Talks on group theory and related subjects”
in the Mathematical Institute of Czech Academy of Sciences and Arts
in the years 1948/49 and 1949/50.
This section analyzes the papers written by the mentioned young

mathematicians whose topics were mainly based on the investigations
from their RNDr. theses supervised by V. Kořínek. Another mathe-
matician whose early works were influenced by V. Kořínek and who
wrote a thesis supervised by him was V. Havel, he will be, however,
dealt with in a separate section.
Ludvík Janoš defended his thesis Properties of the Zassenhaus re-

finement, the results of which are presented in [Jan1], in 1949/1950, then
changed his field of investigation to an area concerning mainly functional
analysis, and later topology. After 1963 he deals with lattices only in
one paper.27

Čestmír Vitner started his mathematical research in algebra, but
he soon turned his interest to geometry, in particular differential geom-

26Felscher, W., Jordan–Hölder Sätze und modular geordenete Mengen, Mathem.
Zeit. 75 (1960/61), 83–114.
27Janoš, L., A minimal property of the Zassenhaus refinement, J. Nat. Sci. Math.
7 (1967), 101–111.
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etry of curves.28 He defended his thesis called Semimodular conditions
in lattices in 1951/52 and its results are the content of the paper [Vit].
Václav Vilhelm devoted more papers to lattice theory. [Vil1] in-

cludes the results of his thesis textitThe Jordan–Hölder theorem in lat-
tices without finite chains which was defended in 1951/52 and by 1963
he published two more papers from lattice theory: [Vil2] deals with the
Birkhoff conditions and [Vil3] with the representation of complete lat-
tices by sets. Later he returned to a lattice theoretic topic29 after having
written several papers from other areas.30

3.4.1 Properties of the Zassenhaus refinement
[Jan1] (1953)

This paper written by L. Janoš deals with the contruction of the Zassen-
haus refinement in lattices and groups. A detailed study of the first part
related to similar quotients in chains of lattices (as introduced in [Koř2a])
leads to the following result:

Theorem 3.12. Let L be a modular lattice. The Zassenhaus refinement
of two given chains in L is not a proper refinement iff the given chains
are lower simply similar.

Then the author investigates other features of the Zassenhaus refine-
ment and proves:

Theorem 3.13. Let L be a modular lattice. Then the Zassenhaus re-
finement of two given chains in L is the only Schreier refinement which
lies in the sublattice of L generated by the elements of the given chain.

The last part of the paper shows that analogous theorems (to the
presented lattice–theoretic) also hold for groups with composition series.

3.4.2 The semimodular conditions in lattices [Vit] (1953)

In his seminar V. Kořínek raised the following question:

28The reader can find more information about Čestmír Vitner e. g. in Ná-
deník, Z., Vilhelm, V., Šedesát let doc. RNDr. Čestmíra Vitnera, CSc., Časopis
pro pěstování matematiky 110 (1985), 442–445.
29Vilhelm, V., Über die Charakterisierung der Verbände durch ihre c–
Teilverbände, Časopis pro pěstování matematiky 103 (1978), 291–296.
30The reader can find more information about V. Vilhelm in Drábek, K., Docent
Václav Vilhelm šedesátníkem, Pokroky matematiky, fyziky a astronomie 31 (1986),
59.
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Is it possible to formulate two properties π1 (π2) of a lattice
such that the following conditions I–IV are fulfilled?

I. The conditions π1 and π2 are dual.

II. In any lattice L the following implications are true: if the
condition π1 (π2) holds, then L satisfies the lower (upper)
prime quotient condition.

III. If all chains of a lattice L are finite, then the following
equivalences hold: the condition π1 (π2) holds iff L satisfies
the lower (upper) prime quotient condition.

IV. A lattice L is modular iff L satisfies both conditions π1
and π2.

In the paper Č. Vitner employs the concepts from [Koř1, Koř2a] and
introduces the following new notions:

Definition 3.14. We say that a lattice L satisfies the lower condition
of maximal chains iff for any lower directly similar quotients a/b, c/d
and any maximal chain {aι} between a, b in L the chain {cι} formed by
cι = aι ∧ c is a maximal chain between c, d. Dually we define the upper
condition of maximal chains.

Definition 3.15. Let L be a lattice, a/b, c/d be any lower directly
similar quotients in L, {aι} be a maximal chain between a and b. Let
us denote by Kl the set of all elements of {aι} which are not γ–modular
with respect to b and c. We say that L satisfies the γ–condition iff the
set Kl is either empty, or it has a maximal element. By means of β–
modularity we dually define the set Ku ⊂ {dι} (where {dι} is a maximal
chain between c and d) and β–condition.

The definitions of the conditions π1 and π2 which solve the problem
of V. Kořínek are given as follows:

Definition 3.16. We say that a lattice satisfies the lower semimodular
condition (which is the condition π1) iff it satisfies both the γ–condition
and the lower condition of maximal chains.
We say that a lattice satisfies the upper semimodular condition (which

is the condition π2) iff it satisfies both the β–condition and the upper
condition of maximal chains.

Č. Vitner proves that these conditions satisfy I – IV and shows that
the lower/upper condition of maximal chains is independent of γ/β–
condition. He also gives some other properties of lattices related to the
problem and shows the connection of the lower and upper conditions for
maximal chains to the Schreier Theorem.
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3.4.3 The Jordan–Hölder theorem in lattices without the
finite chain condition [Vil1] (1954)

V. Vilhelm generalizes V. Kořínek’s investigation of the JH theorem
with lower or upper simple similarity of quotients, particularly, he shows
that it is possible to replace the finite chain condition from [Koř2a] by
weaker ones. For infinite chains the JH theorem with simple quotient
similarity is defined as follows:

Definition 3.17. Let L be a lattice. We say that in L the Jordan–
Hölder theorem with lower simple similarity of quotients holds iff for
any two elements a, b ∈ L, a < b and any two maximal chains C1(a, b)
and C2(a, b) between a and b there exists a one–to–one mapping of the
set of all prime quotients of the chain C1(a, b) onto the set of all prime
quotients of the chain C2(a, b) such that the corresponding quotients are
lower simply similar. This mapping will be called the Jordan–Hölder
mapping.

V. Vilhelm denotes an arbitrary (also infinite) chain between ele-
ments a and b of a lattice L, a ≤ b by {aι}ρ0, where ι goes through a set
M ordered by a relation ≺ with the first element 0 and the last element
ρ, a = a0, b = aρ such that

ι, κ ∈M, ι ≺ κ ⇒ aι ≤ aκ.

He introduces the following properties of a lattice L:

Property I : Every quotient of L is a complete lattice (as a
sublattice of L).

Property II : For any chain {aι}ρ0, ι ∈M in L and any c ∈ L
holds

λ ∈M,λ 6= 0 ⇒
∨

i∈M,ι≺λ

(aι ∧ c) = (
∨

ι∈M,ι≺λ

aι) ∧ c.

Property III : For any maximal chain {aι}ρ0, ι ∈ M in L and
any two elements aα, aβ ∈ {aι}ρ0, aα < aβ there exist ele-
ments aκ, aλ ∈ {aι}ρ0 such that aα ≤ aκ < aλ ≤ aβ , and
aλ/aκ is a prime quotient in L.

Property IV : For every maximal chain (without repetitions)
in L {aι}ρ0 and every its quotient aρ/b holds:

λ ∈M,λ 6= ρ ⇒
∧

ι∈M,λ≺ι

(aι ∨ b) = (
∧

ι∈M,λ≺ι

aι) ∨ b.
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V. Vilhelm proves some consequences of the properties I, II, III and
IV and observes that the lattice of subgroups of a group satisfies I,
II and III and so does a lattice in which every non–void subset of a
quotient has at least one maximal element. He describes a way how to
make the Zassenhaus construction for an arbitrary maximal chain: if
{aι}ρ0, ι ∈ M is a maximal chain (without repetitions) in a lattice L,
aκ, aλ ∈ {aι}ρ0, and aκ/aλ is a prime quotient, we shall write κ = λ+ 1.
Let a, b ∈ L, a < b and let

{aι}ρ0, ι ∈M,a0 = a, aρ = b, (3.5)

{bκ}σ0 , κ ∈ N, b0 = a, bσ = b, (3.6)

be two maximal chains without repetitions between a and b. We shall
denote by A the set of all ι ∈ M for which there exists aλ ∈ {aι}ρ0 such
that aλ/aι is a prime quotient (i.e. λ = ι + 1). Analogously we obtain
the set B from {bκ}σ0 . Now we can construct the lower Zassenhaus
refinement of the chains (3.5) and (3.6):

aι,κ = aι ∨ (bκ ∧ aι+1), for all ι ∈ A,κ ∈ N,

bκ,ι = bκ ∨ (aι ∧ bκ+1), for all κ ∈ B, ι ∈M.

Thus we obtained the refined chains:

{{aι ∨ (bκ ∧ aι+1)}κ=σ
κ=0}ι∈A, (3.7)

{{bκ ∨ (aι ∧ bκ+1)}ι=ρ
ι=0}κ∈B . (3.8)

By investigating properties of the quotients of the chains (3.5), (3.6),
(3.7) and (3.8) and the Jordan–Hölder mapping of the prime quotients
of (3.5) and (3.6) V. Vilhelm proves the main theorem of the paper:

Theorem 3.14. Let a lattice L have the properties I, II and III. Then
the JH theorem with lower simple similarity of quotients holds iff 1. L
satisfies the lower prime quotient condition, and 2. L has the property
IV.

The author also shows that the condition 2. from the preceding the-
orem can be replaced by another one: 2’. in L there does not exist a
sublattice isomorphic to the lattice in Figure 3.2. The lattice in Fig-
ure 3.2 consists of a maximal chain without repetitions {aι}ρ0, ι ∈ M
(M −{0} does not have a first element) and a chain {bι}ρ0, b0 = a0 in L,
aρ/bρ is a prime quotient in L and

ι ∈ A ⇒ aι+1/aι ∼d bι+1/bι, aι ∨ bρ = aρ, aι ∧ bρ = bι,
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a0

bι

aι bρ

aρ = bρ+1

Figure 3.2: A lattice from the condition 2’ of Theorem 3.14

where A is the set of all ι ∈M for which there exist ι+ 1.
Further V. Vilhelm generalizes V. Kořínek’s results by proving

that Theorem 3.9 remains valid even if we replace the precondition that
L is a lattice satisfying the finite chain condition by a weaker precon-
dition that there exists one maximal chain of a length r. The theorem
still holds even if we replace the other precondition, i. e. that L satisfies
the lower prime quotient condition, by the lower Birkhoff condition.

3.4.4 The selfdual kernel of the Birkhoff conditions in
lattices with finite chains [Vil2] (1955)

In this paper V. Vilhelm investigates the Birkhoff conditions in lattices
with finite chains building upon the work of V. Kořínek [Koř2a] (the
notions of direct and simple similarity of quotients, the Jordan–Hölder
theorem with lower/upper simple similarity of quotients) and O. Ore
[Ore5], from which he adopts the notion of a cyclic lattice:

Definition 3.18. A lattice L is called cyclic iff it is the sum (in the
sense of set theory) of such two chains C1(a, b) and C2(a, b) that have
only the elements a, b in common.

Definition 3.19. A sublattice L1 of a lattice L is called saturated (in
L) iff any maximal (=saturated) chain in L1 is maximal in L too.

V. Vilhelm proves the following theorem:

Theorem 3.15. Let L be a lattice with finite chains. L satisfies the
lower Birkhoff condition iff it contains neither a saturated cyclic sublat-
tice of the length ≥ 3 nor a saturated sublattice isomorphic to the lattice
in Figure 3.3.
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Figure 3.3: A lattice from Theorem 3.15

The author pays attention to the first condition (the non–existence
of a saturated sublattice of the length ≥ 3) which is selfdual and is
necessary for both the lower and upper Birkhoff conditions. This in-
vestigation leads to answering the problem of weakening Kořínek’s
theorem 3.8: replacing the Jordan–Hölder theorem with lower/upper
similarity of quotients by the Jordan–Hölder theorem with similarity of
prime quotients:

Definition 3.20. We shall say that a lattice L with finite chains satisfies
the Jordan–Hölder theorem with similarity of prime quotients iff for any
two maximal chains in L there exists a one–to–one mapping of the set of
the prime quotients of the one chain onto the set of the prime quotients of
the other chain such that the corresponding prime quotients are similar
to each other.

V. Vilhelm obtains the following theorem:

Theorem 3.16. Let L be a lattice with finite chains. The Jordan–
Hölder theorem with similarity of prime quotients holds in L iff this the-
orem is true for any two maximal chains which form a cyclic sublattice
of L of the length ≥ 3.

The last part of the paper presents another modified version of the
Jordan–Hölder theorem which enables us to replace the previous theo-
rem with a more effective one.



238 Štěpánka Bilová

3.4.5 A note on complete lattices represented by sets
[Vil3] (1962)

I. V. Stelleckij31 gave necessary and sufficient conditions for a com-
plete lattice to be representable by sets.32 In this note V. Vilhelm
proves that Stelleckij’s conditions can be formulated in another form,
which shows a relation of complete lattices to compactly generated lat-
tices (this notion is taken from P. Crawley33):

Definition 3.21. An element a of a complete lattice L is called chain–
compact iff for each chain {aα}, α ∈ A in L such that a ≤ ∨

α∈A
aα

there exists an α0 ∈ A such that a ≤ aα0 . L is called chain–compactly
generated iff each of its elements is a join of chain–compact elements.

Theorem 3.17. A complete lattice L can be represented by sets iff L
is chain–compactly generated.

V. Vilhelm shows a characterization of compactly generated lattices
as a representation by sets (which is related to the studies of [B–F]). The
investigation makes it possible to generalize a result from the mentioned
paper by P. Crawley by proving:

Theorem 3.18. Let L be a complete lattice representable by sets. If
every two quotients a∨b/a and b/a∧b are isomorphic, then L is modular.
In the final part of the paper V. Vilhelm applies the results to the

validity of the Jordan–Hölder Theorem with lower simple similarity of
quotients in complete lattices.

3.5 Ladislav Rieger and lattices

Ladislav Svante Rieger (1916–1963) devoted to the field of lattice
theory several early papers which concerned mainly Boolean algebras.
He successfully applied the results he obtained to mathematical logic
and axiomatic set theory which became his main research interests.

31Stelleckij, I. V., O polnych strukturach predstavimych množestvami, Usp.
matem. nauk 12 (1957), 177–180.
32I. V.Stellectij’s result: a complete lattice L can be represented by sets iff 1.
for any x ∈ L and any chain {yα} in L: x ∧ W

α

yα =
W

α

(x ∧ yα) and 2. every z ∈ L

exists in the form z =
W

γ

zγ , where for each zγ holds: (zγ =
W

δ

tδ, {tδ} is a chain in L)

⇒ zγ = tδi .
33Crawley, P., The Isomorphism Theorem in compactly generated lattices, Bul-
letin of the American Mathematical Society 65 (1959), 377–379.
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L. Rieger’s first papers [Rie1, Rie2, Rie3] (which form in fact
three parts of a single work, based on his doctoral thesis supervised
by V. Kořínek and defended in 1945/46) deal with ordered groups.
The aim of the papers is to investigate how the fact that a group can be
ordered determines the algebraic structure of the group, and in which
manner this structure is determined if the group can be ordered in some
specific way. The first two parts use only algebraic methods of proofs,
however, in the third one the author also makes a full use of topological
means. The work was written in the difficult period at the end of WWII
and after it (autumn 1944 and a year later) which resulted not only in a
delay in publishing it, but obstacles in obtaining up–to–date literature
caused that L. Rieger was not aware of the fact that his ”magnitude
subgroups” are identical to G. Birkhoff’s concept of ”l–ideals”34 in-
troduced in [Bir4], p. 310, thus he rediscovered the term and repeated
its relations to congruences and lexicographic products and unions.
After WWII L. Rieger turned his attention to lattice theory, Bool-

ean algebras, which mathematical logic and axiomatic set theory. His
work was influenced to a great extent by Polish mathematicians–logicians,
especially after he had had an opportunity to take part in the seminar of
Professor L. Mostowski in Warsaw during April 1950 ([Rie7], p. 29).35

The following subsections contain the main results of L. Rieger’s
works concerning lattice theoretic questions, however, we shall not present
a very detailed analysis as we would often need a much wider background
of mathematical logic to describe all the applications. The paper [Rie4]
deals with topological representation of distributive lattices, the work
[Rie5] presents a lattice theoretic characterization of Heyting formulation
of Browerian propositional logic, the papers [Rie6, Rie7, Rie10, Rie11] in-
vestigate special kinds of Boolean algebras, often with a view of their ap-
plication to mathematical logic: the generalized σ–algebras from [Rie7]
are applied for a new poof of K. Gödel’s completeness theorem, a
more general Suslin algebras from [Rie10] are used for the descrip-
tion of predicate variables. Some of the mentioned papers, namely
[Rie6, Rie8, Rie10], solve several G. Birkhoff’s problems stated in
[LT–48], or questions connected with them. The book [Rie9] is interest-
ing for its special position and role in the list of L. Rieger’s work, it is
aimed at the audience of non–mathematicians.

34By an l–ideal of an l–group G is meant a normal subgroup of G which contains
with any a also all x such that |x| ≤ |a|, where the absolute |a| is a ∨ −a.
35The reader who is interested in L. Rieger’s life and work is referred to Čulík, K.,
O životě, díle a osobnosti L. Riegera, Časopis pro pěstování matematiky 89 (1964),
492–495.
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Before presenting L. Rieger’s results, let us recall some notions
from mathematical logic which will be used further.

A Browerian logic is a (two–valued) propositional calculus in which
the validity of proof by contradiction is not assumed. Although the
implication P → (P ′)′ is admitted, (P ′)′ → P is not. There is a close
analogy between Browerian logic and the distributive lattice of open sets
of a topological space, which was recognized byM. H. Stone [Sto2] and
A. Tarski [Tar2], their specific correlation with Browerian lattices36 was
accomplished by G. Birkhoff in [LT–40] ([LT–67], p. 281).

The Lindenbaum–Tarski algebra of a propositional/lower predicate
calculus is the set of all formulas of the (two–valued) propositional/lower
predicate calculus in which equivalent formulas became identified.

The fundamental completeness theorem (K. Gödel) on the propo-
sitional calculus states that the class of all derivable formulas coincides
with the class of all tautologies. Using the notion of the Lindenbaum–
Tarski algebra this theorem can be translated into the language of the
theory of Boolean algebras.

3.5.1 A note on topological representations of distribu-
tive lattices [Rie4] (1949)

This paper is based on the work [Sto2] where M. H. Stone intro-
duced topological representations of distributive lattices. L. Rieger
uses M. H. Stone’s terminology: a µ–ideal meaning an ideal of a lat-
tice, and an α–ideal for a dual ideal of a lattice. Other sources of lattice
theoretic notions he drew from were [LT–40] and [H–K].

We say that a distributive lattice L is topologically represented in a
topological T0–space S(L) iff there exists an isomorphism between L and
a set ring R of certain open subsets of S(L), where R forms an open basis
of S(L).37 M. H. Stone [Sto2] presented a description of a ”universal”
T0–space S̄(L) which contains every representation T0–space S(L) of a
given distributive lattice L as a dense subspace. S̄(L) is the space of all
prime dual ideals of L. L. Rieger introduces another characterization
of S̄(L) for distributive lattices with 1.

By developing M. H. Stone’s ideas [Sto2] concerning the theory of
prime ideals and using E. Čech’s concept of a pseudocomplete system

36A Browerian lattice is a lattice in which every two elements have a relative pseudo–
complement, the largest element x with a ∧ x ≤ b.
37We can also speak of representations by a ring of closed sets of S(L).
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of neighborhoods of a point38 L. Rieger proves the main theorem of
the paper:

Theorem 3.19. The space S̄(L) of all prime dual ideals of a distributive
lattice L with 0 and 1 is a bicompact T0–space having an open basis R′

with the following properties:
(i) any system of open sets of R′ has a non–void intersection if every

finite subsystem thereof does,
(ii) any pseudocomplemented system Q′ of neighborhoods of a point

p ∈ S̄ which contains with A1 and A2 also A3 ⊂ A1 ∩ A2 is a complete
system of neighborhoods of p.
Conversely, if a bicompact T0–space S̄ has an open basis R′ satisfy-

ing (i) and (ii), then S̄ can be taken as the space of all prime dual ideals
of the distributive lattice R generated by R′ with 0 and 1 adjoined.
A bicompact T1–space S̄ satisfying (i) and (ii) is a totally discon-

nected bicompact Hausdorff space, i.e. a Boolean space.39

L. Rieger deduces the following consequences from the stated the-
orem:

Theorem 3.20. Any distributive lattice with 0 and 1 in which all prime
dual ideals are maximal is a Boolean algebra.

Theorem 3.21. Any distributive lattice with 0 in which all prime dual
ideals are maximal is a generalized Boolean algebra.

3.5.2 On the lattice theory of Brouwerian propositional
logic [Rie5] (1949)

The purpose of this paper as stated by L. Rieger is to show that by
using the notion of certain special free distributive and residuated lattice,
lattice theory can be made an efficient mathematical tool for both the
syntax and the semantics of a language using Browerian logic.
The timing of the paper was rather unfortunate as it was published

a year after [LT–48] and after the paper of J. C. C. McKinsey and
A. Tarski [M–T] which deal with similar problems, however, neither of
them was available for L. Rieger when working on this paper. Thus,
he independently gives a definition of a lattice with a free set of gen-
erators analogous to G. Birkhoff’s general definition of free algebras,

38A system Q of open sets A of the open basis R of any T0 space S′ is called a
pseudocomplete system of neighborhoods of a point p ∈ S′ iff

Q

p∈A∈R′
A =

Q

A∈Q′
A.

39The term Boolean space was introduced by M. H. Stone in [Sto1].



242 Štěpánka Bilová

and also proves several results established by J. C. C. McKinsey and
A. Tarski.40

L. Rieger uses the notion of residuated lattice in accordance with
M. Ward and R. P. Dilworth41 and calls its special type sdruz–
lattices:

Definition 3.22. A distributive lattice L is said to be a residuated
lattice iff there is a binary operation a : b ∈ L defined for each a, b ∈ L
which fulfills the following conditions:
(1) (a : b) ∧ b ≤ a,
(2) if x ∧ b ≤ a, then x ≤ (a : b).
A countable distributive residuated lattices with 0 and 1 will be

called a sdruz–lattice.

The author proves the following isomorphism theorem for sdruz–
lattices:

Theorem 3.22. Let I be an ideal of a sdruz–lattice L, let x ≡ y iff
there exists an element c ∈ I such that x ∧ c = y ∧ c. Then the relation
≡ is a congruence on L; and thus L/I is a homomorphic image of L.
Conversely, every homomorphic image of L can be obtained in this

way from some ideal I.

L. Rieger also shows that if I is the ideal consisting of the elements
x ∈ L such that n : x = n, where n is a non–zero element of L, then
L/I is a Boolean algebra.
The central notion of the paper are free sdruz–lattices:

Definition 3.23. A sdruz–lattice L is called a free sdruz–lattice gen-
erated by its subset G iff for every lattice L′ with generators G′ every
mapping of G into G′ can be extended to a homomorphic mapping of L
into L′.

L. Rieger shows possible realizations of the defined concept; the
same free sdruz–lattice can be constructed in various ways within four
areas: in the semantical theories of extensional logical evaluation, of
meaning, of a material implication of sentences and in the syntactical
theory of the Heytig calculus of propositions. It is proved that, by
considering well–formed formulas of the Heyting calculus as equivalent

40L. Rieger mentions that he had not seen their paper [M–T] earlier than when
his own work was ready for press.
41Ward, M., Dilworth, R. P., Residuated lattices, Transactions of the American
Mathematical Society 45 (1939), 335–354.
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when they give the same value for every finite sdruz–lattice, we obtain
a free sdruz–lattice with a countable infinity of generators. This sdruz–
lattice is also a characteristic matrix for the Heyting calculus because
it can be obtained by considering well–formed formulas α and β of the
Heyting calculus as equivalent if both α→ β and β → α are provable.
Further, his results enable L. Rieger to give a decision method

for the Heyting calculus which produces a method for proving several
identities in general topology and in abstract algebra. Compared to
similar results of J. McKinsey and A. Tarski this decision method
is ”more explicit, though equally impracticable to apply”.42 A number
theoretic realization is given for a free sdruz–lattice with one genera-
tor. L. Rieger also obtains some known theorems of K. Gödel and
V. Glivenko as consequences of his results. L. Rieger presents a num-
ber of other considerations about applying the concept of sdruz–lattices
to the Heyting calculus.

3.5.3 On free ℵξ–complete Boolean algebras [Rie6] (1951)
In this paper L. Rieger deals with some properties of free ℵξ–complete
Boolean algebras in general and concentrates more on σ–complete Bool-
ean algebras.

Definition 3.24. A Boolean algebra A is called ℵξ–complete iff any
subset of A whose power does not exceed ℵξ has a greatest lower bound
and a least upper bound in A. Let m be any cardinal number. An
ℵξ–complete Boolean algebra Aℵξ

m is said to be free with m free ℵξ gen-
erators iff there exists a subset G ⊂ A

ℵξ
m whose power is m satisfying

the following properties:

(i) the only ℵξ–complete subalgebra of Aℵξ
m containing G is A

ℵξ
m itself,

i. e. the elements of G ℵξ–generate Aℵξ
m ,

(ii) if ϕ is any mapping of G into another ℵξ–complete algebra B,
then ϕ can be extended to a ℵξ–complete homomorphic mapping of the
whole algebra A

ℵξ
m into B.

If ℵξ = ℵ0 we speak about σ–complete Boolean algebras, in short
σ–algebras.

L. Rieger begins the paper by proving some theorems on the ex-
istence of free ℵξ–complete Boolean algebras (he constructs Aℵξ

m ), on

42The review by J. C. C. McKinsey, Mathematical Reviews 12 (1951), pp. 663–
664.
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the uniqueness of A
ℵξ
m and the universality of A

ℵξ
m . Then he is inter-

ested almost exclusively in free σ-algebras because of their possibilities
of application, which he justifies by the following theorem:

Theorem 3.23. For any ℵξ ≥ 2ℵ0 (and hence for any uncountable ℵξ
by the Continuum Hypothesis) the free ℵξ–complete Boolean algebra Aℵξ

m

with m ≥ ℵ0 cannot be ℵξ–isomorphically represented by an ℵξ–additive
field of sets.

L. Rieger proves this theorem by using a result of R. Sikorski43

and points out that it in fact leads to the solution of Problem 80 of
[LT–48], p. 168 which asks for a generalization (to cardinal numbers
other than countable infinity) of L. H. Loomis’ Theorem:44

Theorem 3.24. Any σ–complete Boolean algebra is a σ–homomorphic
image of a σ–field of sets.

The mentioned results of R. Sikorski states that for ℵξ ≥ 2ℵ0 , an
ℵξ–complete Boolean algebra cannot be isomorphic to a quotient algebra
X/I, whereX is an ℵξ–additive field and I is an ℵξ–additive ideal of sets.
Thus it yields the impossibility of a positive solution to Problem 80.
L. Rieger himself presents two strengthened forms of L. H. Loomis’

Theorem, the first gives details of the isomorphism, the second one, in-
volving topological strengthening, is the following:

Theorem 3.25. Any free σ–algebra A
ℵξ
m with m generators is σ–iso-

morphically represented by the minimal σ–field of Borel subsets of the
Cantor discontinuum Cm.

This theorem produces a positive solution, and in fact a generaliza-
tion, of another problem from [LT–48], Problem 79, p. 168:

Prove (or disprove) that the free Boolean σ–algebra with
countably many generators is isomorphic with the field of all
Borel subsets of Cantor discontinuum.

Apart from the solution of G. Birkhoff’s problem L. Rieger’s theo-
rem is also a generalization of some results of R. Sikorski.45

43Sikorski, R., On the representation of Boolean algebras as fields of sets, Fund.
Math. 35 (1948), 247–258.
44Loomis, L. H., On the respresentation of σ–complete algebras, Bulletin of the
American Mathematical Society 53 (1947), 757–760.
45Sikorski, R., On inducing of homomorphisms by mappings, Fund. Math. 36
(1949), 7–22.
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L. Rieger’s attention is naturally drawn also to another problem of
G. Birkhoff concerning the discussed topic, to Problem 78, [LT–48],
p. 168:

Prove (or disprove) that if a Boolean σ–algebra A is gener-
ated by a subset G, then every a > 0 in A contains some
finite or infinite countable meet ∧gi > 0 of elemets of G.

L. Rieger shows that disproving can be accomplished by an easy ex-
ample, and therefore he looks for a modification of the problem: ”Does
there exist, for any a 6= 0 in any free σ–algebra a set of free generators G
such that 0 6= ∧gi ≤ a, gi ∈ G?” The affirmative answer to the question
is obtained by Theorem 3.26.
The last part of the paper deals with an application of the previous

results to logic, specifically to the Lindenbaum–Tarski algebra of the
lower predicate calculus.
This paper found a response in a paper by R. Sikorski46 where the

author presents a theorem whose consequences are L. Rieger’s results
concerning the strengthening of L. H. Loomis’ Theorem.

3.5.4 On countable generalised σ–algebras, with a new
proof of Gödel’s completeness theorem [Rie7]
(1951)

This paper treats the same subject as the previous one: σ–algebras and
their application to logic. L. Rieger presents a generalization of the no-
tion of σ–algebras: he considers certain families Φ of multiple sequences
(called marked sequences) in a Boolean algebra B which satisfy seve-
ral conditions (the rule of complement, the rule of joins and meets, the
rule of identification of chosen indices - forming ”diagonal” sequences,
the rule of fixation of indices - forming ”cylindric”sequences, the rule of
trivial sequences, the rule of the lowest upper bound and the greatest
lower bound and the rule of a partial lowest upper bound and partial
greatest lower bound). The author calls this generalized σ–algebra a
Φσ–algebra. After defining an appropriate generalizations of the basic
notions of σ–homo(iso)morphisms, σ–ideals and the corresponding quo-
tient algebras, L. Rieger proves that if Φ is countable, then Φσ–algebra
can be represented by a field of sets, which, however, does not hold ge-
nerally.

46Sikorski, R., A note to Rieger’s paper ”On free ℵξ–complete Boolean algebras”,
Fund. Math. 38 (1951), 53–54.
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Since the Lindenbaum–Tarski algebra of the lower predicated calcu-
lus provides a typical example of a countable Φσ–algebra with a count-
able family Φ, we immediately obtain a new proof of K. Gödel’s com-
pleteness theorem.

3.5.5 Some remarks on automorphisms in Boolean
algebras [Rie8] (1951)

The aim of the paper is to construct a Boolean algebra admitting no
proper homomorphic mapping onto itself. L. Rieger’s construction
of B is topological: he solves an equivalent topological problem (thus
disproving the hypothesis that every zero–dimensional bicompact space
should admit some proper homeomorphic transformation onto a suitable
subspace of it):

Theorem 3.26. There exists a zero dimensional bicompact ordered
(consequently hereditary normal) space Q without proper homoemorphic
transformations onto any subspace Q1 of Q.

A consequence of this theorem is the negative answer to Prob-
lem 74 of [LT–48], p. 162: ”Does every infinite Boolean algebra A
admit a proper automorphism?” L. Rieger remarks that this prob-
lem is solved also by M. Katětov in [Katě] who used the method of
Čech’s bicompactification and has priority over his result.47 Another
independent solution to Problem 74 was presented by B. Jónsson,48

whose method is similar to L. Rieger’s (constructing a compact zero–
dimensional Hausdorff space admitting no proper homeomorphism onto
itself).
L. Rieger concludes the paper with some remarks on Problem 75

of [LT–48], p. 162 which is as follows:

Does there exist a (finite) lattice, not a Boolean algebra,
which has a dual automorphism σ of period 2, permutable
with every lattice automorphism? Must σ be unique? What
about non–Desarguesian projective geometries?

L. Rieger shows on examples that the answers to the first two questions
are positive (the first being a trivial example of a finite or a suitable

47The paper [Katě] gives also a negative answer to Problem 76 of [LT–48], p. 166:
”Do the order topology and interval topology coincide for a complete Boolean alge-
bra?”
48Jónsson, B., A Boolean algebra without proper automorphisms, Proceedings of
the American Mathematical Society 5 (1951), 766–770.



Chapter 3. Lattice theory in Czech mathematics . . . 247

infinite chain, for the second, more examples of finite and infinite lattices
are given).

3.5.6 On groups and lattices [Rie9] (1952)

This book was published in Czech as one of the volumes of the Series
called ”A Road To Knowledge” whose aim was to introduce specialized
topics of natural sciences to a reader who is not a professional in the
field. The books are not supposed to play the role of textbooks, they
should inform the reader about the content of a particular area.

The task of L. Rieger was to present the basic notions of group
theory and lattice theory, which did not involve an easy job. First, we
must consider how abstract the topic is, and also the period when the
book was written. The year of publishing is 1952, which means the time
when group theory is in Czech language described only inO. Borůvka’s
textbook [Bor3a] and lattice theory such as only in the introduction to
V. Kořínek’s paper [Koř2a]. The author bears in mind that it is neces-
sary to combine accessibility and comprehensibility with mathematical
precision. L. Rieger shows on various examples how general the topic
is and how many specific shapes both groups and lattices may appear
in. He points out their applications in natural and technical sciences
and introduces several typical methods of proof. He also outlines some
resent results as well as some topical problems emerging in the theories.

The part about lattice theory consists of the following chapters: 1.
Introduction, 2. Partial order and semiorder, the concept of lattice in
terms of a semiorder, examples of lattices, 3. The notion of lattice in
terms of two operations, basic axioms of lattice theory, the principal
of duality, lattice isomorphism and homomorphism, isomorphic repre-
sentation, 4. Axioms of distributivity and a complement, the notion of
Boolean algebra, 5. The theory of finite Boolean algebras, 6. ”Rational
functions” on a Boolean algebra (Boolean functions), complete normal
forms, 7. The principle of application of Boolean functions to the alge-
bra (0, 1) in electrical engineering, 8. An application of Boolean algebras
to propositional (theoretical) logic, 9. Modular lattices, modular and
complemented lattices, projective geometries as lattices, continuously
dimensional projective geometries, 10. Conclusion.
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3.5.7 On Suslin–algebras and their representations
[Rie10] (1955)

The paper presents a continuation of some investigation from [Rie6],
dealing with a special type of σ–algebras. L. Rieger introduces alge-
braic analogs of various notions of descriptive theory with the aim to
”bring certain preparative considerations to a planned new theory of
the quantification of predicate variables of mathematical logic” (p. 142),
however, his results can be viewed independently of mathematical logic.

Definition 3.25. Let B be a Boolean algebra and {bk1,k2,...,kn} be a
system of elements of B where k1, k2, . . . , kn = 1, 2, . . . ;n = 1, 2, . . .
(the so called Suslin–system). We say that B is a Suslin–algebra, or
S–algebra iff

sup
{kn}∞n=1

inf
n=1,2,...

bk1,...,kn ∈ B,

where sup and inf are meant in the sense of the lattice ordering of B.
If its elements are sets, the S–algebra is called an S–field.

Definition 3.26. Let {bjk1,...,kn} for j = 1, 2, . . . be a sequence of Suslin
systems in a Boolean algebra B. Then the Suslin system {al1,...,lm} given
by

ak = b1k,
ak,l = b1k ∧ b1k,l,

ak,l,m = b1k ∧ b1k,l ∧ b2m,

ak,l,m,n = b1k ∧ b1k,l ∧ b2m ∧ b1k,l,n,

. . .

is called the diagonal system of the sequence {bjk1,...,kn}
∞
j=1.

The author defines other algebraic notions applied to S–algebras: S–
homomorphism, S–ideal, factor S–algebra, free S–algebra and two types
of distributivity laws in S–algebras: let A(bk1,...,kn) denote the so called
Suslin A–operation: A(bk1,...,kn) = supz

∧∞
n=1 bz1,...,zn , z = z1, . . . , zn; an

S–algebra B is called weakly distributive iff

∧∞
i=k

∨∞
k=1

ai,k = A(bz1,...,zn),

where bz1,...,zn = a1,z1 ∧a2,z2 ∧· · ·∧an,zn ; B is called strongly distributive
iff for any infinite sequence of Suslin system {aiz1,...,zn}:

∧

i

A(aiz1,...,zn) = A(bt1 , . . . , btn).
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L. Rieger shows that the weak distributivity is not implied by the
strong distributivity, and that there exists an S–algebra which is strongly
distributive and satisfies the strong zero–condition,49 e. g. the S–field
of all subsets of a set. Every S–field of sets is strongly distributive,
but there exists strongly distributive S–algebras not isomorphic to a
set–field. The author proves the following existence and uniqueness the-
orems:

Theorem 3.27. To each cardinal m > 0 there exists a free strongly
distributive S–algebra with m free generators. This algebra is unique to
within S–isomorphism.

Theorem 3.28. To each cardinal m > 0 there exists a free weakly
distributive S–algebra satisfying the strong zero–condition with m free
generators. This algebra is unique to within S–isomorphism.

The main result of the paper is the following:

Theorem 3.29. The set–field of the C–subsets of the Cantor discon-
tinuum (i. e. the set field obtained by starting from open–and–closed
subsets and repeating the Suslin A–operation and complementation) is
a free strongly distributive S–algebra with countable many generators.

This theorem yields a positive solution to a very restricted form
of Problem 80 of [LT–48] (see the analysis of [Rie6]): restricted to
distributive S–algebras, while this problem has a negative solution even
for general S–algebras.
The author also shows an algebraic extension of the Kolmogorov–

Sierpiński process and the consequences of this extension. At the end of
the paper he suggests the possibilities of applying the obtained results
to mathematical logic.

3.5.8 A remark on free closure algebras [Rie11] (1957)

This note was written to correct one theorem which appeared in [LT–48]
(p. 189), its Russian translation, and was thus distributed further. The
theorem states that the free closure algebra50 with one generator has
exactly sixteen elements. L. Rieger gives an example of an infinite

49B satisfies the strong zero–condition iff for each bαk ∈ B(0 < ω0, α < ω1) such
that bαk ∧ bβk = 0(α < β < ω1) holds: infα

W

k b
α
k = 0.

50A closure algebra is defined as a Boolean algebra with a closure operation satis-
fying: 1. x ∨ y = x ∨ y, 2. 0 = 0, 3. x ⊆ x, 4. x = x.
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closure algebra with one generator which proves that such a free alge-
bra must be countably infinite. He also remarks that this result can
be deduced from [M–T] or [Rie5]. The incorrect theorem was ascribed
to K. Kuratowski, also wrongly, as L. Rieger points out. He sees a
probable source of both mistakes in a wrong interpretation of K. Kura-
towski’s survey51 of 14 sets which are possible to obtain from a given
set by means of the closure operation and the operation of complements.

3.6 Karel Koutský and lattices

Karel Koutský (1897–1964) was active in several areas of mathema-
tical research: geometry, number theory, topology (he was one of the
first participants in E. Čech’s Brno topological seminar), history of
mathematics and lattice theory.52 His list of publications includes three
paper on lattices: [Kou1], [Kou2] and [K–K–N]. The first one, ”Sur les
lattices topologique” consists of a summary of the results of the second
one, [Kou2], which is his ”habilitation” work (written in 1947, however,
published in 1952) in which he builds an extensive theory of topological
lattices. The third paper [K–K–N], of which he is a co–author, deals
with irreducible elements and bases in general lattices.

3.6.1 The theory of topological lattices [Kou2] (1952)

K. Koutský puts forward an idea to generalize the concept of topology
on a set by considering a partially ordered set (in the special form of a
lattice with 0 and 1, which does not particularly weaken the results) in-
stead of a system of subsets of a set. He presents the study of topology
without points and axioms, considering only a general closure opera-
tion ϕ, and investigates the properties of this topology if some more
requirements are imposed upon this closure operation.
At the beginning of his paper the author outlines a survey of the

existing research in the theory of topological lattices. The very idea
of studying topologies on a lattice was not completely new at that
time. The Japanese mathematicians H. Terasaka53 and M. Naka-

51Kuratowski, K., Topologie, Warsaw 1948.
52The reader can find more information about his life and work in e. g. Bo-
růvka, O., Šedesátiny profesora Karla Koutského, Časopis pro pěstování matematiky
82 (1957), 493–497.
53Terasaka, H., Theorie der topologischen Verbände: Ein Versuch zur Normal-
isierung der allgemeinen Topologie und der Theorie der reellen Funktionen, Proc.
Imp. Acad. Jap. 13 (1937), 401–405.
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mura54 had considered special topologies on Boolean algebras, distribu-
tive lattices and complete lattices with 0 (drawing upon the work of
M. H. Stone), placing four axioms to be satisfied by the closure oper-
ation ϕ. Independently, Portugese mathematicians A. Monteiro and
H. Ribeiro55 investigated a closure operation on partially ordered sets.
Compared to the mentioned papers K. Koutský’s novelty lies in study-
ing the most general types of topologies on a lattice. Using the termi-
nology defined below, H. Terasaka investigated DIMU–topologies,
M. Nakamura ADIU–topologies and A. Monteiro and H. Ribeiro
IMU–topologies. The notion of a topology without axioms is attributed
(by K. Koutský) to E. W. Chittenden56 whose ideas, however, re-
mained without a response. As far as the concept of a space without
points is concerned it can be traced in the work of E. Foradori.57

Definition 3.27. Let L be a lattice with 0 and 1. By a topology in
L we mean any mapping ϕ of L into itself. The ordered pair (L,ϕ) is
called a topological lattice and the image ϕ(x) of an element x ∈ L is
called the closure of x. If ϕ(x) = x, we say that x is closed.

We can require ϕ to satisfy some axioms:

axiom M (monotone): x, y ∈ L, x ≤ y ⇒ ϕ(x) ≤ ϕ(y),

axiom A (additive): x, y ∈ L⇒ ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y),

axiom I (incidental): x ∈ L⇒ x ≤ ϕ(x),

axiom U (idempotent): x ∈ L⇒ ϕ(ϕ(x)) = ϕ(x).

If a topological lattice satisfies the axiom M we speak about an M–
topology, and analogously an A–topology, I–topology and U–topology.
The axiom A implies the axiom M. The author investigates each type
of topology in detail in individual chapters of the paper.

Definition 3.28. Let (L,ϕ) be a topological lattice. We say that an
element x ∈ L is a D–element iff there exists at least one element d ∈ L
such that x∧ϕ(d) = 0. We call d an anathema. We say that a system of

54Nakamura, M., Closure in general lattices, Proc. Imp. Acad. Jap. 17 (1941),
5–6.
55Monteiro, A., Ribeiro, H., L’operation de fermeture et ses invariants dans les
systčmes partiellement ordonnés, Portugaliae Math. 3 (1942), 171–183.
56Chittenden, E. W., On general topology and the relation of the properties of
the class of all continuous functions to the properties of the space, Transactions of
the American Mathematical Society 29 (1929), 290–321.
57Foradori, E., Stetigkeit und Kontinuität als Teilbarkeitseigenschaften, Monat-
shefte Math. Physik 40 (1933), 161–180.
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anathemas Dx of an element x is a complete system of anathemas of x
iff for any anathema w of x there exists an anathema d ∈ Dx such that
w ≤ d.

In a normal topology on a set, anathemas are identical to comple-
ments of a neighborhood of sets, while this is not generally true in lat-
tices. K. Koutský studies the axioms in relation to various properties
of anathemas of D–elements of L, of their complete systems and of
closed elements. A topology ϕ can satisfy some of the following proper-
ties (P1)–(P6):

(P1) if d is an anathema of an element x and d1 ≤ d, then
d1 is also an anathema of x,

(P2) if d is an anathema of x, then x ∧ d = 0,

(P3) if d is an anathema of x, then ϕ(d) is also an anathema
of x,

(P4) for every x ∈ L there exists such a complete system
Dx of its anathemas that every d ∈ Dx is closed in (L,ϕ),

(P5) if d1, d2 are anathemas of x, then d1 ∨ d2 is also an
anathema of x,

(P6) if d0 is an anathema of x and Dx is a complete system
of its anathemas in (L,ϕ) and if D∗

x is the system of all
d ∈ Dx such that d0 ≤ d, then D∗

x is a complete system of
anathemas of x.

K. Koutský proves the following theorems:

Theorem 3.30. If ϕ is an M–topology, then ϕ has the property (P1).

Theorem 3.31. If ϕ is an I–topology, then ϕ has the property (P2).

Theorem 3.32. If ϕ is an U–topology, then ϕ has the property (P3).

Theorem 3.33. If ϕ is an IU–topology, then ϕ has the property (P4).

Theorem 3.34. If ϕ is an A–topology and L is a distributive lattice,
then ϕ has the properties (P5) and (P6).

When looking into the validity of the reverse implications K. Kout-
ský shows that we need to presuppose modularity and complementarity
of a lattice:

Theorem 3.35. Let (L,ϕ) be a complemented modular topological lat-
tice. If ϕ has the property (P1), then ϕ is an M–topology.
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Theorem 3.36. Let (L,ϕ) be a complemented modular topological lat-
tice. If ϕ has the property (P2), then ϕ is an I–topology.

Theorem 3.37. Let (L,ϕ) be a complemented modular topological lat-
tice. If ϕ has the property (P3), then for each x ∈ L it holds: ϕ(ϕ(x)) ≤
ϕ(x) (a weakened form of the axiom U); thus if ϕ is an I–topology and
at the same time has the property (P3), then ϕ is a U–topology.

Theorem 3.38. Let (L,ϕ) be a complemented modular topological lat-
tice. If ϕ has the property (P5) or (P6), then for each pair x, y ∈ L:
ϕ(x ∨ y) ≤ ϕ(x) ∨ ϕ(y) (a weakened form of the axiom A); if ϕ is an
M–topology and at the same time has the property (P5) or (P6), then
ϕ is an A–topology.

Other results of K. Koutský concern the behaviour of closed ele-
ments, e. g.:

Theorem 3.39. Let (L,ϕ) be a topological lattice. If ϕ is an IM–
topology, then the intersection of a non–void finite number of closed
elements in (L,ϕ) is again a closed element in (L,ϕ), and the validity
of both axioms is necessary.

Theorem 3.40. Let (L,ϕ) be a topological lattice. If ϕ is an A–
topology, then the union of a non–void finite number of closed elements
in (L,ϕ) is also a closed element in (L,ϕ). However, the reverse impli-
cation does not generally hold.

He deduces also a number of other results concerning the character
of elements of topological lattices, D–elements, systems of topologies in
a given lattice and a relativization of a given topology in sublattices of
the lattice. The main theorem of the paper is the following:

Theorem 3.41. The theory of IMU–topologies can be built on the
concept of a system F ⊂ L of closed elements of L satisfying:
(F1) for each x ∈ L there exists at least one f ∈ F such that x ≤ f ,
(F2) if F (x) denotes the system of all f ∈ F : x ≤ f , where x ∈ L,

then there exists a lower bound
∧
x
f of elements of F (x),

(F3) for each x ∈ L:
∧
x
f ∈ F (x).

The theory of AIU–topologies can be built upon the notion of a
system F ⊂ L of closed elements in L satisfying (F1), (F2), (F3) and
(F4):
(F4) f1, f2 ∈ F ⇒ f1 ∨ f2 ∈ F .
Generally, however, the concept of closed elements is not enough to

built a topology on.
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3.6.2 On additively irreducible elements and additively
bases in a lattice [K–K–N] (1959)

This paper written by three Brno mathematiciansK. Koutský, L. Kos-
mák and M. Novotný discusses the properties of join (they use the
term ”additively”) irreducible elements in lattices. The authors men-
tion previous papers which investigate such elements or which deal with
analogs to irreducible elements in lattices. Apart from G. Birkhoff’s
Lattice Theory they mainly draw upon [B–F] and the paper of J. R. Bu-
chi58 which also deals with bases in lattices.

Definition 3.29. Let L be a lattice with 0, m a cardinal number. An
element x ∈ L is called (join) m–irreducible iff x ∈M(x) for each subset
M(x) ⊆ L such that cardM(x) < m, x =

∨
t∈M(x)

t.

A set B ⊆ L is called a (join) m–basis of L iff for each x ∈ L there
exists a non–empty set B(x) ⊆ B such that card B(x) < m, x =

∨
t∈B(x)

t.

The authors show how it is possible to construct another m–basis
from the given two and study the relationship between m–irreducible
elements and m–bases:

Theorem 3.42. Let m be a regular cardinal number and A,B two m–
bases of a lattice L with 0. Then the sets A∪B,A∨B and A∧B59 are
also m–bases of L.

Theorem 3.43. Let m be a cardinal number, L a lattice with 0. Then
x ∈ L is m–irreducible iff x is an element of every m–basis of L.

The concept of m–basis is also applied to ordered sets and it is shown
that a lattice L has only one m–basis iff each of its elements is m–
irreducible, and in this case L is an ordered set with certain special
properties.
In the final part of the paper the authors study lattices with partic-

ular types of bases:

Theorem 3.44. Let m be a cardinal number, L a lattice with 0. Then
L has a least m–basis60 iff the set of all m–irreducible elements in L is
an m–basis.
58Buchi, J. R., Representation of complete lattices by sets, Portugaliae Math. 11
(1952), 151–167.
59A ∧B denotes the set of all a ∧ b, where a ∈ A, b ∈ B, and analogously A ∨B.
60An m–basis B0 of L is called the least m–basis iff B0 ⊆ B for any m–basis B of

L.
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Theorem 3.45. Let m be a cardinal number, L a lattice with 0. Then
the following properties are equivalent:
(i) there exists an m–basis B in L satisfying: for each x ∈ L, x 6= 0

there exists only one non–empty set B(x) ⊆ B − {0}, card B(x) < m
such that x =

∨
t∈B(x)

t.

(ii) L is isomorphic to a system L of subsets of a set M satisfying:
1. the empty set and one–element–sets belong to L,
2. for each T ∈ L: card T < m,
3. L is a lattice in which R =

∨
T∈R⊆L

T ⇒ R =
⋃

T∈R⊆L
T.

3.7 Miloslav Mikulík and lattices

M. Mikulík investigated the relationship between different types of
convergence in metric lattices in several papers. The impulse for study-
ing metric lattices came from O. Borůvka who turned M. Mikulík’s
attention to the fact that a suitable system of solutions of a differential
equation x′ = f(t, x) is realized by a metric lattice satisfying the prop-
erties (U1) – (U3) from [Mik1] (see below). The investigation of such
lattices became the topic of his RNDr. thesis supervised by O. Bo-
růvka.
In his papers M. Mikulík presents several sufficient conditions in

order that a metric convergence, o–convergence and/or ⋆–convergence be
identical in a lattice. He always gives an example of a lattice satisfying
the particular conditions. Let us recall the definitions of each type of
convergence:

Definition 3.30. We say that a sequence {xn}∞n=1 of elements of a
lattice L metric converges to an element x (denoted by xn

ρ→ x) iff
limn→∞ ρ(xn, x) = 0.

Definition 3.31. We say that a sequence {xn}∞n=1 of elements of a
complete lattice L o–converges to an element x (denoted by xn

o→ x) iff∧∞
n=1

∨∞
k=n xk =

∨∞
n=1

∧∞
k=n xk = x.61

Definition 3.32. We say that a sequence {xn}∞n=1 of elements of a
complete lattice L ⋆–converges to an element x iff every subsequence of
{xn}∞n=1 contains a subsubsequence o–converging to x.

62

61A definition of o–convergence applicable to σ–lattices was introduced indepen-
dently by G. Birkhoff and L. Kantorovič ([LT–40], p. 29.)
62⋆–convergence in lattices was introduced independently by L. Kantorovič, von
Neumann and G. Birkhoff ([LT–40], p. 30.)
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3.7.1 Metric lattices [Mik1] (1954)

Miloslav Mikulík investigates non–void sets L with the following
properties:

(U1) L is partially ordered and it is a complete lattice with
respect to this ordering,

(U2) A metric ρ is defined on L such that L is compact with
respect to ρ,

(U3) Let A 6= ∅, A ⊂ L, a =
∧
t∈A

t, b =
∨
t∈A

t be its infimum

and supremum with respect to the partial ordering. Let d(A)
be its diameter with respect to ρ. Then d(A) = ρ(a, b).

The author is interested in how different types of convergence are related
to one another in such a lattice. He proves the following:

Theorem 3.46. Let L be a metric lattice with the properties (U1), (U2)
and (U3). Then metric convergence, o–convergence and ⋆–convergence
are identical.

Theorem 3.47. Let A ⊂ L be a non–void convex sublattice of L. Then
A is closed iff A is compact.

3.7.2 A note on ⋆–convergence [Mik2] (1955)

In this paper M. Mikulík generalizes one result stated in [LT–48] and
shows that in a lattice with a metric satisfying certain conditions, metric
convergence and ⋆-convergence are equivalent.
Let L be a lattice with a metric ρ. The author makes use of the

following properties:

(A) if x, y ∈ L, then ρ(x, y) = ρ(v ∧ y, x ∨ y),

(B) if x, y, z ∈ L, x < y < z, then ρ(x, y) ≤ ρ(x, z), ρ(y, z) ≤
ρ(x, z),

(C) we can choose from any bounded (in terms of the metric
ρ) non–increasing (non–decreasing) sequence of elements of
L a subsequence which metric converges,

(D) for {xn}∞n=1, xn ∈ L: if xn
o→ x, then xn

ρ→ x.

M. Mikulík’s investigations of the properties yield the theorem:
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Theorem 3.48. Let (L, ρ) be a lattice with a metric ρ which satisfies
the properties (A) and (B). If (L, ρ) has the property (C), then it is a
σ–complete lattice with the property (D). Conversely, if a σ–complete
lattice with a metric satisfies the properties (A), (B) and (D), then it has
also the property (C) and is metric complete. In a lattice (L, ρ) having
the properties (A), (B) and (C) metric convergence and ⋆–convergence
are equivalent.

The author also points out that a lattice (L, ρ) with the properties
(A) and (B) need not be modular.

3.7.3 A note on topological lattices [Mik3] (1955)

The author investigates the order topology in complete lattices. He
shows sufficient conditions for a lattice to be a topological lattice in this
topology.

Theorem 3.49. Let L be a complete lattice with a metric ρ satisfying:
1. if x, y ∈ L, then ρ(x, y) = ρ(x ∧ y, x ∨ y),
2. if x, y, z ∈ L, x < y < z, then ρ(x, y) < ρ(x, z), ρ(y, z) < ρ(x, z),
3. we can choose from any bounded (in terms of lattice ordering) in-

creasing (decreasing) sequence of elements of L a sequence which metric
converges in terms of ρ.
Then L is a topological lattice in terms of its order topology.

3.7.4 Notes on lattices with a metric [Mik4] (1959)

In this paper M. Mikulík deals once more with the relations between
a metric convergence and o–convergence in metric lattices. He shows
a generalization of his results from [Mik1] which was recommended by
J. Novák to the author.
In the first part of the paper the following result is shown:

Theorem 3.50. Let L be a lattice with a metric ρ such that:
1. we can choose from any bounded (in terms of lattice ordering)

non–increasing (non–decreasing) sequence of elements of L a sequence
which metric converges, and
2. if A ⊂ L is countable infinite or finite and has a supremum and

infimum, then the distance of the supremum and the infimum equals to
the diameter of A.
Then the metric convergence and the o–convergence are identical.

In the next part the convergence in σ–complete lattices is investi-
gated:
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Theorem 3.51. Let L be a σ–complete lattice with a metric ρ in terms
of which the set L is compact. Then the following conditions are equiv-
alent:
(i) the metric convergence and the o–convergence are identical,
(ii) if {xn}∞n=1, xn ∈ L metric converges, then

lim
n→∞

ρ(

∞∨

k=n

xk,

∞∧

k=n

xk) = 0,

(iii) if {xn}∞n=1, xn ∈ L metric converges, then

∞∨

n=1

∞∧

k=n

xk =

∞∧

n=1

∞∨

k=n

xk.

3.8 Otomar Hájek and lattices

Otomar Hájek’s early works include four papers on lattice theory
although he focused on questions of topology. We shall describe the
results of his two papers dealing with direct decompositions of lattices
[Háj1, Háj2]. In 1965 his other two papers [Háj3, Háj] devoted to lattice
theory were published. In [Háj3] the author gives a canonical representa-
tion of modular lattices of finite length in terms of simple nondistributive
and finite distributive lattice, and introduces a characteristics, called a
defect, of a lattice which is put into the relation with lattice decompo-
sitions. The other paper is closely connected to the first one, describing
two integer–valued characteristics of modular lattices of finite length.

3.8.1 Direct decompositions of lattices, I [Háj1] (1957)

O. Hájek investigates algebraic properties of central and neutral ele-
ments of a lattice in connection with direct and subdirect decompositions
of lattices. He also shows an analogy of the obtained results for rings.
A decomposition of a lattice L into the direct product of La’s will be
denoted by L ∼=

∏
a
La. If L is (decomposable into) the subdirect product

of La’s we shall write L ≤
∏
a
La. The source of lattice theoretic concepts

is primarily [LT–48] for O. Hájek.
The author first gives a detailed analysis of the notions of central

and neutral elements in a lattice and shows some consequences of their
definitions. Then he studies the relation of two subdirect products of a
lattice and proves the following unicity theorem by deducing it from a
more general form:



Chapter 3. Lattice theory in Czech mathematics . . . 259

Theorem 3.52. Let L1×L2 ≥ L ≤M1×M2 and let a neutral element
e ∈ L be carried to [1, 0] in both mappings. Then L1 = M1 and L2 = M2.

O. Hájek investigates the complements of central and neutral ele-
ments and studies direct and subdirect products of a lattice in relation
to homomorphic images of the lattice. He proves the following condition
for a subdirect product to be direct:

Theorem 3.53. If for three different a’s: L ≤ (
∏

b∈A,a6=b

Lb) × La under

the same isomorphism, then L ∼=
∏
A
La.

A generalization of a factor-theorem from G. Birkhoff’s [LT–48],
p. 26, is shown, and the investigated notions are extended to ring theory.
In the final part specific examples of rings or lattices and their centers
are described.

3.8.2 Direct decompositions of lattices, II [Háj2] (1962)

O. Hájek investigates cut–completions (denoted by ∼) of direct prod-
ucts of partially ordered sets in this paper and his results lead to the
Glivenko–Stone theorem.
In the first part the following theorems are proved:

Theorem 3.54. Let P be a partially ordered set with 0 and 1. Let
P ∼= PA × Pa under the isomorphism f . Then P̃ ∼= PA × P̃a under an
extension of f .

Theorem 3.55. Let P,Pa(a ∈ A) be partially ordered sets, where A and
all Pa contain more than one element. If P ∼= PA×Pa and P̃ ∼= PA×P̃a,
then P (and consequently all Pa) contains both 0 and 1.

In the second part of the paper the author applies his results to
Boolean algebra, and shows how they imply that if P is a Boolean alge-
bra, then its every element is central and P̃ is a distributive lattice which
is orthocomplemented and which has unique complements. O. Hájek’s
results and the fact that an orthocomplemented lattice with unique el-
ements is a Boolean algebra yield a new proof of the famous Glivenko–
Stone Theorem:63

Theorem 3.56. If B is a Boolean algebra, then so is B̃.

63Glivenko, V., Sur quelques points de la logique de M. Brouwer, Bull. Acad. Sci.
Belgique 15 (1929), 183–188 and [Sto2].
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3.9 Václav Havel and lattices

The research work of Václav Havel concerns the study of algebraic
structures, emerging on the borders of algebra and foundations of ge-
ometry. In 1952/53 he defended his RNDr. thesis on decompositions
of elements in lattices satisfying the descending chain condition, which
was supervised by and reflects an influence of V. Kořínek. The re-
sults of the thesis were published in V. Havel’s first paper on lattice
theory [Hav1]. The problem of direct decompositions of the unity in
finite lattices is the content of the next paper [Hav2]. The third paper
[Hav3] of V. Havel concerning lattices we analyze shows an influence of
O. Borůvka. V. Havel generalizes a theorem of O. Borůvka dealing
with an isomorphism between the Zassenhaus refinements of two chains
in an equivalence lattice. After 1963 he published several other papers
treating lattice theoretic questions.

3.9.1 Decompositions of elements of a lattice with the
minimal condition [Hav1] (1955)

Let L be a lattice satisfying the descending chain condition. The author
introduces a decomposition in L by means of a symmetric binary relation
ρ on L. For c ∈ L we shall call

c = a1 ∨ a2 ∨ · · · ∨ an (n ≥ 2) (3.9)

a decomposition of c. V. Havel distinguishes four types of decompo-
sitions in L (and compares them to the decompositions presented by
O. Ore in [Ore1, Ore2] and by G. Birkhoff in [LT–48]):

Definition 3.33. We shall call (3.9) a ρ–decomposition iff aiρ(ak1∨ak2∨
· · · ∨ akj holds for any i = 1, . . . , n ≥ 2 and for any choice of various
k1, . . . , kj from {1, . . . , i− 1, i + 1, . . . , n}.
A ρ–decomposition will be called proper iff (xρy ⇔ x, y are incom-

parable), it will be called direct iff (xρy ⇔ x, y are incomparable and
x ∧ y = 0) and it will be called strong iff (xρy ⇔ x, y are incomparable
and (x ∨ p) ∧ (y ∨ p) = p for every p ∈ L).

Definition 3.34. An element c ∈ L will be called ρ–(in)decomposable
iff there exists (does not exist) a ρ–decomposition (3.9).

After a detailed study of general properties of ρ–decompositions and
relations between the introduced types of ρ–decompositions (e. g. giv-
ing a sufficient condition for every ρ–decomposable element of L to have
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a ρ–decomposition with ρ–indecomposable factors, and a sufficient con-
dition for the uniqueness of this decomposition), the author investigates
the Zassenhaus chain construction in modular lattices. He gives nec-
essary and sufficient conditions for this construction to yield no proper
refinements of two given chains. He uses results from [Koř2a] and [Jan1],
and also applies his notion of ρ–composition to their investigation.

3.9.2 A note on the uniqueness of direct decompositions
in modular lattice of finite length [Hav2] (1955)

V. Havel investigates the validity of the following condition (C) in a
modular lattice of finite length:

(C) There exists only one (up to the order of factors) decom-
position if 1 into indecomposable factors.

The following results are presented:

Theorem 3.57. Let L be a modular lattice of finite length. Let 1 be
decomposable. The condition (C) is satisfied in L iff every element in
L has at most one complement.

Theorem 3.58. Let L be a modular lattice of finite length. Let 1 be
decomposable. The condition (C) holds in L iff for any two decomposi-
tions

1 = a1 × · · · × am = b1 × · · · × bn

the following equations are satisfied for i = 1, . . . ,m:

ai =
n∨

j=1

(ai ∧ bj).

Theorem 3.59. Let L be a modular lattice of finite length. Let 1 be
decomposable. The condition (C) is satisfied in L iff no sublattice of L
is isomorphic to any of four lattices in Figure 3.4, where a and b are
indecomposable elements.

3.9.3 On semichained refinements of chains in equiva-
lence lattice [Hav3] (1963)

The author presents a new proof and a generalization of a theorem
discovered by O. Borůvka ([Bor7a], pp. 65–68) on semichained refine-
ments of two chains in the equivalence lattice of a given set. O. Bo-
růvka used the language of set partition theory when stating and prov-
ing this theorem, V. Havel employs the methods of lattice theory, where
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a b a b

ab a b

Figure 3.4: To Theorem 3.62

he follows the study of different types of Zassenhaus refinements of two
chains in a given lattice (as introduced by V. Kořínek [Koř1]), and
he also applies some results and concepts concerning equivalences of
P. Dubreil and M. L. Dubreil–Jacotin.64

V. Havel uses the following lattice theoretic notions. Let L be
a lattice, a, b ∈ L, a ≥ b, let A = {ai}, i = 0, . . . , r, B = {bj}, j =
0, . . . , s, a0 = b0 = a, ar = bs = b be two finite chains between a and b.
Their Zassenhaus refinements will be denoted by A∗ and B∗, where

A∗ = {ak,j}, ak,j = ak+1 ∨ (ak ∧ bj), k = 0, . . . , r − 1; j = 0, . . . , s,
B∗ = {bl,i}, bl,i = bl+1 ∨ (bl ∧ ai), l = 0, . . . , s− 1; i = 0, . . . , r.

The chains A,B will be called similar iff there exists a one–to–one map-
ping f : A → B : ai → bf(i) such that ak/ak+1, bf(k)/bf(k)+1 are similar
quotients (two quotients a/b, c/d are similar iff there exists the so called
middle quotient x/y such that a = b ∨ x, c = d ∨ x, y = b ∧ x = d ∧ x)
for every k.
Let E(S) be the lattice of all equivalence relations on the given set

S, for a ∈ E(S), S/a will denote the set of all corresponding a–blocks.

64Dubreil, P., Dubreil–Jacotin, M., L., Théorie algébrique des relations
d’équivalence, Jour. de math. pure et appl. 18 (1939), 63–95.
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If S′ 6= ∅, S′ ⊆ S, a ∈ E(S) we shall consider the one–to–one mapping of
the set S′

a consisting of all a–blocks overlapping S
′ onto the set S′

(a) of
intersection of these a–blocks with S′. This mapping S′

a → S′
(a) : A →

A∩S′ for every A ∈ S/a,A∩S′ 6= ∅ can be extended to a mapping S/a→
S′
(a)∪{∅} : A→ A∩S′ for every A ∈ S/a, which we call the semicontrac-
tions. If S/a = S′

a, we speak about a contraction. If a ≥ b, a, b ∈ E(S)
and the effect of the relation b is reduced to an a–block, we obtain a re-
lation a//b called the relation–quotient of a, b. If a ≥ b, c ≥ d, a, b, c, d ∈
E(S) and a ≥ c, we say that the quotient c//d is deduced from a//b by
(semi)contraction iff every A ∈ S/a is transferred into any C ∈ S/c,C ⊂
A by some (semi)contraction A/(a//b) → C/(c//d)∪{∅}. If a1/a2, b1/b2
are similar with the middle quotient c1/c2 and c1//c2 is deduced by
some (semi)contraction from a1//a2 and by some (semi)contraction from
b1//b2, then we call a1//a2, b1//b2 (semi)chained. Chains A,B of E(S)
are called (semi)chained iff there exists a one–to–one mapping A→ B :
ai → bf(i) such that ak//ak+1, bf(k)//bf(k)+1 are (semi)chained for every
k.
V. Havel proves the following theorem by constructions:

Theorem 3.60. Let E(S) be the lattice of all equivalence relations on a
given set S, A,B two chains in E(S) satisfying the following condition
for every k, l:

ak,l+1 ∧ (ak ∧ bl) = bl,k+1 ∧ (bl ∧ ak).

Then A∗ and B∗ are semichained by the mapping ak,l → bl,k. The
semichaining becomes a chaining iff the relations ak+1 ∨ (ak ∧ bl+1 and
ak ∧ bl, as well as the relations bl+1 ∨ (bl ∧ ak+1) and bl ∧ ak are per-
mutable65 for all k, l.

3.10 Other papers related to lattice theory

In this section we shall describe the results of works whose authors did
not do their research primarily in lattice theory, however, their investi-
gation touches lattice theoretic problems. We have already seen some
applications of lattices in the previous sections (O. Borůvka and par-
tition theory, L. Rieger and mathematical logic, K. Koutský and
topology, M. Mikulík and functional analysis), but we have to name
also some others.
65Relations a, b ∈ E(S) are called permutable iff every a–block contained in a
arbitrary (a ∨ b)–block overlaps every b–block contained in the same (a ∨ b)–block.
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B. Pospíšil (1912–1944) was interested in the field of topology. In
the years before and during WWII he studied the problems concerning
general topological spaces, his results have, however, important conse-
quences for Boolean rings. After WWII J. Novák led a seminar in Brno
whose starting activity involved linearly ordered sets in terms of the
theory of topological spaces. This investigation attracted M. Novotný
who produced several papers from the field of ordered sets which are to
be recalled here. In the middle of 1950’s F. Šik started focusing on par-
tially ordered groups and l–groups. K. Čulík’s papers of the late 1950’s
also touch the problems of partially ordered sets and lattices. The above
mentioned works will be treated in this section. However, as the papers
deal with lattice theoretic problems only partially, we would need more
space in order to set them in the specific mathematical contexts and to
introduce other important aspects, which is not possible to attain in the
scope of this work, the following paragraphs will present only a brief
outline of the results without a more detailed analysis.
Another mathematician who can be named here is V. Kudláček

because of his paper on lattice ordered groupoids,66 in which he gener-
alizes some results obtained for l–groups. His early interest in partially
ordered groupoids and rings soon moved to other areas.67 In the first
half of 1960’s the group of Brno mathematicians working in the area
of general algebraic structures was joined by Vítězslav Novák and
Ladislav Skula, however, as the beginnings of their academic careers
coincide with the end of our analyzed period, we shall not include a
description of their activities.

3.10.1 Bedřich Pospíšil and Boolean rings

The results presented in B. Pospíšil’s papers usually developed within
the work in the famous Brno topological seminar of E. Čech which
came into existence in June 1936 and had to be closed in November
1939. An important role in B. Pospíšil’s research was played by solv-
ing the problem put forward by E. Čech in January 1937: determine
the cardinal number of a bicompact Hausdorff space β(S), where S is
an infinite countable isolated Hausdorff space, such that (i) S is dense in
β(S), (ii) any bounded continuous real function defined in the domain

66Kudláček, V., O svazově uspořádaných grupoidech, Časopis pro pěstování ma-
tematiky 80 (1955), 44–50.
67Ráb, M., K šedesátinám docenta Václava Kudláčka, Pokroky matematiky, fyziky
a astronomie 33 (1988), 345–346.
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S admits a continuous extension to the domain β(S).68 B. Pospíšil
showed in [Pos1] that if S is an infinite isolated Hausdorff space of car-
dinal number m, the cardinal number of β(S) is exp exp m.69

The author develops consequences of the mentioned result in his
paper [Pos2] in which he investigates various topological spaces, partic-
ularly Boolean spaces as introduced by M. H. Stone in [Sto1]. In this
paper M. H. Stone also proved that the theory of Boolean spaces is
equivalent to the theory of Boolean rings,70 which gives B. Pospíšil’s
results algebraic interpretation. Apart from other important properties,
B. Pospíšil proved:

Theorem 3.61. Let A be the Boolean ring of all subsets of an infinite
set T of a cardinal number m, let I be the ideal of all subsets of T of
cardinal numbers < m, let I∗ be an ideal in A, I∗ ⊂ I. Then A/I∗

has exp m elements, exp exp m ideals and exp exp m prime ideals with
characters exp m.71

B. Pospíšil’s method of determining the number of ideals enables
us to analyze many important Boolean rings and spaces from topology
and measure theory. His results concerning ideals in Boolean rings are
in a close connection with those of A. Tarski [Tar1, Tar3], however,
the method of obtaining them is different.
B. Pospíšil’s research on the theory of Boolean rings aroused at-

tention of mathematicians involved in mathematical logic where this
theory presents one of the basic chapters. The editors of Fundamenta
Mathematicae asked him for a paper which would describe an algebraic
interpretation of his topological results, and thus made them available
for a wider circle of readers. B. Pospíšil produced the paper [Pos6],
which includes not only his previous results in the language of algebra,
but also some new ones. Although the paper was prepared for press
already in 1939, the whole series of the journal was published in 1945
[Čech].
M. H. Stone’s concepts are also used by B. Pospíšil in other pa-

pers, in which he develops the theory of the so called continuous distri-

68The fact that to every given completely regular space S there exists a bicompact
Hausdorff space β(S) satisfying the properties (i) and (ii) was proved by A. Ti-
chonov, Über die topologische Erweiterung von Räumen, Mathematische Annalen
102 (1930).
69We keep B. Pospíšil’s denotation exp m = 2m for a cardinal number m.
70The concept of Boolean rings was also introduced by M. H. Stone: rings in
which every element is idempotent.
71A character of an ideal in a Boolean ring is meant a minimal cardinal number of
a system of generators of this ideal.
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butions and an abstract–algebraic theory of measurable functions [Pos3].
Let f be a real function and A the Boolean ring of measurable subsets
of the domain of f . The function f is called A–measurable iff for each
interval j, ϕ(j) is the set S of x with f(x) ∈ j. By a distribution in
A the author means an abstract homomorphic function ϕ of the ring of
intervals to a Boolean ring. He defines a character on a set (ring) of
abstract functions ϕ, satisfying some specific properties, to a fixed A in
a way resembling the notion of the character of an abelian group. The
continuation of this paper, [Pos4], presents four equivalent conditions for
a real–valued function h(ϕ) defined on a Boolean ring A of elements ϕ
to be ”continuous”. He defines A to be A ”separable” when its represen-
tation by open–and–closed subsets of a totally disconnected bicompact
Hausdorff space is separable and presents various results. B. Pospíšil’s
research from [Pos3, Pos4] is completed by [Pos5] in which he correlates
the bicompact Hausdorff space e associated with a general Boolean al-
gebra (ring) A, the quotient algebra obtained from A by ignoring the
sets of first category in e, and the space (Banach lattice) of all functions
continuous on e. The discussed ideas relate to the representation theory
of vector lattices.72

B. Pospíšil’s papers include a great number of original results,
which is always pointed out by the reviewers. His research was highly
prized by his teacher E. Čech who makes a comment that Czech ma-
thematics suffered a truly irretrievable loss by B. Pospíšil early death
caused by a fatal treatment of Gestapo [Čech].

3.10.2 Miroslav Novotný and ordered sets

M. Novotný’s research, characteristic of its wide range, includes the
theory of ordered sets, algebra, topology, mathematical linguistics, in-
formation systems, constructions of grammars, monounary algebras and
relation structures. His papers written by the beginning of 1960’s were
influenced by his teachers: O. Borůvka (groupoid operations, set parti-
tion theory) and J. Novák (the theory of ordered continua). The paper
on irreducible elements and additive base in lattices [K–K–N], which he
was a co-writer of, has already been analyzed in the section dealing with
K. Koutský. An initial source of inspiration for M. Novotný’s inter-
est in the field of ordered sets was G. Birkhoff’s book Lattice Theory.
He was attracted by the study of the cardinal powers of the type 2G

(G being a linearly ordered set) which led him to the investigation of

72A vector lattice is called a partially ordered linear space which is a lattice.



Chapter 3. Lattice theory in Czech mathematics . . . 267

cardinal powers RG, where R is the linearly ordered set of reals. The
elements of RG are isotone functionals, i. e. isotone functions from a
partially ordered set to the set of reals. M. Novotný’s investigation
was motivated by an analogy with linear functionals on a vector space.
The study of problems related to isotone functionals was commenced

by M. Novotný in the paper [Nov1] in which he gives e.g. necessary
and sufficient conditions in order that an isotone functional on a set G be
extendible to any superset, and in order that each isotone fuctional on
each subset of a set G be extendible to all of G. The author also obtains
relations between RG and RH from the knowledge of ordered sets G and
H, and conversely. The paper [Nov2] continues in the investigation of
isotone functionals. M. Novotný characterizes e. g. subsystems H of
ordered system G such that every isotone mapping of H into a gapless
chain K can be extended to an isotone mapping of G into K. Cardinal
numbers are investigated also in the papers [Nov3, Nov5, Nov6] in which
he deals with cardinal arithmetic.73

3.10.3 Convergence in Boolean σ–algebras [N–N] (1953)

The paper of J. Novák and M. Novotný On the convergence in σ–
algebras of point–sets studies a relationship between metric and topo-
logical convergence74 in a σ–algebra of point-sets, i. e. a class of subsets
of an abstract space X which contains X and which is closed under the
formation of countable unions and differences. The main result is the
following:

Theorem 3.62. Let A be a σ–algebra of point–set. The following con-
ditions are equivalent:
(i) there exists a metric in A such that the metric and topological

convergences are identical,
(ii) there exists a probability function P defined on A satisfying for

every event a ∈ A: if P (a) = 0, then a = 0,
(iii) A is isomorphic to the system of all subsets of a set which is at

most countable.

73Novák, V., Sixty years of Professor Miroslav Novotný, Czechoslovak Mathema-
tical Journal 43 (1982), 338–343, Novák, V., Půža, B., Seventy years of Professor
Novotný, Czechoslovak Mathematical Journal 42 (1992), 379–382.
74We say that the sequence of sets {An} converges topologically iff
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3.10.4 Karel Čulík and partially ordered sets

Karel Čulík (1926–2002) is famous for his work in often interdisci-
plinary fields: graph theory, algorithms, formal languages and gram-
mars, Boolean equations, and many others.75 Although his early works
deal mostly with graph theory, he also studied problems of partially
ordered sets. His paper [Čul1] is devoted to the lexicographic sum of
partially ordered sets, the author studies basic properties of the so called
inserted partially ordered sets, partitions in inserted and lexicographi-
cally irreducible partially ordered subset and factor partially ordered
sets which are lexicographically irreducible. He shows that not every
partially ordered set is a lexicographic sum of a system of partially or-
dered and lexicographically irreducible sets over partially ordered and
lexicographically irreducible set. In [Čul2] K. Čulík studies three types
of homomorphism on partially ordered sets, which are isotone, however,
they need not be lattice homomorphisms. Analogously to group theory
those homomorphisms enable us to study various notions and relations
within the theory of partially ordered sets. The author also point out
their connection to the previously investigated lexicographic sum.

3.10.5 František Šik and l–groups

František Šik began his active research career at the beginning of
1950’s. His first works were influenced by O. Borůvka, they deal with
congruence relations and set partition theory. Soon he was also attracted
by the fields of algebra and topology because of his postgraduate super-
visors E. Čech and V. Kořínek. The essential part of František
Šik work belong, however, to the area of partially ordered and lattice
ordered groups in which he started working in the middle of the 1950’s.
F. Šik introduced several notions which became important tools for

studying the structure of l–groups: e. g. a polar (the original term was
”component”) and completely subdirect product. The concept of polar
was defined by means of the notion of orthogonality. The orthogonality
on an l–group G is defined by the relation xδy ⇔ |x|∧|y| = 0. For A ⊆ G
we denote A′ = {x ∈ A : xδy for each a ∈ A}, the set A being called a
polar in G. For a ∈ G, the set {{a}′}′ is called a principal polar and the
set {a}′ a dual principal polar. The systems of all polars, all principal
polars and all dual principal polars of G are denoted by Γ(G),Π(G)
and Π′(G), respectively. F. Šik proved in [Šik1] that the system Γ(G)

75Hájek, P., Zemřel Karel Čulík, Pokroky matematiky, fyziky a astronomie 47
(2002), 344–348.



Chapter 3. Lattice theory in Czech mathematics . . . 269

partially ordered by inclusion is a complete Boolean algebra and that∧
i∈I

Xi =
⋂
i∈I

Xi for each ∅ 6= {Xi}i∈I ⊆ Γ(G). The conditions for Π(G)

and Π′(G) to be Boolean algebras can be found in the paper [Šik2].76

3.11 A note on the Czech terminology concern-
ing lattices

Early lattice theoretic terminology varied in individual languages, in
fact, there existed three versions naming the entity ”lattice”. The word
”lattice” was introduced by G. Birkhoff, O. Ore called the same
object ”structure”, which was adopted in French and some Slavic lan-
guages for a certain period (before the English version prevailed), and
”Verband” is the expression used in German.
The materials including some information on the development of

Czech lattice theoretic terminology consisted of O. Borůvka’s works
[Bor1, Bor3a, Bor5, Bor6, Bor7b], V. Kořínek’s paper [Koř2a], L. Rie-
ger’s book [Rie9], and also the summaries of the papers [Sto2, Koř1,
Rie4].
The first use of the expression ”lattice” in the Czech literature ap-

pears in the paper of O. Borůvka [Bor1] in 1939, and it was in the
form we know it today ”svaz”. This term is clearly the translation of
the German ”Verband”, however, the reasons for choosing this version
from the three varieties which were in use in other languages of that
time remain hidden. The word ”svaz” is used also by V. Kořínek
in the paper [Koř2a] published in 1949. He does not mention O. Bo-
růvka’s terminology, however, he explains the reasons why he decided
to adopt this expression. He does not follow O. Ore’s term ”structure”
because this word can be often used in other, more general, meanings.
He expresses some reservations to a possible translation of ”lattice” into
Czech: ”mříž”. He sees its slight disadvantage in the standard mean-
ing in geometry. Nevertheless, it is necessary and interesting to point
out that the word ”mříž” in the sense ”lattice” has really appeared as
well. In 1938 M. H. Stone published his paper [Sto2] in the Czech
mathematical journal Časopis pro pěstování matematiky a fysiky. The
work was written in English, however, there was a Czech summary in-

76F. Šik’s works in Jakubík, J., Sekanina, M., The 60th anniversary of Professor
František Šik, Czechoslovak Mathematical Journal 29 (1979), 494–450, Jakubík, J.,
Šmarda, B., Seventy years of Professor František Šik, Czechoslovak Mathematical
Journal 42 (1992), 181–185.
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cluded in which the expression ”distributive lattice” was translated as
”distributivní mříž”.
While the expression ”svaz” became accepted and established easily,

designating the lattice operations have a little longer development. The
first use of ”průsek” and ”spojení”, i. e. the standard terms for ”meet”
and ”join” nowadays, is to be found again in the mentioned O. Bo-
růvka’s paper [Bor1], however, not for the lattice operations. ”Průsek”
is used in the sense of the ”intersection of two decompositions in a set”
(or as the ”intersection of a non–empty subset of a set G and a de-
composition in G”), and the term ”spojení” appears in the collocation
”spojení” of two groupoids, meaning the groupoid generated by these
two groupoids. The lattice operations are not designated in that paper,
yet, however, implicitly O. Borůvka’s terms ”průsek” and ”spojení”
are realizations of the lattice operations.
O. Borůvka devotes more time to lattice theoretic concepts in the

following papers [Bor3a, Bor5], in which he states the aim to present his
decomposition theory as a realization of a more general lattice theory.
He pays attention to the properties of the greatest common refinement
and the least common covering of a system of decompositions in relation
to the lattice operation for which he chose the terms ”průnik” (”inter-
section”) and ”spojení”. ”Průsek” keeps the same meaning as in [Bor1].
This terminology is preserved by O. Borůvka in his following works
([Bor6, Bor7b]) as well.
V. Kořínek opted for the terms ”průsek” for ”meet”, and ”spojení”

for ”join” in the paper [Koř2a]. He explains his choice by the fact that
he wanted to distinguish the lattice operations ”průsek” and ”spojení”
from the set operations ”průnik” (= intersection) and ”sjednocení” (=
union).
The disunity which accompanied the early Czech terminology for

the lattice operations is also reflected in L. Rieger’s book [Rie9]. He
chose the expressions ”protínání” and ”spojování” for the first encounter
of a reader (who is a non–mathematician) with lattice theory since
he presents the lattice operations as a generalization of intersecting
and joining in geometry. When giving a precise definition of a lattice,
L. Rieger applies O. Borůvka’s terms ”průnik” and ”spojení”, in the
following text, however, he uses both expressions ”průnik” and ”průsek”
interchangeably.



Chapter 4

Lattice theory in Slovak
mathematics until 1963

4.1 The situation in Slovak mathematics before
and after WWII

Due to specific historical circumstances Slovakia does not have a long
tradition of mathematical research. The development of scientific studies
in general started after WWI (during the Austro–Hungarian monarchy
there had existed almost none) when the first Slovak university, Come-
nius University, was founded in Bratislava in 1919. The planned faculty
of science (which was to provide mathematical education) was not, how-
ever, established until 1940. Slovak mathematicians had to study and
work at other, Czech or foreign, institutions before WWII. The first
Chair of Mathematics was founded in the newly established Technical
University of M. R. Štefánik in Košice in 1938. This college was moved
to Bratislava and was renamed the Slovak Technical University in 1939.
Although the two Slovak universities did not interrupt their activities
during the war, we can speak about the beginning of an intensive scien-
tific research only after WWII.1

An important role in achieving a high standard of mathematical
university education and raising a new generation of Slovak mathemati-
cians was played by professors teaching at the universities: Professors
J. Hronec, Š. Schwarz, J. Kaucký. They also invited mathemati-
cians from Brno and Prague to help with educating mathematics stu-
dents. O. Borůvka organized lectures and seminars in Bratislava for

1http://www.uniba.sk/webuk/uk, http://www.km.sjf.stuba.sk/english/origin.htm
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many years, occasionally E. Čech, F. Vyčichlo, M. Katětov, and
several others came to lecture. The Czech professors also participated
in recommending suitable topics and literature for postgraduate studies.
Thus in a relatively short period a group of young Slovak mathemati-
cians started their successful research and one of the algebraic fields they
became interested in was lattice theory.2

4.2 The road to lattices

The first Slovak mathematicians engaged in the problems of lattice the-
ory were J. Jakubík and M. Kolibiar to whom the majority of this
chapter is devoted. We shall mention also the papers of B. Riečan,
Z. Riečanová and T. Katriňák which deal with lattice theoreti-
cal problems and were published at the end of the analyzed period.
B. Riečan and Z. Riečanová specialized on other mathematical bran-
ches later; T. Katriňák’s field of research remained within lattice the-
ory: he has achieved outstanding results in the area of pseudocomple-
mented lattices and semilattices.

4.2.1 Ján Jakubík and Milan Kolibiar

Ján Jakubík (born in 1923) finished his university studies at the Fac-
ulty of Sciences (studying mathematics and physics) of Comenius Uni-
versity in 1949, and then became an assistant to Professor Š. Schwarz
in the Mathematical Institute of the Slovak Technical University where
he worked until 1952. That year he moved to the newly established
Technical University in Košice. He was appointed Associated Professor
there in 1956 and Full Professor in 1963. At the university he began
organizing a seminar on ordered algebraic structures which he was lead-
ing for many years and which is still active in research. Since 1952
J. Jakubík has been working also in the Mathematical Institute of Slo-
vak Academy of Sciences in Košice. The scientific work of J. Jakubík
is very extensive (the number of papers exceeds 200), and at the same
time, rich in profound results. Apart from several papers, his work con-
cerns mostly algebraic disciplines: partially ordered sets, lattices and
mainly partially ordered groups and lattice ordered groups, in recent
years also MV –algebras.3

2[Koř5] and Greguš, M., ”Vzťahy českej a slovenskej matematiky”, in [CM],
pp. 30–37.

3For more details about life and work of J. Jakubík we refer the reader e. g. to
the papers: Kolibiar, M., Professor Ján Jakubík Sexagenarian, Czechoslovak Mathe-
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Milan Kolibiar (1922–1994), a fellow student and a good friend
of J. Jakubík, graduated from the Faculty of Sciences (in mathematics
and physics) of Comenius University in 1947. Then he became an as-
sistant to Professor J. Kaucký in the Mathematical Institute of the
Slovak Technical University and in 1951 he came to the Department of
Mathematics of the Faculty of Sciences at Comenius University where
he stayed until his retirement in 1987.4 In 1956 he was appointed As-
sociated Professor and in 1965 Full Professor. The research activities of
M. Kolibiar lie mainly in the areas of partially ordered sets, lattices
and universal algebra. He was particularly interested in the connections
of algebra and topology. Apart from his own scientific work, M. Kolib-
iar is also highly praised for his educational achievements: encouraging
and inspiring many mathematics students, organizing the Mathematical
Olympiad, being engaged in activities and organizations both inside and
outside the University.5

4.2.2 O. Borůvka’s influence

The beginnings of J. Jakubík’s and M. Kolibiar’s mathematical re-
search were greatly affected by their teacher O. Borůvka. He rec-
ommended them to study Lattice Theory by G. Birkhoff, supervised
their RNDr. theses and advised them in the course of finding their first
results.
O. Borůvka considered lattice theory to be a young, intensively

developing field with a number of open topical problems, and G. Birk-
hoff’s monograph to provide many areas of interest. Although this
book might not be very suitable for beginners as it refers the reader to
various papers and works of other scientists, it did not take a beginner
too long to understand its methods, results, and problems as lattice the-

matical Journal 33 (1983), 657–664, Černák, Š., Kolibiar, M., Životné jubileum
akademika Jána Jakubíka, Mathematica Slovaca 33 (1983), 321–326, or Kolibiar,
M., K životnému jubileu akademika Jakubíka, Časopis pro pěstování matematiky 108
(1983), 425–429, and especially to the diploma work [Fab] dealing with Š.Schwarz,
J. Jakubík, M. Kolibiar (however, probably due to the large extend of the work
there appear some mistakes in accuracy when describing their results).

4Expanding the University resulted in establishing the Department of Algebra and
Number Theory in 1965, and the Faculty of Mathematics and Physics in 1980, which
became his new working places within the University.

5For those interested in more information about the life and work of M. Kolib-
iar we recommend e. g. Jakubík, J., Katriňák, T., The sixtieth anniversary of
Professor Milan Kolibiar, Czechoslovak Mathematical Journal 32 (1982), 498–503,
Katriňák, T., Milan Kolibiar (1922–1994), Math. Slovaca 46 (1996), 297–304., the
diploma work [Fab], or his own book of memories [Kol11].
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ory was a relatively new, not extensively developed field. This choice of
literature proved to be truly advantageous and fruitful. J. Jakubík and
M. Kolibiar succeeded not only in understanding the topic, but also
very soon in solving some of its problems. J. Jakubík, M. Kolibiar,
L. Mišík,M. Švec and several others even started an informal seminar
in which they were reading and discussing G. Birkhoff’s monograph.
The seminar, however, ended with J. Jakubík’s departure to Košice in
1952.
Another feature of J. Jakubík’s and M. Kolibiar’s work which

shows an influence of O. Borůvka can be found in their ways of ap-
proaching problems: they successfully applied O. Borůvka’s algebraic
concepts, mainly determining partition. In their early papers they often
cite his paper on set partition [Bor3a] and his textbook on group theory
[Bor6].

4.2.3 Contacts with other mathematicians and results

We have pointed out in the preceding chapter that the situation in Czech
mathematical research after WWII was difficult for the lack of literature
and contacts. The same was true even on a larger scale for Slovak re-
search. The mathematicians in Bratislava did not have all necessary
literature available and making trips to universities abroad was hardly
possible, even journeys to Prague or Brno were very scarce at that time.
During 1950’s M. Kolibiar could still discuss the problems he was
working on with O. Borůvka, who continued to lecture in Bratislava
until 1958, J. Jakubík in Košice, however, was in a more difficult sit-
uation. He is therefore highly praised by O. Borůvka for his abilities
to present remarkable results in spite of his isolation from mathematical
environment.6

Because of the lack of a well–equipped library it is not very surprising
that J. Jakubík and M. Kolibiar could not avoid repeating some
already published results, however, without knowing about them. It is
obvious that they were following the referative journals theMathematical
Reviews and Referativnyj žurnal, but, if they did not have access to the
original paper itself, they could easily miss some important sources.
We also witness another typical feature of scientific research in se-

veral of their papers: the same problem is solved independently by two
(or more) mathematicians. This fact is little surprising if we realize that
the problems of G. Birkhoff’s widely available monograph inspired a

6O. Borůvka’s archive: O. Borůvka’s reference to J. Jakubík’s appointment to
the Slovak Technical University in 1959.
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number of mathematicians all over the world. The cases of previous or
parallel solutions of problems will be pointed out in the analysis.
The contact with Czech mathematicians engaged in lattice theory

at that time (V. Kořínek, L. Rieger, V. Vilhelm, M. Novotný)
was kept especially in the situation when they were to asked to review
J. Jakubík’s and M. Kolibiar’s papers. Then the Czech mathemati-
cians provided some suggestions or referred to related works.
An important step forward in communicating their results was the

beginning of the Summer schools on partially ordered sets and uni-
versal algebras in 1962, first as an opportunity to discuss topics with
Moravian and Czech mathematicians, later also with participants from
abroad. Another significant event helping getting into contact with for-
eign mathematicians was the international Conference on Ordered Sets
in 1963 where J. Jakubík and M. Kolibiar had a possibility to learn
more especially about the results of young Hungarian mathematicians
G. Grätzer and E. T. Schmidt who were working on similar prob-
lems. The mutual reactions to each other’s results in the 1950’s also
put J. Jakubík into contact (corresponding) with M. Benado and
G. Szász.

4.3 The analysis of Ján Jakubík’s works

4.3.1 An introduction to the analysis

This section is devoted to the analysis of J. Jakubík’s papers dealing
with problems of lattice theory published by the year 1963. The papers
are discussed one by one, in chronological order of their publishing, with
references to the sources the author drew upon and to other information
concerning the topic. The main inspiration for the papers was naturally
Lattice Theory by G. Birkhoff ([LT–48] and its Russian translation
1952), and often also contemporary papers to which J. Jakubík reacted.

A short description of the papers

As the subjects and methods of the papers are often closely related to
one another, we can identify several areas in which J. Jakubík worked
in this period. He frequently treats the same, or a similar problem in
more papers, usually generalizing his results for a larger class of lattices.
A question he investigated in great detail in his first works was the re-
lationship between graphical and lattice isomorphisms of a pair of finite
lattices: distributive [J–K], modular [Jak2] and semimodular lattices
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[Jak3], and also multilattices [Jak12], he even looked for an equivalent
of graphical isomorphism in the case of infinite lattices [Jak9]. Several
papers concern a decomposition into a direct product: the question of
the uniqueness of a decomposition of lattices is treated in [Jak1], the
existence of a decomposition of complete lattices is discussed in [Jak8],
the investigation of [Jak14] produced results about a decomposition of
infinitely distributive lattices and [Jak7] deals with a decomposition of
1 into a direct product. The properties of congruence relations present
a strong tool for solving problems in many papers, however, they are
primarily studied in [Jak4], which is a systematic investigation of the
solvability of a system of two congruence relations (defined in terms
of ideals or convex sublattices) in modular and distributive lattices, in
[Jak6], in which J. Jakubík as one of the first mathematicians used the
notion of weak projectivity of intervals for studying congruences, and in
[Jak16], where he investigated in which case any two congruences on a
lattice are permutable. The Jordan–Dedekind chain condition in infinite
lattices is the topic of [Jak10] for complete and completely distributive
lattices, [Jak13] and [Jak17] deal with the Jordan–Dedekind condition
in Boolean algebras; the results from these papers are used in further in-
vestigation of the Jordan–Dedekind chain condition in direct product of
partially ordered sets [Jak19]. J. Jakubík also reacted to the new con-
cept of multilattices introduced byM. Benado [Jak11, Jak12]. Many of
the mentioned papers, [Jak1, J–K, Jak2, Jak3, Jak6, Jak15], also present
a partial or a full answer to some problems stated in [LT–48].

Jakubík’s other papers of this period

In the investigated period J. Jakubík worked apart from the analyzed
papers on other problems as well. In the area of abstract algebras,
partially ordered groups and l–groups he published papers dealing with
similar problems to those studying in lattices: ideals, chains, congru-
ences, direct products.
Let us mention the paper On congruence relations in abstract alge-

bras [Jak5] in which he constructs an example which gives the affirma-
tive answer to G. Birkhoff’s Problem 33 ([LT–48], p. 90): ”Let A be
an algebra with a one element subalgebra and permutable congruence
relations. Can A have distinct congruence relations θ 6= θ′ such that
S(θ) = S(θ′)?”7 This problem was solved independently and using a

7S(θ) is defined as the subalgebra of x ≡ 1(θ) in A, where 1 denotes a selected
one–element algebra.
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different method by A. I. Mal’cev.8

An important question J. Jakubík solved in several papers deal-
ing with partially ordered groups was which properties of a partially
ordered group, or an l–group depend only on the partial order, i. e.
which properties remain if we define the group operation in a differ-
ent way. The paper O glavnych idealach v strukturno usporjadočennych
gruppach [Jak18], apart from other results, solved another problem of
G. Birkhoff (Problem 99, [LT–48], p. 224): ”Is it true that any l–
ideal of an l–ideal of a free l–group G with a finite number of generators
is an l–ideal of G? Is it true that if the lattice of all l–ideals of a free
l–group G with a finite number of generators has a finite length, then
every l–ideal of G is principal?” J. Jakubík constructs such an l–group
which provides negative answers to both questions.

A note on the language and notation of the analysis

J. Jakubík’s papers are written in Slovak, Russian, English or German,
the language of the analysis follows the standard English terminology
(based mainly on G. Grätzer [Grä2]), sometimes preserving the orig-
inal terms (or their translations). The notation is chosen to facilitate
clear orientation in the text. Where it does not disturb, or where there
does not exist any standard notation, the original notation is preserved.
The symbol which is strictly copied from the original papers is ”R”
(and possible indices) for a congruence relation. This relation plays an
important role in proving a number of properties, however, it is impor-
tant to point out that the author works with the term of ”determining
partition” which presents an equal concept to a congruence.
The notion of determining partition was introduced and deeply in-

vestigated by O. Borůvka within his theory of partitions on sets and
in sets. J. Jakubík uses this concept in lattices analogously: a deter-
mining partition is a partition imposed by a congruence relation on a
lattice, i. e. if R is a congruence relation on a lattice L, then a, b ∈ L be-
long to the same class of a determining partition iff a ≡ b(mod R). Since
determining partition and congruence relation are ”equivalent” concepts
(each enabling us to approach a problem from a different side), we can
use them interchangeably. It is true, however, that most mathemati-
cians have preferred working with congruences, therefore J. Jakubík’s
presentation is quite unique. He himself, after the publication of the
first papers, started using the language of congruences in the foreign

8A. I. Mal’cev, K obščej teorii algebraičeskich sistem, Matem. Sbornik 35 (1954),
3–20.
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language summaries (although Slovak full papers are written in the lan-
guage of determining partitions, e. g. [Jak6, Jak16]). In our analysis we
shall preserve the speech of determining partition only in the first papers
[J–K, Jak2], then we shall start using the language of congruences (from
[Jak4]). However, we shall always use the symbol ”R”, no matter if we
speak about a congruence, or a determining partition.

4.3.2 Uniqueness of decomposition of a lattice into a
direct product [Jak1] (1951)

Direct product and factorization theorems have an important position in
group theory and they can also be applied to partially ordered systems:

Theorem 4.1. Let P be a partially ordered set with 0 and 1. If P
can be decomposed into direct product of indecomposable factors, this
decomposition is unique.

The limitation concerning the validity of the theorem is justified:
there exist partially ordered sets without greatest and least elements
whose factorisation into indecomposable factors is not unique. Examples
were given by T. Nakayama,9 or J. Hashimoto.10 For lattices the first
unique factorization theorem was proven for distributive lattices with
0 and 1 by G. Birkhoff in [Bir1], and later the same author [Bir2]
showed its validity for general lattices with 0 and 1. In [LT–48], p. 27
G. Birkhoff states Problem 11:

Is the unique factorisation theorem valid for general lattices
(without the presumption of the existence of 0 and 1)?

J. Jakubík was already interested in this question in his RNDr. Thesis
(1951) in which he provided a positive answer to this problem. In this
paper he even proves a more generalized case: the number of factors can
be infinite. We shall outline the method of his proof.
J. Jakubík uses for the isomorphism L ∼=

∏
ι
Lι, ι ∈M the notation

(i) x←→ {xι} where x ∈ L, {xι} ∈∏
ι
Lι, x

ι ∈ Lι, and calls the element

xι the projection of x into lattice Lι and writes xι = [x]Lι . The symbol
[M ]Lι(M ⊂ L) means the set of all projections of the elements x ∈ M
into Lι. For u ∈ L,Mα ⊂ Lα the set Mα(u) is defined:

x ∈Mα(u) iff 1. [x]Lα ∈Mα, 2. [x]Lι = [u]Lι , for α 6= ι.

9Nakayama, T., Algebraic theory of lattices, Tokyo 1944.
10Hashimoto, J., On the product decomposition of partially ordered sets, Math.
Japonicae 1 (1948), 120–123.
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The definition implies that the partially ordered sets Mα andMα(u)
are isomorphic. It also holds that ifX is a convex sublattice of L =

∏
ι
Lι,

then X ∼=
∏
ι
[X]Lι . J. Jakubík then proves the following lemma:

Lemma 4.2. Let L ∼=
∏
ι
Aι (isomorphism (i1)), ι ∈M and at the same

time L ∼=
∏
ν
Bν (isomorphism (i2)), ν ∈ N , u ∈ L. Let us construct

the set Aα(u) (with respect to the isomorphism (i1)). We will denote the
projection of Aα(u) into Bβ (with respect to (i2)) by A

β
α. If we construct

the sets Aβ
α(u), Bβ(u) (with respect to (i2)), then

Aβ
α(u) = Aα(u) ∧Bβ(u).

By this lemma and the reasoning before we get Aα
∼=

∏
ν
Aν

α(u). If

we define Bα
β (u) analogously to Aβ

α, we obtain Bβ
∼=

∏
ι
Bι

β(u). Then

Bι
β(u) = Aβ

α(u). Thus we get the main theorem of the paper:

Theorem 4.3. Let L ∼=
∏
ι
Aι, ι ∈ M, L ∼=

∏
ν
Bν , ν ∈ N . Let every fac-

tor Aι, Bν have more than one element and let them be indecomposable.
Then there exists one-to-one mapping of M onto N which has the fol-
lowing property: if β ∈ N is the image of α ∈ M, then lattices Aα, Bβ

are isomorphic.

The same result was independently reached by a Japanese mathe-
matician F. Maeda.11 J. Jakubík learnt about his paper only later
from Mathematical Reviews 15 (1954).
In some of his later papers [Jak8, Jak14] J. Jakubík comes back to

the problem of direct decomposition of lattices and investigates under
which conditions a lattice can be decomposed into irreducible factors.

4.3.3 On some properties of a pair of lattices [J–K]
(1954)

This paper was written by both J. Jakubík and M. Kolibiar and it
analyzes various properties of a pair of lattices defined on the same set.
The authors provide a number of results, mainly for distributive lattices,
which lead to a partial solution of Problem 8 stated by G. Birkhoff
in [LT–48].

11Maeda, F., Direct and subdirect factorizations of lattices, Journ. Sci. Hiroshima
Univ. Ser. A 15 (1951), 97–102.
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The content of the paper is based on the results obtained in the au-
thors’ doctoral theses. The part written by J. Jakubík concerns mainly
the investigation of distributive lattices with the property A (see below)
and the solution of Problem 8. M. Kolibiar’s thesis investigated a
ternary operation (a, b, c) in terms of which we can define another lattice
from a given one and the author describes relations between such two
pairs of lattices.
Let L be a distributive lattice. A congruence relation Θ on L may be

defined by means of the ternary operation (a, b, c) = (a∨b)∧(b∨c)∧(c∨a)
in the following way:

xΘy ⇔ (a, t, x) = (a, t, y); a, t ∈ L.

If L has 0 and 1, and the element t has a complement, the determining
partition defined by the congruence relation Θ is called the principal
determining partition. Let two lattices L1, L2 be defined on the same
set M and let their lattice operations and ordering relations be denoted
by ∩,∪,⊆ in L1 and ∧,∨,≤ in L2. The authors describe the following
properties the two lattices may have and study the relations between
them:

A. Every partition of the set M which is determining on L1

is also determining on L2 and vice versa.

A1. Every principal determining partition on L1 is a prin-
cipal determining partition on L2 and vice versa.

B. If a set X ⊂M forms a convex sublattice in L1, then X
forms a convex sublattice in L2 and vice versa.

C. Every lattice operation of L1 is mutually distributive with
every lattice operation of L2.

D. There exist lattices A,B (defined on the setsM1,M2) and
a mapping ϕ : M →M1×M2 such that ϕ is an isomorphism
of L1 onto A×B and at the same time it is an isomorphism
of L2 onto Ã×B (Ã means the dual of A).12

E. There exist two elements t, t′ ∈ L1, t
′ being a complement

of t in L1 such that for any x, y ∈M

x ∪ y = (x, t, y), x ∩ y = (x, t′, y).

F. The (unoriented) graphs of the lattices L1, L2 are isomor-
phic.

12The formulation of this property is not precisely correct in the original paper,
which M. Kolibiar makes clear in his paper [Kol2].
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After a detailed investigation of the behaviour of the described entities
the authors prove the following relations between the properties A to F:

Theorem 4.4. C ⇒ B and D ⇒ A are valid for any lattice.
Theorem 4.5. D ⇒ F is valid for finite lattices.
Theorem 4.6. The properties A, B, C, D are equivalent for distribu-
tive lattices.

Theorem 4.7. The properties A, A1, B, C, D, E are equivalent for
distributive lattices with 0 and 1.

Theorem 4.8. All the properties are equivalent for finite distributive
lattices.

Some of the stated results were proved in earlier papers of other ma-
thematicians: the implication D ⇒ C for distributive lattices and D ⇒
F for the case that the factors of the direct product are self-dual in [Kis]
and the implication A ⇒ D for distributive lattices may be deduced
from [Arn]. The ternary operation (a, b, c) = (a∨ b)∧ (b∨ c)∧ (c∨a) was
studied by A. A. Grau [Gra] in Boolean algebras, and by S. A. Kiss
[B-K, Kis] in distributive lattices (for more details concerning works deal-
ing with this ternary operation see the analysis of [Kol4]). V. Kořínek
and V. Vilhelm draw J. Jakubík’s and M. Kolibiar’s attention to
the paper of B. H. Arnold [Arn] which described a third, binary, op-
eration on distributive lattices. J. Jakubík andM. Kolibiar thus also
compare the properties of B. H. Arnold’s operation with the ternary
operation and show the connection of their results to B. H. Arnold’s.
M. Kolibiar returned to investigating this ternary operation in his next
papers [Kol3, Kol4].
In the course of proving the equivalence of properties A, D J. Ja-

kubík and M. Kolibiar found lattices A,B from D by constructing
them:

A = {x ∈ L1 : x ∩ c = x ∨ c, x ∪ c = x ∧ c},
B = {x ∈ L1 : x ∩ c = x ∧ c, x ∪ c = x ∨ c}, where c ∈ L1 is a fixed point.

The equivalence of properties A and D (for distributive lattices)
plays an important role in the final part of the paper: solving G. Birk-
hoff’s Problem 8 [LT–48], p. 20:

Find a necessary and sufficient condition on a lattice L, in
order that every lattice M whose (unoriented) graph is iso-
morphic with the graph of L be lattice-isomorphic with L.
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Graphs of finite lattices are isomorphic iff there exists an isomor-
phism preserving neighbouring elements (J. Jakubík and M. Kolib-
iar call x, y ∈ L neighbours, or neighbouring elements, and write ”x
s y” iff x covers y, or y covers x). J. Jakubík and M. Kolibiar use
the notation L1

g∼ L2 for L1, L2 being graphically isomorphic. When
investigating the notion of graphical isomorphism the authors use the
concepts of prime quotient, perspective quotients, projective quotients.
However, they call perspective quotients transposes in accordance with
G. Birkhoff [LT–48]. They also introduce the term elementary pair:
(x, y) is an elementary pair iff x, y are neighbouring elements. Trans-
poses of elementary pairs are called prime transposes.
If two lattices are graphically isomorphic, then projective prime quo-

tients are carried to projective prime quotients under this isomorphism.
By combining this fact with Theorem 10 from [LT–48], p. 77 (the con-
gruence relations on a modular lattice of finite length correspond one-
to-one to the sets of classes of projective prime quotients, which they
annul) the authors obtain the results that graphical isomorphism of two
finite discrete lattices L1, L2 is equivalent to the property A, and thus
D, which means that there exist lattices A,B such that L1

∼= A × B
and L2

∼= Ã × B. The answer to G. Birkhoff’s Problem 8 is then
obvious:

Theorem 4.9. Let L be a finite distributive lattice. LetM be a distribu-
tive lattice whose (unoriented) graph is isomorphic to the graph of L. L
is also lattice-isomorphic to M iff every direct factor of L is self-dual.

4.3.4 On lattices whose graphs are isomorphic [Jak2]
(1954)

This paper solves the same problem as the previous one [J–K], i.e. Prob-
lem 8 from [LT–48], the result is, however, more general: it provides
the answer for the class of modular lattices. Although this answer is the
same, the nature of work is different. While the first one [J–K] presents
a range of relations between properties of a pair of lattices and the solu-
tion of Problem 8 comes as a consequence, in this article J. Jakubík
clearly states the aim to deal with the following questions:

1. find lattices whose (unoriented) graphs are isomorphic
with the graph of a given finite lattice,

2. find a necessary and sufficient condition for a finite lattice
L such, that every lattice L′ whose graph is isomorphic with
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the graph of the lattice L, be isomorphic with the lattice L
(= G. Birkhoff’s Problem 8).

The author solves the questions for the case of modular lattices and also
provides a generalization of a part of the results to discrete modular
lattices.
As in [J–K] J. Jakubík defines the notions of neighbouring ele-

ments (relation ”s”), elementary pairs, prime transposes and graphical
isomorphism of lattices. When introducing prime transposes he, untra-
ditionally (instead of a classical version, going back to R. Dedekind,
defining them as prime quotients in the form [x∧ y, x], [y, x∨ y]), prefers
a definition in terms of neighbouring elements:

Definition 4.1. Let L be a modular lattice. a, b, c, d ∈ L. If a s b s c s
d s a, then elementary pairs (a, b), (c, d) are called transposes.

The method of proof from [J–K] used properties of distributive lat-
tices which cannot be extended to modular ones. The author therefore
provides another proof which is not only more general, but also more
straightforward.
Let L,L′ be finite modular lattices such that L

g∼ L′. For a, b, c, · · · ∈
L we denote their images (under the graphical isomorphism) in L′ by
a′, b′, c′, . . . It is obvious that if (a, b) and (c, d) are projective elementary
pairs, then so are (a′, b′) and (c′, d′). The set of all elementary pairs of a
lattice can be divided into classes Ti where each class contains mutually
projective pairs. We define the following congruence relation on L:

a ≡ b iff 1. a = b, or 2. every elementary pair
(u, v) ∈ [a ∧ b, a ∨ b] belongs to some class Ti.

If we define on L′: a′ ≡ b′ iff a ≡ b, we obtain a congruence relation
on L′ and imposed partitions P on L and P ′ on L′. It holds that every
determining partition on L can be constructed in this way.
Now the author introduces the notion of elementary pairs preserving

or reversing the order.

Definition 4.2. Let L
g∼ L′, a, b ∈ L. We say that an elementary

pair (a, b), where a < b preserves (reverses) the order of elements with
respect to the graphical isomorphism iff a′ < b′ (a′ > b′).

It holds that mutually projective elementary pairs either all preserve,
or all reverse the order. We denote by M1 (M2) the set of all classes of
mutually projective elementary pairs in L which preserve (reverse) the
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order and by P1 (P2) a determining partition on L which is defined by
Ti ∈M1 (Ti ∈M2). J. Jakubík proves that P1 and P2 are permutable
partitions. If the lattice of the classes of the partition P1 (P2) is denoted
A1 (A2), we obtain L ∼= A1 × A2, and in a similar way L′ ∼= Ã1 × A2,
where Ã1 is means the dual of A1.
Thus we receive the answers for the stated questions:

Theorem 4.10. Let L,L′ be finite modular lattices, L
g∼ L′ iff there

exist lattices A1, A2 such that L ∼= A1 ×A2 and L′ ∼= Ã1 ×A2.

Theorem 4.11. Let L be a finite modular lattice. Let a lattice L′

be graphically isomorphic to the graph of L. Then L′ is also lattice
isomorphic to L iff every direct factor of L is self-dual.

J. Jakubík also looks at the validity of the previous theorem in
the case of an infinite lattice. For a discrete lattice (i. e. a lattice in
which every chain with 0 and 1 is finite) L it remains true if we make
a presumption that it is possible to decompose it into direct product
of indecomposable factors. However, it is not generally valid that to
every discrete finite lattice there exists its direct product of factors each
of which is indecomposable. J. Jakubík gives the following example
of such a modular discrete lattice: L is a set of all functions defined
on the interval [0, 1] which satisfy 1. the image of all elements is 0
except a finite number of elements, 2. the images are only integers (L
is partially ordered in the usual way: f ≤ g, for f, g ∈ L iff for each
x ∈ [0, 1] : f(x) ≤ g(x)).
At the end of the paper J. Jakubík indicates three unsolved prob-

lems he is going to deal with in next papers ([Jak3], [Jak9]).

4.3.5 On the graphical isomorphism of semimodular lat-
tices [Jak3] (1954)

This paper continues to investigate the problem of graphical isomor-
phism for even a more general group of lattices than the previous two.
J. Jakubík solves the following two questions which he posed at the
end of [Jak2]:

Q1. Let L,L′ be finite semimodular lattices which are graph-
ically isomorphic. Does it imply (as in the case of modular
lattices, see [Jak2]) the existence of such lattices A,B that
L ∼= A×B and L′ ∼= Ã×B?

Q2. Let L be a finite modular lattice, let L′ be a lattice
graphically isomorphic to L. Is L′ also modular?
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As in his previous paper [Jak2] J. Jakubík uses the notions of neigh-
bouring elements, elementary pairs, prime transposes and elementary
pairs preserving/reversing the order with respect to the given graphical
isomorphism (for details see the analysis of the papers [J–K] and [Jak2].)
We say that a chain (an interval) preserves/reverses the order with re-
spect to the graphical isomorphism iff every elementary pair of the chain
(the interval) preserves/reverses the order. We say that a sublattice L0

of L preserves/reverses the order iff for any a, b ∈ L, a < b the interval
[a, b] preserves/reverses the order.

L : L′ :

Figure 4.1: Graphically isomorphic semimodular lattices demonstrating
the negative answer to Q1

J. Jakubík proves that the answer to Question Q1 is negative. He
presents an example of two lattices L,L′ from Figure 4.1 which are
graphically isomorphic, but L is indecomposable. This negative an-
swer arises from the fact that every semimodular lattice which is not
modular contains a sublattice isomorphic with the lattice in Figure 4.2.
J. Jakubík calls any lattice isomorphic to this lattice a lattice of type
C. We can therefore ask whether we may get a positive answer to Q1 if
we place some more assumptions on the behaviour of the sublattices of
type C. By studying properties of chains and intervals preserving and
reversing the order, and by applying the same method of imposing de-
termining partitions on L as in [Jak2] J. Jakubík proves the following
theorem:

Theorem 4.12. Let L,L′ be finite semimodular lattices which are graph-
ically isomorphic. Let all sublattices of type C in L and L′ preserve the
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order with respect to the given graphical isomorphism. Then there exist
lattices A,B such that

L ∼= A×B, L′ ∼= Ã×B

Figure 4.2: A lattice of type C

By investigating the covering conditions in L′ J. Jakubík arrives at
the following answer to Q2:

Theorem 4.13. Let L be a modular lattice. Let L′ be a lattice graphi-
cally isomorphic to L. Then L′ is also modular.

J. Jakubík also remarks that the analogous theorem for semimodu-
lar lattices is not valid since a lattice of type C is graphically isomorphic
to its dual, however, the dual is not semimodular.

4.3.6 A system of congruence relations on lattices [Jak4]
(1954)

In number theory we know the so called Chinese remainder theorem
which gives necessary and sufficient conditions for the system of congru-
ence relations

x ≡ ai(mod mi), i = 1, . . . , n

to be solvable. An analogous problem for the congruence relations on
distributive lattices was put forward by V. K. Balachandran:13

B1 Let L be a distributive lattice with a minimal element,
let A,B be ideals in L, and u, v ∈ L. Find a necessary and
sufficient condition for elements u, v so that the system of
congruence relations

x ≡ u(mod A), x ≡ v(mod B) (4.1)

13Balachandran, V. K., The Chinese remainder theorem for distributive lattices,
J. Indian Math. Soc. (N. S.) 13 (1949), 76–80.
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is solvable.

The most important results of V. K. Balachandran are:

Theorem 4.14. The system (4.1) is solvable iff u ≡ v(mod A ∨B).

Theorem 4.15. If x is a solution of (4.1) and x ≡ y(mod A∧B), then
y is also its solution; for every two elements x, y which are solutions
holds x ≡ y(mod A ∧B).

J. Jakubík proves that V. K. Balachandran’s results are still
valid even if we leave out the presumption of B1 that L has a minimal
element. He further generalizes the problem by replacing a congruence
relation belonging to an ideal A by a minimal congruence R(A), which
means the minimal of all congruences which annul all elements of A ⊂ L.
(As it was pointed out in the introduction to the analysis J. Jakubík
works with the notion of determining partitions, not congruences in the
original paper.)
The first section of the paper deals with some important properties of

the defined minimal congruence and in the second section the system of
congruence relations is investigated for the case of distributive lattices.
Let A,B be convex sublattices of L and let us have the following system
of two congruence relations:

x ≡ u(mod R(A)), x ≡ v(mod R(B)). (4.2)

It is obvious that a necessary condition for the existence of the solution
of (4.2) is the following:

u ≡ v(mod R(A) ∨R(B)), (4.3)

however this condition is not a sufficient one. The question to investigate
is therefore: which other condition, apart from (4.3) needs to be satisfied
so that (4.3) implies the existence of a solution of the system (4.2)? In
distributive lattices J. Jakubík studies this question in relation to the
following statements (the original notations is used for the statements):

Ba. For any a, b ∈ L and any convex sublattices A,B ⊂ L
the relation (4.3) implies the existence of a solution of (4.2).

Ba(u, v). For given elements u, v ∈ L and arbitrary convex
sublattices A,B ⊂ L the relation (4.3) implies the existence
of a solution of (4.2).

Ba(A, B). For given elements u, v ∈ L and given convex
sublattices A,B ⊂ L the relation (4.3) implies the existence
of a solution of (4.2).
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First, the author uses properties of permutable congruences to restate
previous statements in equivalent forms:

Ba. Let A,B be any convex sublattices of L. Then the
congruences R(A), R(B) are permutable.

Ba(A, B). Let A,B be given convex sublattices of L. Then
the congruences R(A), R(B) are permutable.

Then J. Jakubík proves the following theorems:

Theorem 4.16. A lattice L satisfies the condition Ba iff L is relatively
complemented.

Theorem 4.17. A lattice L satisfies the condition Ba(u, v) iff the
lattice
[u ∧ v, u ∨ v] is complemented.

A necessary and sufficient condition for a lattice to satisfy condition
Ba(A, B) is more complicated, and the author distinguishes two cases
- if A and B are disjoint, or not:

Theorem 4.18. Let A,B be two nondisjoint convex sublattices of L.
Then L satisfies the condition Ba(A, B) iff the sublattice (A,B) gen-
erated by A and B is the direct product of A and B.

Theorem 4.19. If A,B are disjoint convex sublattices, then a necessary
and sufficient condition for L to satisfy Ba(A, B) is the following: if
A′

1(B
′
1) is an interval projective to an interval A1 ⊂ A(B1 ⊂ B) and

A′
1 ∩B′

1 6= 0, then the sublattice (A′
1, B

′
1) generated by A

′
1 and B

′
1 is the

direct product of A′
1 and B′

1.

The third section of the paper deals with modular lattices. The
author finds sufficient conditions for the existence of a solution of the
system (4.2). First he constructs the minimal congruence R(C) on a
modular lattice L whose lattice of classes, denoted by L′, is distributive.
Some ideals A′, B′ ⊂ L′ belong to ideals A,B ⊂ L. Thus, we can obtain
some properties of elements L from properties of L′:

Theorem 4.20. Let A,B be ideals of a modular lattice. Let

u ≡ v(mod R(A ∨B)).

Then there exists an element x satisfying

x ≡ u(mod R(A) ∨R(C)), x ≡ v(mod R(B) ∨R(C)).
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Theorem 4.21. Let A,B be ideals of a modular lattice. Let

u ≡ v(mod R(A ∨B)).

Then there exists an element z satisfying

z ≡ u(mod R(A)∨(R(B)∨R(C))), z ≡ v(mod R(B)∨(R(A)∨R(C))).

In the last theorem of this paper J. Jakubík generalizes a theorem
which G. Birkhoff proved for modular lattices of a finite length in
[LT–48], p. 77 (Theorem 10). The generalized theorem is not directly
related to the study of the given system of congruences, however, it re-
sults from the investigation of congruence relations on lattices presented
in the paper. His theorem is the following:

Theorem 4.22. Let L be a discrete modular lattice. The congruences
on L correspond one-to-one to the sets of classes of projective prime
quotients which they annul. Hence they form a Boolean algebra.

J. Jakubík continues in developing his results about permutable
congruences and the solvability of the system from this paper later in
[Jak16].

4.3.7 Congruence relations and weak projectivity in lat-
tices [Jak6] (1955)

The notion of weak projectivity was first introduced by R. D. Dil-
worth14 although a similar idea was used by M. Funayama [Fun].
Let i0 = i, i1, . . . , in−1, in = i′ be intervals in a lattice L. In Grät-

zer’s terminology [Grä2] we say that i′ is weakly projective into i iff
for each ik−1, (k = 1, . . . , n) the interval ik is contained in an interval
i′k which is transposed to the interval ik−1. J. Jakubík says in this
case that i is weakly projective with i′ and we shall write i �w i′. The
relation �w is a quasi–ordering on the set of all intervals of L.
Let L be a discrete lattice and let L be the congruence lattice of L.

Let P be the set of all prime intervals of L quasi-ordered by the relation
�w. For p ∈ P we will denote by p̄ the set of all p′ ∈ P satisfying both
p �w p′ and p′ �w p (we shall call such prime intervals equivalent). Thus
we obtain a partition of P into disjoint classes of mutually equivalent
prime quotients. We will denote the set of these classes by X. Let p̄ ≥ q̄

14Dilworth, R. P., The structure of relatively complemented lattices, Annals
Math. 51 (1950), 348–359.
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iff p �w q. Let Y be the set of all functions defined on X having the
values 1 or 2 satisfying

p̄ ≤ q̄ ⇒ f(p̄) ≤ f(q̄).

For f1, f2 ∈ Y we put f1 ≤ f2 iff f(p̄) ≤ f2(q̄) for all p̄ ∈ X. J. Jakubík
proves the following theorem:

Theorem 4.23. Let L be a discrete lattice and let ConL be its congru-
ence lattice. The partially ordered sets ConL and Y are dually isomor-
phic.

This theorem was proved by M. Funayama [Fun] for L being a
finite lattice and its generalization for a lattice satisfying one chain con-
dition was put forward as Problem 67 in [LT–48], p. 144. J. Jakubík
shows on an example that his theorem is not generally valid for lattices
satisfying the descending chain condition. Further generalization of The-
orem 4.2315 was provided in [G–S2] in which the authors G. Grätzer
and E. T. Schmidt also continue in the development of the following
J. Jakubík’s results from this paper and provide full answers to the
problems.
J. Jakubík used the notion of weak projectivity while investigating

other two problems of [LT–48]:

Problem 72 (p. 153): Find necessary and sufficient con-
ditions on a lattice so that its congruence lattice forms a
Boolean algebra.

Problem 73 (p. 161) Find necessary and sufficient condi-
tions in order that the correspondence between the congru-
ence relations and neutral ideals of a lattice be one–to–one.

J. Jakubík solved Problem 72 for discrete and distributive lattices:

Theorem 4.24. Let L be a discrete lattice, let ConL be its congru-
ence lattice. Then ConL is a Boolean algebra iff the relation of weak
projectivity of prime intervals in L is symmetric.

Theorem 4.25. Let L be a distributive lattice, let ConL be its congru-
ence lattice. ConL is a Boolean algebra iff L is a discrete lattice.

J. Jakubík replaces the condition of Problem 73 by the following
one:
15The theorem is valid for semi–discrete lattices, i. e. lattices in which there exists
a finite maximal chain between all comparable pairs of elements.
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(A) Every non–trivial congruenceR on L includes some ideal
I(R) as one of its classes and I(R) determines the congruence
R uniquely.

The solution of Problem 73 for distributive lattices is given as follows:

Theorem 4.26. Let L is a distributive lattice. The condition (A) is
satisfied in L iff to each prime interval p of L there exists an ideal
I(p) such that 1. the prime interval p is weakly projective with every
prime interval of I(p), 2. in I(p) there exists a prime interval p1 weakly
projective to p.

J. Jakubík also combines the two problems and finds a lattice sat-
isfying both conditions:

Theorem 4.27. Let L be a discrete lattice with 0. L satisfies (A) and
at the same time ConL is a Boolean algebra iff any prime interval p of
L 1. is weakly projective with at least one prime interval [0, x0], 2. if
p is weakly projective with some interval p0 = [0, y0] then p and p0 are
equivalent.

Theorem 4.28. Let L be a discrete lattice without 0. L satisfies (A)
and at the same time ConL is a Boolean algebra iff L is simple.

Problem 73 attracted also M. Kolibiar’s attention (see the anal-
ysis of [Kol6]).

4.3.8 Direct decomposition of the unity in modular lat-
tices [Jak7] (1955)

Let L be a lattice with 0 and 1. The notion of direct decomposition of 1
was introduced by A. G. Kuroš in [Kur1, Kur2] for complete lattices,
however, it is possible to extend it to lattices of general type. Let

(I) 1 =
∨

aα (α ∈M), (II) 1 =
∨

bβ (β ∈ N)

be direct decompositions of the element 1. We can consider the following
problem (P):

(P)What is a necessary and sufficient condition for the exis-
tence of a common refinement of the decompositions (I) and
(II)?

A. G. Kuroš proved the following theorem (K) [Kur1, Kur2]:



292 Štěpánka Bilová

Theorem 4.29. (K) Let L be a completely modular lattice. The decom-
positions (I) and (II) have a common refinement iff for all α ∈M,β ∈ N
holds 1ϕ̄αΘβϕα = 0.16

The method of A. G. Kuroš’s proof lies in exploiting properties of
ϕα, ϕ̄α, Θβ, Θ̄β. J. Jakubík generalizes the mentioned theorem, how-
ever, he uses a different approach to obtain his results. He reduces the
problem to the existence of a common refinement of two direct decom-
positions of a certain sublattice of L. The introductory part of the paper
is, therefore, devoted to an exposition of direct and subdirect decompo-
sitions of algebras.
J. Jakubík makes use of the following condition (B) which can

replace the complete modularity of the lattice L in the theorem (K):

(B) There exists a sublattice L1 ⊂ L such that 1. L1 is a
complete sublattice of L, 2. L1 is completely modular, 3. L1

contains all elements aα, bβ.

The summary of J. Jakubík’s results is as follows:

Theorem 4.30. Let a lattice L be complete and modular. Then
1. A common refinement of the decompositions (I) and (II) exists

iff the complete sublattice of L generated by the set of all elements aα, bβ
is distributive.
2. The theorem (K) holds without supposing the condition (B).
3. The condition (B) follows from the existence of a common re-

finement of decompositions (I) and (II).
4. Let A be the set of all elements of L which have a complement.

There exists a direct decomposition 1 =
∨

Ci which is a refinement of all
direct decompositions of 1 iff the complete sublattice L1 ⊂ L generated
by the set A is completely distributive.

The work of Kuroš on direct decomposition influenced also other
mathematicians’ papers17 about which J. Jakubík rises a question
whether some of their results can be generalized in a way similar to
his paper.
The basic result of this paper was also published (without a proof)

by M. Benado.18

16ϕα, and Θβ denote projections associated with the decompositions (I) and (II),
ϕ̄α denotes the projection complementary to ϕα.
17Graev, M. I., Izomorfizmy prjamych razloženij v dedekindovych strukturach, Izv.
Ak. Nauk SSSR 11 (1947), 33–47 and Livšic, A. Ch., Prjamyje razloženija vpolne
dedekindovych struktur, Mat. Sb. 28 (70) (1951), 481–503.
18Benado, M., Über eine Frage aus der Theorie der Oreschen Normalitäts-
beziehungen, Comun. Acad. R. P. Romine 5 (1955), 1241–1243.
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4.3.9 Direct decomposition of completely distributive com-
plete lattices [Jak8] (1955)

Although a direct decomposition into irreducible factors does not gene-
rally exist for every lattice, in this note J. Jakubík shows that it does
for completely distributive complete lattices:

Theorem 4.31. Every completely distributive complete lattice is a di-
rect product of directly indecomposable factors.

In the proof J. Jakubík uses his results of [Jak7]. Further the author
presents a weak form of the previous theorem for complete lattices:

Theorem 4.32. Let L be a complete lattice, {Li}, i ∈ M the set of
all indecomposable factors of L. Then L ∼=

∏
Li iff the centre of L is

completely distributive complete lattice.

J. Jakubík also points out it may happen that a lattice which does
not have a greatest and least element is not possible to decompose into
indecomposable factors although every interval of this lattice has a direct
decomposition of indecomposable factors.

4.3.10 On metric lattices [Jak9] (1955)

At the end of [Jak2] J. Jakubík stated an unsolved problem concerning
an extension of the notion of graphical isomorphism to infinite modu-
lar lattices. He suggested to use a topological equivalence instead of
graphical isomorphism and posed questions analogous to the problems
in [Jak2].

Definition 4.3. A metric lattice is defined as a lattice L with a norm.
A norm on a lattice is a real function v(x) on L satisfying:

v(x) + v(y) = v(x ∧ y) + v(x ∨ y)

x > y ⇒ v(x) > v(y).

If we introduce a distance in L by assigning to each pair x, y ∈ L the
real non-negative number d(x, y):

d(x, y) = v(x ∨ y)− v(x ∧ y), (4.4)

we obtain a metric space in its usual sense. Therefore we use the term
metric, or normed, lattices. We will denote the set of all elements of a
lattice L (a metric space M) by |L| (|M |) and the metric space on L
defined by (4.4) will be denoted by M(L(v)).



294 Štěpánka Bilová

Associating metric spaces with lattices was commenced by V. Gli-
venko [Gli1, Gli2] and a number of mathematicians continued. V. Gli-
venko [Gli1] andM. F. Smiley andW. R. Transue [S–T] formulated
conditions which a given metric space M1 must satisfy so that there
exists a metric lattice L(v) such that:

|L| = |M1|, M(L(v)) = M1. (4.5)

They considered lattices with the least element and a non-negative norm.
L. M. Kelly [Kel] extended their results to any normed lattices (thus
solving Problem 66 in G. Birkhoff’s [LT–48]). He also attempted
to reconstruct a lattice L(v) satisfying the equations (4.5), however, his
construction did not determine all such lattices. L. M. Kelly therefore
posed the following question [Kel]:

LetM1 be a metric space and L(v) a metric lattice satisfying
(4.5). Find all other lattices satisfying (4.5).

For investigating this question J. Jakubík used the results of M. Ko-
libiar from [Kol2] and proved the following two theorems:

Theorem 4.33. Let M1 be a metric space and let L(v) be a metric
lattice satisfying (4.5). A lattice L′ also satisfies (4.5) iff |L′| = |L| and
there exist lattices A,B such that

L ∼= A×B, L′ ∼= Ã×B,

where Ã is the dual of A and the mapping of |L| on the set |A × B| =
|Ã×B| is in both isomorphisms the same.
Theorem 4.34. Let L be able to decompose into a direct product of
indecomposable factors L ∼=

∏
Li, (i ∈ N), let L(v) be a metric lattice.

Let L′(v′) be a lattice satisfying:

|L′| = |L|, M(L′(v′)) = M(L(v)).

Then L′ is isomorphic to L iff every indecomposable direct factor Li(i ∈
N) is selfdual.

4.3.11 On the Jordan–Dedekind chain condition [Jak10]
(1955)

The Jordan–Dedekind Chain Condition (which will be denoted by (JD)
evolved from ideas originally used to prove the Jordan–Hölder Theo-
rem for groups ([LT–67], p. 164). In connection with lattices it was
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first studied by R. Dedekind in [Ded]. Basing his investigation on
R. Dedekind, G. Birkhoff showed in [LT–40], p. 40 that in a lattice
in which all bounded chains are finite each of the covering conditions
implies (JD), which means that (JD) holds in any finite semimodular
lattice. G. Szász19 (following R. Croisot’s paper20 on semimodu-
lar lattices of infinite length) showed that the condition of all bounded
chains of the lattice being finite can be replaced by a weaker one: there
exists at least one finite maximal chain between a and b. G. Szász21

introduced a more general version of (JD) by defining the length of an
infinite chain:

Definition 4.4. If a chain C(a, b) is infinite, its length is the cardinal
number of the set C(a, b).

Compared to the original condition, the group of lattices satisfying
the general Jordan–Dedekind condition in the sense of G. Szász (we
shall denote it by (JD 2)), i. e. if chains C1andC2 are maximal chains
with the same endpoints, then their cardinal numbers are the same, is
surprisingly more limited. G. Szász stated (in the mentioned paper)
the following theorem:22

Theorem 4.35. There exists a distributive lattice which does not satisfy
the condition (JD 2).

In this paper J. Jakubík provides further generalization of this the-
orem:

Theorem 4.36. Let α be a cardinal number, α ≥ c.23 There exists a
complete and completely distributive lattice Lα with the least element f0
and the greatest element f1 which has the following property: For any
cardinal number β which c ≤ β ≤ α, there exists, in Lα, a maximal
chain Cβ(f0, f1) of the length β.

19Szász, G., On the structure of semi–modular lattices of infinite length, Acta Sci.
Math. 14 (1951/1952), 239–245.
20Croisot, R., Contribution à l’étude des treillis semi–modulaires de longueur
infinie, Annales Sci. Ecole Normale Sup. 68 (1951), 203–265.
21Szász, G., Generalization of a theorem of Birkhoff concerning maximal chains
of a certain type of lattices, Acta Mathematica Academiae Scientarum Hungaricae
16 (1955), 89–91.
22J. Jakubík drew the author’s attention to the fact that the original formulation of
the example in the proof of this theorem was not correct, G. Szász therefore provided
a correction to the proof: Correction to my paper ”Generalization of a theorem of
Birkhoff . . . ”, Acta Mathematica Academiae Scientarum Hungaticae 16 (1955), 270.
23c denotes the power of the continuum.
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J. Jakubík proves the theorem by constructing such a lattice (using
the axiom of choice): Let M be a well–ordered set the cardinal number
of which is α. We denote by L0(M) the lattice of all real functions f
defined on M such that for every i ∈ M,f(i) ∈ [0, 1] partially ordered
by the usual ordering. J. Jakubík shows that L0(M) is a complete and
completely distributive lattice satisfying the required property.

4.3.12 On axioms of multilattice theory [Jak11] (1956)

M. Benado introduced an interesting generalization of the notion lat-
tice in [Ben1] which he called a multilattice. His definition of a multi-
lattice in terms of two binary operations is the following:

Definition 4.5. A non–void setM is a multilattice iff to any ordered
pair a, b ∈ M (any A,B ⊂ M) exist two subsets of M, which can be
void, denoted by a ∨ b, a ∧ b (A ∨ B, A ∧ B), and the operations ∨,∧
satisfy axioms (M1)–(M6):

(M1) a ∨ b = b ∨ a, and dually.

(M2) If M ∈ (a ∨ b) ∨ c, then there exists M ′ ∈ a ∨ (b ∨ c)
such that M ∨M ′ = M , and dually.

(M3) If a ∨ b 6= ∅, then a ∧ (a ∨ b) = {a}, and dually.
(M4) a ∨ a 6= ∅, and dually.
(M5) If a ∨ c = b ∨ c, then a = b, and dually.

(M6) If M,M ′ ∈ a ∨ b,M∗ ∈ M ∨M ′,M 6= M ′, then M 6=
M∗ 6= M ′, and dually.

In this paper J. Jakubík solves two problems which M. Benado
stated in [Ben2], p. 324:

B1. Is the axiom (M6) independent of the axioms (M1) to
(M5)?

B2. Is there an associative multilattice which is not a lattice?

J. Jakubík shows that the answer to B1 is positive by constructing
an example of a partially ordered set P satisfying (M1)–(M5), but not
(M6). The set P is in Figure 4.3 (P = {p, q, u, v}, for each x, y ∈ P,
for which x ≤ y we set x ∨ y = y ∨ x = y, x ∧ y = y ∧ x = x, and
p ∨ q = q ∨ p = {u, v}, p ∧ q = q ∧ p = ∅).
The answer to B2 is also positive and can be demonstrated on a

simple example of the multilatticeM∞ = {a, b} in which a∨a = a∧a =
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p q

u

v

Figure 4.3: A partially ordered set P

a, b∨ b = b∧ b = b, a∨ b = b∨ a = a∧ b = b∧ a = ∅. J. Jakubík shows
even more than the answer to B2:

Theorem 4.37. There exists an associative multilattice which is not a
lattice. If a multilattice M is associative and if for any a, b ∈ M the
sets a ∨ b, a ∧ b are non–void, then M is a lattice.

At the end of the paper J. Jakubík points out that all his results
remain valid even if we replace (M3) by a stronger axiom:

(M3’) IfM∈ a ∨ b, thenM∧ a = a, and dually.

4.3.13 Graphical isomorphism of multilattices [Jak12]
(1956)

In this paper J. Jakubík comes back to the problem of graphical iso-
morphism (Problem 8 in [LT–48], see [J–K], [Jak2] and [Jak3]) this
time for the case of multilattices (for a definition of a multilattice see
Definition 4.5, or Definition 4.18). He investigates whether the following
result of his:

Theorem 4.38. A necessary and sufficient condition for two discrete
modular lattices L,L′ to be graphically isomorphic is: there exist lattices
A,B such that L ∼= A×B (i1) and L′ ∼= A×B̃ (i2), and the elements x ∈
L, x′ ∈ L′ corresponding to each other under the graphical isomorphism
are mapped on the same pair of elements (a, b), a ∈ A, b ∈ B in the
isomorphisms (i1) and (i2).

remains valid if we replace ”lattices” by ”multilattices”. It will be
important if multilattices are directed sets:

Definition 4.6. A multilattice M is called directed iff

x, y ∈M ⇒ x ∧ y 6= ∅ 6= x ∨ y.
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J. Jakubík investigates the cases of distributive and modular mul-
tilattices:

Definition 4.7. A multilattice M is distributive iff for any a, b, x ∈
M, a ≤ x ≤ b implies that x has at most one relative complement in
[a, b].

Definition 4.8. A multilattice M is modular iff the condition (δ) and
its dual are valid in M :
(δ) if [d, a], [d, b] are prime intervals and m ∈ a∨ b, then [a,m], [b,m]

are prime intervals.

Theorem 4.39. If a distributive multilattice is not directed, Theorem
4.38 (i. e. its modification created by replacing all words ”lattice” with
”multilattice” and ”modular” with ”discrete”) is not valid in general.

Theorem 4.40. Theorem 4.38 (i. e. its modification obtained by re-
placing all words ”lattice” with ”multilattice”) is not valid for modular
multilattices (even if they are directed).

The proofs are demonstrated by examples, see Figure 4.4 for dis-
tributive multilattices and Figure 4.5 for modular multilattices.

M : M ′ :

Figure 4.4: Graphically isomorphic distributive multilattices, M is di-
rectly irreducible, M,M ′ are not isomorphic or dually isomorphic.

From an investigation of directed distributive multilattices J. Jaku-
bík derives the following theorems:

Theorem 4.41. Let M,M ′ be directed discrete distributive multilat-
tices. A necessary and sufficient condition for the existence of a graphi-
cal isomorphism M

g∼M ′ is the existence of such multilattices A,B that
M ∼= A ×B,M ′ ∼= A× B̃, and elements x ∈ M,x′ ∈ M ′ corresponding
to each other under the graphical isomorphism are mapped on the same
pair (a, b), a ∈ A, b ∈ B in both isomorphisms.
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M : M ′ :

Figure 4.5: Graphically isomorphic modular multilattices, M is directly
irreducible, M,M ′ are not isomorphic or dually isomorphic.

Theorem 4.42. Let M be a finite directed distributive multilattice. Let
M ′ be a finite distributive multilattice which is graphically isomorphic
to M . Then the multilattices M and M ′ are isomorphic iff every inde-
composable direct factor of M is self–dual.

The method of the proof is similar to the one in [Jak2]. J. Jakubík
studies the behaviour of elementary pairs preserving/reversing the order,
defines congruences on M and finds multilattices A,B. We shall outline
the method: let x ∈M , we will denote by x̄1(x̄2) the set of all elements
y ∈ M for which there exist z ∈ x ∨ y and maximal chains C1 and
C2 (their least element is x and y respectively, the greatest is z) such
that every prime interval contained in them preserves (reverses) the
order; J. Jakubík shows that if this condition holds for an element
z0 ∈ x ∨ y, then it holds for any z ∈ x ∨ y and any maximal chains
between x, z, or y, z, thus if y ∈ x̄1 (y ∈ x̄2), we can write y ≡ x(mod R1)
(y ≡ x(mod R2)) and R1, R2 are congruences on L. The author shows
that these congruences are permutable and proves that if we take a
fixed point x0 ∈ M and denote x̄10 = A and x̄20 = B, we will obtain an
isomorphism of M and A × B (x ∈ L is mapped onto (a, b) ∈ A × B,
where a ∈ x̄10 ∩ x̄2, b ∈ x̄20 ∩ x̄1).

M. Benado developed his concept of multilattices further in later
papers, in which he frequently cited J. Jakubík’s results from [Jak11]
and [Jak12].
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4.3.14 A note on the Jordan–Dedekind chain condition
in Boolean algebras [Jak13] (1957)

In this paper J. Jakubík continues in investigation of the validity of
the general Jordan–Dedekind condition (JD 2) introduced by G. Szász
(see the analysis of [Jak10]). As in his previous paper he wants to find
some ”borders” concerning the validity of the (JD 2) this time in in-
finite Boolean algebras. However, the construction from the proof of
his Theorem 4.36 about the existence of a complete and completely dis-
tributive lattice which does not satisfy (JD 2) cannot be applied in the
case of Boolean algebras. He, therefore, makes use of the representation
theorem proved by A. Tarski [Tar1]:

Theorem 4.43. A complete Boolean algebra L is isomorphic to the
partially ordered system of all subsets of a set M iff L is completely
distributive.

By A. Tarski’s theorem we can view a complete and completely
distributive Boolean algebra L as a system of all subsets of an infinite
set M with the usual partial ordering by the set inclusion. Let us write
M in the formM = M1∪M2, whereM1∩M2 = ∅ andM1 is a countable
set. Let L1 be a partially ordered system of all subsets of M1. Then
L1 is a convex sublattice of L. By constructing two orderings of M1

J. Jakubík finds two maximal chains of different length (ℵ0 and c), and
thus proves:

Theorem 4.44. Let L be an infinite complete and completely distribu-
tive Boolean algebra. Then it does not satisfy the (JD 2).

J. Jakubík points out that it is easy to find an example of a count-
able Boolean algebra which satisfies (JD 2), e. g. the algebra of all
finite subsets and its complements of a countable set. L. Rieger ob-
served that there exist uncountable complete Boolean algebras satisfying
(JD 2) and even a stronger condition: every two maximal chains are
isomorphic (considering their ordering).

4.3.15 The centre of an infinitely distributive lattice
[Jak14] (1957)

In this paper J. Jakubík investigates the question whether the centre
C of a lattice L forms a complete sublattice of L. (Of course this prob-
lems is mainly interesting in the case when L itself is not a complete
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lattice.) As a result the author obtains a theorem concerning a direct
decomposition of a special group of lattices.
J. Jakubík presents examples proving the following theorems:

Theorem 4.45. In general, the centre of a distributive lattice is not a
complete sublattice of the lattice.

Theorem 4.46. In general, the centre of a complete lattice is not a
complete sublattice of the lattice.

Further J. Jakubík finds a class of lattices whose centre is a com-
plete sublattice:

Theorem 4.47. The centre of an infinitely distributive complete lattice
is a complete sublattice of this lattice.

M. Kolibiar noticed that it is possible to generalize the previous
theorem in the following way: if L is a relatively complete infinitely
distributive lattice, we can consider instead of its centre a set C∗ ⊂ L
such that x ∈ C∗ iff x ∈ [a, b] ⊂ L implies the existence of a relative
complement of x in the interval [a, b]. A proof of this generalized theorem
could be performed using the results of M. Kolibiar’s paper [Kol4].
From the last stated theorem J. Jakubík derives the following re-

sult concerning lattice direct decomposition saying that in case of an
infinitely distributive complete lattice it is possible to ”separate” its
irreducible factors from other direct factors:

Theorem 4.48. If L is an infinitely distributive complete lattice, then
there exist lattices A,B such that

L ∼= A×B,

and 1. it is possible to decompose A into a direct product of factors
each of which is directly indecomposable, 2. if B includes more than one
element, it is directly decomposable and each of its direct factors having
more than one element is directly decomposable, 3. the decomposition
L ∼= A×B having the properties 1. and 2. is unique.

4.3.16 A note on the endomorphisms of lattices [Jak15]
(1958)

In this note J. Jakubík deals with questions connected with Prob-
lem 93 of [LT–48], p. 209:
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Is the lattice of all join-endomorphisms of an arbitrary lattice
semimodular?

Definition 4.9. A join-endomorphism of a lattice L is defined as a
mapping f of L into itself satisfying:

x, y ∈ L⇒ f(x) ∨ f(y) = f(x ∨ y).

We denote by E a set of all join-endomorphisms of L with the usual
partial ordering: for f, g ∈ L, f ≤ g iff f(x) ≤ g(x) for all x ∈ L.

J. Jakubík proves the following two theorems:

Theorem 4.49. If L is a complete lattice, then E is also a complete
lattice.

Theorem 4.50. There exists a finite lattice L such that the lattice E
is not semimodular. There even exists a lattice L such that the set E is
not a lattice at all.

The first part of Theorem 4.50 is proved by the following nice counter-
example:

L = {0, 1, 2, 3, 4}, 0 < 2 < 4 < 1, 0 < 3 < 1, the elements of
L forming the well-known non-modular pentagon. He defines
join-endomorphisms fi, i = 0, . . . , 4 of L:

fi(0) = 0, fi(1) = fi(2) = fi(4) = 1, fi(3) = i, for i = 0, . . . , 4.

By Theorem 4.49 we get that the correspondingE is a lattice,
however, it is not semimodular since its diagram is again a
pentagon.

The second part of Theorem 4.50 disproves G. Birkhoff’s state-
ment from Example 4, §4, Ch. XIII of [LT–48], p. 208:

The join-endomorphisms of any lattice form an l-semigroup.24

J. Jakubík describes the following example of a lattice the set E of
which is not a lattice:

L = ∪Ai(i = 1, . . . , 4), whereA1 = {1}, A2 = {x1, x2, x3, . . . }, A3 =
{y1, y2, y3, . . . }, A4 = {z1, z2, z3, . . . } are disjoint sets. Lat-
tice operations are defined on L as follows (see Figure 4.6):

24G. Birkhoff defines an l-semigroup as an associative multiplicative lattice with
the unity.



Chapter 4. Lattice theory in Slovak mathematics . . . 303

• p ∧ 1 = p, p ∨ 1 = 1 for every p ∈ L

• ifm,n are integers, denote u = min(m,n), v = max(m,n)
and for pm, pn ∈ Ai(i = 2, 3, 4) : pm∧pn = pu, pm∨pn =
pv

• yn ∧ zm = xu, yn ∨ zm = 1

• xn∧ pm = xu, xn∨ pm = pv, p is any of the symbols y, z

The set L with ∧ and ∨ forms a lattice and we define two
mappings of L onto L: f1 is the identity and for n = 1, 2, . . . :
f2(1) = 1, f2(xn) = xn, f2(yn) = zn, f2(zn) = yn. Both f1
and f2 are join-endomorphism of L, however, there does not
exist an element f1 ∧ f2, and thus the set E is not a lattice,
so neither an l-semigroup.

z1

z2

z3

x1

x2

x3

y1

y2

y3

1

Figure 4.6: A lattice whose join–endomorphisms do not form a lattice.

The solution of Problem 93 was published independently of J. Jakubík
by G. Grätzer and E. T. Schmidt [G–S3], also some other results of
the two papers overlap.
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4.3.17 On permutable congruences on lattices [Jak16]
(1958)

In this paper J. Jakubík reacts to the result stated by H. A. Thurs-
ton25 investigating congruences on distributive lattices which can be
represented by a ring of finite sets. We shall call such lattices of type
(f). H. A. Thurston presented the following proposition:

Proposition 4.51. If L is a lattice of type (f), then any two congru-
ences on L are permutable.

This proposition was even cited further,26 however, as J. Jakubík
shows at the next easy example it is not true:

Let L = {x, y, z}, x < y < z. It is a finite distributive lat-
tice, which means that L is of type (f). However the par-
titions R1 = {{x}, {y, z}} and R2 = {{x, y}, {z}} are not
permutable and so neither are congruences induced by these
partitions.

J. Jakubík investigated permutable congruences on lattices in his
paper
[Jak4] where he proved the following:

Theorem 4.52. Let L be a distributive lattice. Any two congruences
on L are permutable iff L is relatively complemented.

Theorem 4.53. Let L be any lattice. If L is relatively complemented,
then any two congruences on L are permutable.

J. Jakubík continues in developing this investigation to find a con-
dition which is necessary and sufficient for any two congruences on an
arbitrary lattice to be permutable. He uses the following notation: if
R is a congruence on a lattice L, we will denote by L̄ the quotient lat-
tice L/R; if x ∈ L, we will denote the class of R containing x by x̄.
J. Jakubík shows that a necessary condition for any two congruences
R1 and R2 on L to be permutable is the following condition C1 which
can be considered a weak form of relative complementarity:

C1 If u, v, x ∈ L, u < x < v, u ≡ x(mod R1), x ≡ v(mod R2),
then in the lattice L/R, where R = R1 ∩ R2, there exists a
relative complement of x̄ in the interval [ū, v̄].

25Thurston, H. A., Congruences on a distributive lattice, Proc. Edinb. Math.
Soc. Ser. 2, 10, Part II (1954), 76–77.
26Dwinger, P., Some theorems on universal algebras I, Indagationes mathem. 19
(1957), 182–189.
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We denote by C2 the statement which is formed from C1 by exchanging
the indices 1 and 2 and by C the statement that C1 and C2 are both
valid. J. Jakubík proves the following theorem:

Theorem 4.54. The condition C is necessary and sufficient for any
two congruences R1 and R2 on a lattice L to be permutable.

Let L be a lattice. We will denote for a, b ∈ L by R(a, b) the inter-
section of all congruences Ri in which a ≡ b(mod Ri). If u, v, x ∈ L, u <
x < v, we will denote R(u, v, x) = R(u, x) ∩ R(x, v). By investigating
the following condition:

C3 If u, v, x ∈ L, u < x < v and R = R(u, v, x), then in the
lattice L/R there exists a relative complement of x̄ in the
interval [ū, v̄].

J. Jakubík proves the theorem:

Theorem 4.55. The condition C3 is necessary and sufficient for any
two congruences on L to be permutable.

The previous theorem is also re–formulated with the use of weak
projectivity introduced in [Jak6].
As this paper generalizes some results of [Jak4] J. Jakubík shows

also implications of this generalization to the solvability of the system
of congruences

x ≡ u(mod R1), x ≡ v(mod R2). (4.6)

A condition which is necessary, however, not sufficient for the existence
of a solution of (4.6) is the following:

u ≡ v(mod(R1 ∨R2)). (4.7)

As in [Jak4] J. Jakubík searches for a condition which would make
(4.7) also sufficient and comes to the theorems:

Theorem 4.56. The condition C3 is necessary and sufficient for the
following statement: for any u, v ∈ L and any congruences R1, R2 on
L the condition (4.7) implies the existence of a solution of the system
(4.6).

Theorem 4.57. The condition C is necessary and sufficient for the
following statement: let R1, R2 be congruences on L; for any u, v ∈ L
the condition (4.7) implies the existence of a solution of the system (4.6).
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4.3.18 On chains in Boolean algebras [Jak17] (1958)

This paper continues the investigation of the Jordan–Dedekind chain
condition from the papers [Jak10] and [Jak13]. The aim is to provide a
theorem analogous to Theorem 4.36 of [Jak10] about Boolean algebras.
J. Jakubík proves the following theorem by constructing a lattice with
the given property (using the axiom of choice):

Theorem 4.58. Let α be a cardinal number, α ≥ α0.27 There exists a
Boolean algebra Bα with the least element f0 and the greatest element
f1 satisfying the following property: for any cardinal number β : α0 ≤
β ≤ α, there exists in Bα a maximal chain Cβ(f0, f1) whose cardinal
number is β.

We shall present an outline of J. Jakubík’s construction: Let L0

be a Boolean algebra of all subsets of a countable set S, let J be an
ideal in L0 consisting of all finite subsets of S and let L1 be the quotient
Boolean algebra L0/J . Let M be a set of cardinal number α. We will
denote by L(M) the set of all functions defined on M whose functional
values belong to L1 (we consider L(M) with the usual partial ordering:
f ≤ g iff f(x) ≤ g(x) for all x ∈ M , f0 denotes the least element, f1
the greatest). J. Jakubík shows that L(M) = Bα. He writes M in
the form M = M1 ∪M2;M1 ∩M2 = ∅, card(M1) = β, card(M2) = α.
We will construct L(M1), L(M2) analogously to L(M), denote L(M1) =
A,L(M2) = B and 0A (0B), 1A (1B) the least and the greatest element
of A (B). Then there exists in A a maximal chain C1(0A, 1A) with
the cardinal number β and in B a maximal chain C2(0B , 1B) with the
cardinal number α0. But then in L(M) there exists the chain Cβ(f0, f1)
whose cardinal number is β.
J. Jakubík also presents several lemmas describing types of maximal

chains in a given Boolean algebra:

Lemma 4.59. Let L be a Boolean algebra containing at least two ele-
ments, but no atom. Let C = C(0, 1) be a maximal chain in L. Then C
is in itself dense.

Lemma 4.60. Let L be a complete Boolean algebra, C(0, 1) a maximal
chain in L, M the set of all atoms of L and M1 the set of all prime
intervals of C(0, 1). Then

card(M1) = card(M).

27α0 is a cardinal number of an arbitrary fixed maximal chain C in a lattice with
0 and 1 which is dense in itself, i. e. x, y ∈ C, x < y ⇒ ∃ z ∈ C : x < z < y.
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To show that the preconditions of Lemma 4.60 cannot be replaced
by weaker ones J. Jakubík gives an example of a complete distribu-
tive lattice with an atom in which a maximal chain does not contain a
prime interval, and an example of a Boolean algebra which is not com-
plete, contains an atom, but its maximal chain does not contain a prime
interval.
The problem of the Jordan–Dedekind chain condition was stud-

ied by other mathematicians in the 1950’s as well. G. Grätzer and
E. T. Schmidt
[G–S1] showed a different approach. Instead of looking for lattices in
which the condition (JD 2) generalized by G. Szász (see the analysis
of [Jak10]) is valid, they searched for other definitions of the length and
maximality of an infinite chain in such a way that in distributive lattices
the Jordan–Dedekind condition holds. They define the length of a chain
as the power of the set of its different cuts, where by a cut they mean a
subdivision of the chain into two non–void convex subchains. They call
a chain C strongly maximal iff

(a) C is no proper subchain of any other one with the same
endpoints

(b) for every homomorphic image of C, (a) is valid.

The authors prove that in a distributive lattice all strongly maximal
chains between fixed endpoints have the same length.

4.3.19 The Jordan–Dedekind chain condition in direct
product of partially ordered sets [Jak19] (1963)

This paper is devoted to an investigation of the Jordan–Dedekind condi-
tion (JD 2) (see the analysis of [Jak10]) in partially ordered sets gene-
rally, however, it continues in developing ideas of [Jak10, Jak13, Jak17].
The author was inspired by a task of G. Birkhoff ([LT–48], p. 11,
ex. 6):

Prove (or disprove) that the cardinal product of any two
partly ordered sets of finite length which satisfy the Jordan–
Dedekind chain condition also satisfies it.

In the following we shall consider a partially ordered set S, and we shall
denote by C(a, b) the system of all maximal chains in [a, b], a, b ∈ S, a ≤
b. Let A,B be a non–void partially ordered sets such that S = A×B,

si = (ai, bi), i = 1, 2; ai ∈ A, bi ∈ B, s1 < s2.
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J. Jakubík provides this answer to G. Birkhoff’s exercise (with a
short prove by means of induction):

Theorem 4.61. If for each C1 ∈ C(a1, a2) and each C2 ∈ C(b1, b2) card
C1 = n1 and card C2 = n2, where n1, n2 are natural numbers, then card
C = n1 + n2 − 1 for each C ∈ C(s1, s2).

Naturally, the author carries on with a generalization of the problem
to infinite sets. It is easy to see that if partially ordered sets A,B
satisfying (JD 2) are discrete, then the condition is also satisfied by
S = A×B. The same result is valid for a finite number of direct factors
of S. However, if the number of direct factors is infinite, it was shown in
[Jak13] that the analogous theorem does not hold. J. Jakubík therefore
looks for other conditions and he comes to the definition of k–complete
partially ordered sets (which need not be lattices):

Definition 4.10. A partially ordered set S will be called k–complete iff
u, v ∈ S, u < v,C ∈ C(u, v) imply that the chain C is a complete lattice.

Theorem 4.62. Let A,B be k–complete posets which satisfy the con-
dition (JD 2). Then S = A×B also satisfies (JD 2).

If A or B does not satisfy (JD 2), then neither does the direct
product A × B. The ”simplest” example of a poset which fulfills the
condition is a well–ordered set. Let A satisfy (JD 2), then J. Jakubík
asks another question: which other properties of A will be preserved in
A × B, where B is an arbitrary well–ordered set. His results are the
content of the following theorems in which B is a well–ordered set with
the least element b1 and the greatest element b2 and card B = m.

Theorem 4.63. If [a1, a2] ⊂ A, C ∈ C(a1, a2), card C = n ≤ m and
C is not a complete lattice, then for each power n′ (n ≤ n′ ≤ m) there
exists a chain C ′ ∈ C(s1, s2) such that card C ′ = n′.

Theorem 4.64. Let A be a poset which satisfies the condition (JD 2).
Then the following conditions are equivalent:
(i) there exists a well ordered set B such that the direct product A×B

does not satisfy (JD 2),
(ii) A is not k–complete.

Theorem 4.65. Let

C1 ∈ C(a1, a2), C2 ∈ C(b1, b2),

c1, c2 ∈ C2, C3 = [b1, c1] ∩ C2, C4 = [b1, c2] ∩ C2,
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where C1 is not a complete lattice and card C1 = n, n ≤ card C3 <
card C4. Then the direct product A × B does not satisfy the condition
(JD 2).

4.4 The analysis of Milan Kolibiar’s works

4.4.1 Introduction to the analysis

This section analyzes M. Kolibiar’s papers investigating lattice theo-
retical problems published by 1963. The works are discussed chronolog-
ically as they were published, main results are presented also in relation
to previous studies of other mathematicians. As M. Kolibiar develops
some notions in more papers, we can recognize several areas of inter-
est of his from this period. One of the concepts he found important
to investigate was the relation ”between” in lattices. His first paper on
betweenness was [Kol2] in which he came to various properties of this
relation, not knowing, however, that some of them had been published
by other mathematicians. Nevertheless, he soon learnt about other pa-
pers dealing with the same problem, which led him to generalize some of
the existing results, namely finding conditions that an abstract set with
the relation between must satisfy so that it would be a lattice [Kol7].
M. Kolibiar also shows a connection of the betweenness with a ternary
operation [Kol3] which proves to be another strong tool for describing
lattices. In [Kol4] he defines an arbitrary lattice with 0 and 1 by means
of this ternary operation, thus again generalizing existing results. The
paper presenting two systems of two postulates defining modular lat-
tices [Kol5] belongs to his most cited ones. M. Benado’s concept of
multilattice found response in M. Kolibiar’s work too, he investigated
mainly its metric properties [Kol8, Kol10]. Naturally, O. Borůvka’s
notion of determining partition plays an important role in M. Koli-
biar’s method of solving problems as well, it has the central role in
the papers [Kol1, Kol6]. In the paper [Kol9] he extends the mention
”translation” in lattices which was introduced by G. Szász.

As far as the notation of the analysis is concerned we keep the same
principles as in J. Jakubík’s case, especially keeping the original ”R”
for a congruence/determining partition.

Apart from the analyzed papers,M. Kolibiar published some other
works in the analyzed period which deal mainly with related topics, e. g.
chains in posets, congruences or direct products.
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4.4.2 On some properties of a pair of lattices [J–K]
(1954)

The analysis is included in the section dealing with J. Jakubík’s papers.

4.4.3 A note on a representation of a lattice by the par-
tition of a set [Kol1] (1954)

This paper of M. Kolibiar presents an example of O. Borůvka’s
influence, combining the theory of partitions and lattice theory. The
author solves the problem of a representation of a distributive lattice in
terms of partitions of a set. In case of a non–distributive lattice he puts
forward a representation with respect to only one lattice operation.
Let L be a lattice, a ∈ L. For x, y ∈ L we define x ≡ y(mod Ra) iff

a ∨ x = a ∨ y. Let P be the lattice of all partitions on L, let X ⊂ P be
the set of all partitions induced by Ra, a ∈ L. In this noteM. Kolibiar
shows that the set X is ∨–isomorphic to L. If L is distributive, then X
is a sublattice of P isomorphic to L.

4.4.4 On the relation ”between” in lattices [Kol2] (1955)

M. Kolibiar learnt about the notion of ”betweenness” fromM. S. Gel’-
fand28 (M. Kolibiar did not see the paper itself, only the review in the
Referativnyj žurnal) who used the relation between in a lattice L in the
same sense as it had been introduced by E. Pitcher, M. F. Smiley
[P-S] who generalized the notion of V. Glivenko [Gli1, Gli2]:

Definition 4.11. An element x ∈ L is between elements a, b ∈ L iff

(a ∧ x) ∨ (b ∧ x) = x = (a ∨ x) ∧ (b ∨ x).

We shall call this notion G–betweenness. M. S. Gel’fand proved
that in a modular lattice L the set of all elements which are G–between a
and b forms a sublattice of L with the least element a∧b and the greatest
element a∨ b. We shall denote such sublattice by G(a, b). M. Kolibiar
introduced a different notion of betweenness:

Definition 4.12. An element x of a lattice L is between elements a, b ∈
L iff

x ∈ [a ∧ b, a ∨ b]

.
28Gel’fand, M. S., Otrezki v dedekindovoj strukture, Uč. zap. Mosk. gos. ped.
instituta 71 (1953), 199–204.
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We shall call M. Kolibiar’s notion K–betweenness and denote the
set of all elements which are K–between a and b by K(a, b).
In this paper the author shows the relationship of the G–betweenness

and K–betweenness first, and then returns to some properties of a pair
of lattices studied in [J–K], generalizes them and relates them to the
notion of betweenness.
M. Kolibiar proves various properties of G–betweenness in modular

and distributive lattices, however, as he did not know about the existence
of the papers on this topic, he repeats some previous results of other
mathematicians. He shows how it is possible to define one notion of
betweenness by means of the other one:

Proposition 4.66. x ∈ G(a, b) iff K(a, x) ∩K(b, x) = {x}.

Proposition 4.67. K(a, b) is the least convex sublattice of L containing
a, b; convex sublattices can be defined with the notion of G–betweenness:
a set A is a convex sublattice of L iff for each a, b ∈ A : G(a, b) ⊂ A.

G(a, b) is obviously a part of K(a, b). M. Kolibiar states two con-
ditions when these two sets equal (the condition of the first theorem was
proved earlier29):

Proposition 4.68. Let L be a lattice, a, b ∈ L. G(a, b) = K(a, b) for
every two elements a, b ∈ L iff L is distributive.

Proposition 4.69. Let L be a lattice, a, b ∈ L,A = [a ∧ b, a], B =
[a∧ b, b]. G(a, b) = K(a, b) iff [a ∧ b, a ∨ b] ∼= A×B, where the image of
a is (a, a ∧ b) and the image of b is (a ∧ b, b).

Let L1, L2 be lattices defined on the same set M . In an earlier
paper M. Kolibiar and J. Jakubík investigated relationship between
various properties of two lattices (see the analysis of [J–K]). In this paper
M. Kolibiar studies again the property B and D, and also introduces
new properties G and H:

B. If a set X ⊂ M forms a convex sublattice in L1, then X
forms a convex sublattice in L2, and vice versa.

D. There exist lattices A,B (defined on the sets M1,M2)
and a one–to–one mapping ϕ : M → M1 ×M2 such that
ϕ : L1 → A×B and ϕ : L2 → Ã×B are isomorphisms. (Ã
is the dual of A).

29Duthie, W. D., Segments of ordered sets, Transactions of the American Mathe-
matical Society 51 (1942), 1–14.
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G. If x is G–between a, b ∈ L1, then it is G–between a, b ∈
L2, and vice versa.

H. If x is K–between a, b ∈ L1, then it is K–between a, b ∈
L2, and vice versa.

It was proved in [J–K] that if L1, L2 are distributive, then the prop-
erties B and D are equivalent. M. Kolibiar now shows that these two
properties are equivalent for arbitrary lattices and are also equivalent to
the properties G and H. At the end of the paper he remarks that each
of the properties B, D, G, H implies that L1 and L2 are graphically
isomorphic (which is the property investigated in papers [J–K], [Jak2]
and [Jak3]).
M. Kolibiar continues with investigating the properties of between-

ness in his next papers [Kol3] and mainly [Kol7].

4.4.5 A ternary operation in lattices [Kol3] (1956)

In this paper M. Kolibiar further develops some results of his previ-
ous papers, namely the ternary operation from [J–K] and Gel’fand’s
relation between (see [Kol2]).
M. Kolibiar defines the following property:

Definition 4.13. Let L be a lattice. We say that an element t ∈ L has
the property (c) iff t is a neutral element and t has a relative complement
in each interval [a, b] (a, b ∈ L) containing t.

The author proves that an element t ∈ L has a property (c) iff there
exist a lattice A having the greatest element I and a lattice B having
the least element O such that L ∼= A × B, and the image of t under
the isomorphism is (I,O). The set C of all elements t ∈ L which have
the property (c) forms a sublattice of L. If L has 0 and 1, then C is
the centre of L. Let L1, L2, A,B be lattices such that |L1| = |L2| and
L1 = A × B, L2 = Ã × B, then t ∈ L1 has the property (c) in L1 iff t
has the property (c) is L2, and vice versa (which means that if L1 and
L2 have 0 and 1, they have the same centre).
As in [J–K] M. Kolibiar works with the ternary operation on L

(for details concerning the previous investigation of this operation see
the analysis of [Kol4]):

Definition 4.14. Let L be a lattice. If for a, b, c ∈ L:

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a), (4.8)
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we define a ternary operation for a, b, c:

(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a). (4.9)

We will denote by T (L) the set of all elements [a, b, c] (a, b, c,∈ L) sat-
isfying (4.8).

Let t ∈ L be a neutral element. Then the operation (a, t, b) is defined
for all a, b ∈ L and the set |L| with the operation a ◦ b = (a, t, b) forms
a semilattice. If t has the property (c), then the semilattice is a lattice
which is denoted by Lt.
M. Kolibiar generalizes results concerning the ternary operation

from [J–K] and he also studies relations between the following properties
A, B, C, D of two lattices L1, L2 which are defined on the same set M :

A. T (L1) = T (L2) and the operation defined by (4.9) gives
the same values in both lattices.

B. If X ⊂ M forms a convex subset in L1, then it forms a
convex subset in L2, and vice versa.

C. There exists an element t ∈ L1 having the property (c)
such that L2 = Lt.

D. There exist lattices A,B and a mapping ϕ : M → |A| ×
|B| such that ϕ : L1 → A × B and ϕ : L1 → Ã × B are
isomorphisms.

While investigating the properties the author proves:

Proposition 4.70. Let L1, L2 be lattices with 0 and 1. Then the prop-
erties A, B, C, D are equivalent. We can express the operations ∧ and
∨ of L2(= Lt) by means of the ternary operation in the following way:

a ∧ b = (a, t, b), a ∨ b = (a, t′, b),

where t′ is the complement of t.

M. Kolibiar shows the relationship of the ternary operation and
Gel’fand’s relation ”between” (this theorem is analogous to the theo-
rem stated for distributive lattices in [B-K]):

Theorem 4.71. Let a, b, x ∈ L. Then x ∈ G(a, b) iff [a, x, b] ∈ T (L)
and (a, x, b) = x.
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4.4.6 Characterization of a lattice in terms of a ternary
operation [Kol4] (1956)

This paper is based on results stated in [Kol3] and it generalizes the
investigation of S. A. Kiss and G. Birkhoff [B-K] in which they
showed that a distributive lattice with 0 and 1 can be defined in terms
of the ternary operation (a, b, c):

(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a). (4.10)

The symmetric and self–dual ternary operation (4.10), which ”plays
a unique role in distributive lattices” [LT–67], p. 35, was introduced by
A. A. Grau in his Ph.D. Thesis (Ternary operations and Boolean al-
gebra, Univ. of Michigan, 1944), a part of which is the content of his
paper [Gra]. He studied it in Boolean algebras. Before him, ternary op-
erations had been discussed in groupoids (A. R. Richardson30) and
groups (R. Baer and J. Certain31); in Boolean algebras an operation
different from A. A. Grau’s had been studied by A. L. Whiteman.32

S. A. Kiss investigated operations in the Boolean algebra Bn and dis-
tributive lattices [Kis] and together with G. Birkhoff [B-K] showed
the role of the ternary operation (4.10) in distributive lattices with ref-
erence to the group of symmetries which it admits. They also presented
a definition of a distributive lattice with 0 and 1 in terms of this ternary
operation using 5 variables and 5 identities. G. Birkhoff included
this definition into Problem 64 in [LT–48], p. 138: ”show that some
identity can be dispensed with by a suitable permutation of another.”
This problem was solved by R. Croisot in [Cro] where he defined a dis-
tributive lattice with 0 and 1 in terms of the ternary operation (4.10), 5
variables and 3 independent identities. He also reduced A. A. Grau’s
system of postulates [Gra] for Boolean algebras (using the ternary oper-
ation (4.10), the operation of complement, 5 variables and 5 identities)
to 2 postulates. M. Sholander [Sho] showed that the system of 3 iden-
tities defining a distributive lattice with 0 and 1 by means of the ternary
operation can be reduced to 2 postulates.
M. Kolibiar proves that it is possible to define an arbitrary, not

only distributive, lattice L with 0 and 1 in terms of this ternary op-
eration, although the operation is not defined for all triples a, b, c. He
30Richardson, A. R., Algebra of s dimensions, Proc. London Math. Soc. 47
(1940), 38–59.
31Certain, J., The ternary operation (abc) = ab(−1)c of a group, Bulletin of the
American Mathematical Society 49 (1943), 869–877.
32Whiteman, A. L., Postulates for Boolean algebra in terms of ternary rejection,
Bulletin of the American Mathematical Society 43 (1937), 293–298.
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denotes by T (L) the set of all triples [a, b, c] (a, b, c ∈ L) for which

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

M. Kolibiar’s result is described in the following theorem:

Theorem 4.72. Let M be a set, O, I ∈M . Let T ⊂M ×M ×M have
the following properties:
(a) if a, b, c ∈M, [a, b, c] ∈ T , then [b, c, a], [c, b, a] ∈ T ;
(b) [a, b, a] ∈ T for all a, b ∈M ;
(c) [a,O, b] ∈ T, [a, I, b] ∈ T for all a, b ∈M .
Let an element (a, b, c) ∈ M correspond to each triple [a, b, c] ∈ T

such that
(d1) (O, a, I) = a for every a ∈M ;
(d2) (a, b, a) = a for all a, b ∈M ;
(d3) if [a, b, c] ∈ T , then (a, b, c) = (b, c, a);
(d4) if [a, b, c], [a, b, d], [(d, b, a), b, c] ∈ T , then [(a, b, c), b, (a, b, d)] ∈

T and
((a, b, c), b, (a, b, d)) = ((b, d, a), b, c).

Then the set M with the operations

a ∧ b = (a,O, b), a ∨ b = (a, I, b)

is a lattice with the greatest element I and the least element O and in
which for [a, b, c] ∈ T the following inequality hold:

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) ≤ (a, b, c) ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a). (4.11)

M. Kolibiar shows an example of L for which ≤ in (4.11) is re-
placed by <. He also remarks that the same lattice can be defined by
different ternary operations and raises the question whether two differ-
ent ternary operations defining the same lattice have the same value
for each triple (x, y, z) for which they are both defined. The solution is
given by T. Katriňák in [Katr].

4.4.7 On axioms of modular lattices [Kol5] (1956)

Several mathematicians worked on finding systems of axioms which
would define distributive lattices by means of two binary operations:
G. D. Birkhoff andG. Birkhoff33 as first developed (following ideas

33Birkhoff, G. D., Birkhoff, G., Distributive postulates for systems like Boolean
algebras, Transactions of the American Mathematical Society 60 (1946), 3–11.
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of M. Newman34 and M. H. Stone35) a set of seven postulates (us-
ing three variables) for a distributive lattice with the greatest element.
G. Birkhoff then stated the question of whether this set is indepen-
dent as Problem 65 of [LT–48], p. 139. It was proved by R. Croisot
[Cro] that the postulates are independent and he also showed that it is
possible to modify them to be reduced to five. M. Sholander [Sho]
described a general distributive lattice by two identities in three vari-
ables.
In this note M. Kolibiar presents two sets of postulates, however,

not for distributive but for modular lattices. The first theorem deals
with modular lattices with the greatest element:

Theorem 4.73. Let L be a set with two binary operations ∧,∨ having
the following properties:
P1 For any a, b, c, d ∈ L:

[(a ∧ b) ∧ c] ∨ (a ∧ d) = [(d ∧ a) ∨ (c ∧ b)] ∧ a. (4.12)

P2 There exist an element J ∈ L such that any a ∈ L:

a ∧ J = a, a ∨ J = J.

Then L is a modular lattice with the greatest element J and the axioms
P1 and P2 are independent.

The identity (4.12) is equivalent to the condition of modularity:

x ≤ z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z.

The author remarks that the axiom P2 cannot be replaced by a weaker
one: the existence of elements I, J ∈ L such that for any a ∈ L : a∨ I =
I, a ∧ J = a.
The other theorem of the paper sets the postulates for arbitrary

modular lattices:

Theorem 4.74. Let L be a set with two binary operations ∧,∨ having
the following properties:
P1 For any a, b, c, d ∈ L:

[(a ∧ b) ∧ c] ∨ (a ∧ d) = [(d ∧ a) ∨ (c ∧ b)] ∧ a.

34Newman, M. H. A., A Characterization of Boolean lattices and rings, J. Lond.
Math. Soc. 16 (1941), 256–272.
35Stone, M. H., Postulates for Boolean algebras . . ., Amer. J. Math 57 (1935),
703–732.
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P2’ [(a ∨ (b ∧ b)] ∧ b = b for any a, b ∈ L.
Then L is a modular lattice and the axioms P1 and P2’ are inde-

pendent.

Further investigation of M. Kolibiar’s axioms from this paper is
done by B. Riečan in [Rieč].
As far as the postulates for defining modular lattices is concerned

R. Padmanabhan36 generalized M. Kolibiar’s result by providing
a uniform method for finding a set of two identities defining not only
modular, but any equational class of lattices (which can be defined by a
finite number of identities) and R. McKenzie37 proved that the number
of identities cannot be reduced to one in case of modular lattices.

4.4.8 On congruences on distributive lattices [Kol6]
(1956)

This note deals with some properties of congruences which were inspired
by the theorem of G. Ja. Areškin:38

Theorem 4.75. Let L be a distributive lattice with 0. Every congruence
on L is uniquely determined by its kernel iff L is relatively complemented.

This result is closely connected with G. Birkhoff’s Problem 73
([LT–48], p. 161): Find necessary and sufficient conditions in order that
the correspondence between the congruence relations and neutral ideals
of a lattice be one–to–one.39

M. Kolibiar generalizes Theorem 4.75 for distributive lattices with-
out a minimal element and considers also congruences being determined
by an arbitrary class, not just an ideal. He comes to several descrip-
tions of relatively complemented distributive lattices. If A is a convex
sublattice of a lattice L the author works with the congruence Rmin(A)
which is the least congruence on L that annuls all elements of A and
with the congruence Rmax(A) which is the greatest congruence on L
that annuls the elements of A. A convex sublattice A is called charac-
teristic iff Rmin(A) = Rmax(A), i. e. there exists only one congruence

36Padmanabhan, R., Two identities for lattices, Proceedings of the American
Mathematical Society 20 (1969), 409–412.
37McKenzie, R., Equational bases for lattice theories Math. Scand. 27 (1970),
24–38.
38Areškin, G. Ja., Ob otnošenijach kongruencii v distributivnych strukturach s
nulevym elementom, Doklady Akad. Nauk SSSR 90 (1953), 485–486.
39Compare with the analysis of [Jak6] where J. Jakubík solves this problem by
means of weak projectivity of prime intervals.



318 Štěpánka Bilová

annulling all elements of A. M. Kolibiar also generalizes some results
which were proved by J. Jakubík in [Jak4].
The main results of the paper are the following theorems:

Theorem 4.76. Let ConL be a lattice of all congruences on a lattice L.
Then ConL consists of all minimal congruences which are determined
by principal ideals and dual principal ideals of L.

Theorem 4.77. Let I be an ideal of a lattice L. Then Rmin(I) =
Rmax(I) iff the factor lattice L/Rmin(I) is weakly complemented.

Theorem 4.78. Let L be a distributive lattice. Every congruence on L
is uniquely determined by a convex sublattice iff L is relatively comple-
mented.

Before G. J. Areškin Theorem 4.75 had been proved by J. Ha-
shimoto.40 Later G. Grätzer and E. T. Schmidt [G–S2] proved a
theorem which is a generalization of J. Hashimoto’s and M. Koli-
biar’s results, on which basis L. A. Skornjakov41 calls one of the
theorems the Kolibiar–Hashimoto–Grätzer–Schmidt Theorem:

Theorem 4.79. Let L be a distributive lattice. Then the following
properties are equivalent:
(i) L is a relatively complemented lattice;
(ii) every ideal of L is the kernel of some congruence on L;
(iii) every dual ideal of L is the kernel of some congruence on L;
(iv) every convex sublattice of of L is a characteristic class of some

congruence;
(v) any two congruences on L are permutable.

4.4.9 Characterization of lattices in terms of the rela-
tion ”between” [Kol7] (1958)

In this paper M. Kolibiar returns to the investigation of the rela-
tion ”between” in lattices started in [Kol2], this time with the knowl-
edge of other mathematicians’ results concerning this topic. He defines
lattice betweenness in the sense of E. Pitcher and M. F. Smiley
[P-S] who generalized metric betweenness in metric lattices introduced
by V. Glivenko [Gli1, Gli2]:

40Hashimoto, J., Ideal theory for lattices, Math. Japonicae 2 (1952), 149–186.
41Skornjakov, L. A., Elementy teorii struktur, Nauka, Moskva 1970.
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Definition 4.15. Let L be a lattice, a, b, c ∈ L. We say that b is between
the elements a and c, and write abc, iff

(a ∧ b) ∨ (b ∧ c) = b = (a ∨ b) ∧ (a ∨ c).

M. Kolibiar investigates which properties an abstract system where
the relation abc is defined must satisfy in order to be a lattice as well.
He generalizes results of L. M. Kelly [Kel] and mainly F. M. Smiley
and W. R. Transue [S–T] who studied abstract systems in which the
relation of betweenness abc is defined and found conditions which are
necessary and sufficient for this system to be a modular lattice with 0,
or an arbitrary lattice with 0. M. Kolibiar continues in exploring such
systems, and comes to conditions that are necessary and sufficient for
a system to be a general lattice. He calls a set K in which the ternary
operation abc is given an m–system. In accordance with L. M. Kelly
he uses V. Glivenko’s term [Gli1] of a system being almost ordered:

Definition 4.16. We say that anm–systemK is almost ordered iff there
exists o ∈ K such that for each two elements a, b ∈ K there exists a pair
of elements h, l ∈ B(a, b) = {x ∈ K|axb} (high and low) satisfying:
1. olp and oph for each p ∈ B(a, b),
2. oqa and oqb imply oql; while oaq and obq imply ohq.

M. Kolibiar also makes use of the term segment as developed by
M. Sholander:42

Definition 4.17. Let S be a set of elements a, b, c, . . . such that to each
pair of elements a, b ∈ S there corresponds a unique subset of S. We
will denote this subset by (a, b) and call the segment from a to b iff it
has the properties (S) and (T):
(S) to each set of three elements a, b, c there corresponds an element

d such that (a, b) ∩ (b, c) = (b, d).
(T) (a, b) ⊂ (a, c)⇒ (a, b) ∩ (b, c) = {b}.
where M. Sholander defines the notions of tree, median, between

and distributive lattice with 0 and 1 in terms of this concept. M. Koli-
biar defines a segment (a, b) as a pair of elements of an m–System K
for which the set B(a, b) = {x|x ∈ K : axb} equals to its closure.43 He
42Sholander, M., Trees, lattices, order, and betweenness, Transactions of the
American Mathematical Society 3 (1952), 369–381.
43A subset A ⊆ K is closed with respect to the relation between iff for all a, b ∈ A
holds B(a, b) ⊆ A; L. M. Kelly [Kel] calls such a set completely convex following
L. M. Blumenthal’s terminology from Blumenthal, L. M., Distance Geometries,
University of Missouri Studies, XIII, vol. 2 (1938).
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studies the properties of segments in lattices, viewed as m–systems, and
then states conditions concerning segments which an m–system must
satisfy so that we can define a lattice with 0 and 1 on it.
Apart from others M. Kolibiar proves in this paper the following:

Theorem 4.80. Let K be an m–system. We can define a lattice on
K such that the relation abc is a relation of lattice betweenness iff the
conditions (A), (B), (C) and (F) are satisfied:
(A) each three elements a, b, c ∈ K are contained in some segment

of K,
(B) [a ∧ b, a ∨ b] ∩ [b ∧ c, b ∨ c] ∩ [c ∧ a, c ∨ a] 6= ∅ for any a, b, c ∈ K,
(C) axb iff [a ∧ x, a ∨ x] ∩ [b ∧ x, b ∨ x] = {x},
(F) the segments in K can be ordered in the specified way.

Theorem 4.81. Let o, u ∈ K be such that (o, u) = K. Then we can
define a lattice on K such that the relation abc is a relation of lattice
betweenness iff the conditions (A), (B) and (C) are satisfied. The con-
ditions (A), (B) and (C) are independent.

4.4.10 On metric multilattices I [Kol8] (1959)

The author investigates multilattices introduced by M. Benado [Ben2]
from the point of view of metric properties and the relation ”between”.
His definition of a metric multilattice corresponds to a normed multilat-
tice by M. Benado.

Definition 4.18. Let P be a partially ordered set, a, b ∈ P , we denote
by a ∨ b the set of all such elements u ∈ P that satisfy: 1. u ≥ a, u ≥ b;
2. if t ∈ P, t ≥ a, t ≥ b, u ≥ t, then t = u. If p ∈ P, p ≥ a, p ≥ b, we
define (a ∨ b)p = {u ∈ P : u ≤ p, u ∈ a ∨ b}. Dually we define a ∧ b and
(a ∧ b)p. We call a partially ordered set P a multilattice iff
1. for all a, b, t ∈ P, t ≥ a, t ≥ b: (a ∨ b)p 6= ∅;
2. for all a, b, t ∈ P, t ≤ a, t ≤ b: (a ∧ b)p 6= ∅.

Definition 4.19. Let M be a multilattice. We say that M is a normed
multilattice iff there is a real function v[x], x ∈ M , called a valuation,
satisfying:
1. if a, b ∈M,d ∈ a ∨ b, h ∈ a ∧ b, then

v[a] + v[b] = v[d] + v[h],

2. a < b⇒ v[a] < v[b].

In [Ben2] M. Benado proved the following theorem:
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Theorem 4.82. Let M be a directed44 normed multilattice. If we define
in M a metric in the following way:

ρ(a, b) = v[h] − v[d],

where h (d) is an arbitrary element from a∨b (a∧b), then M is a metric
space.

M. Kolibiar says that metric multilattices M,M ′ are m-equivalent
iff there exist a one–to–one mapping of M onto M ′ preserving the rela-
tion between. He proves the following:

Theorem 4.83. LetM,M ′ be directed distributive45 multilattices. They
are m–equivalent iff there exist multilattices A1, A2 such that

M ∼= A1 ×A2, M
′ ∼= A1 × Ã2.

Theorem 4.84. Let (M,ρ) be a metric multilattice and M ′ a mul-
tilattice defined on |M |. Let the multilattices M,M ′ be directed and
distributive. (M,ρ) is a metric multilattice iff there exist multilattices
A1, A2 such that M ∼= A1 ×A2, M

′ ∼= A1 × Ã2, and an element a ∈M
is carried to the same pair (a1, a2) by both these isomorphisms.

The investigation of betweenness in multilattices can lead also to re-
sults concerning graphical isomorphism (for definition see [J–K, Jak12])
of multilattices. M. Kolibiar thus arrives at a theorem of J. Jakubík’s
from [Jak12]:

Theorem 4.85. Two directed distributive multilattices of finite length
are graphically isomorphic iff there exist multilattices A1, A2 such that

M ∼= A1 ×A2, M
′ ∼= A1 × Ã2.

In the final notes of this paper M. Kolibiar compares the investi-
gated concept of betweenness in multilattices to the case of lattices, and
remarks that this notion can be used as a generalization of the notion of
graphical isomorphism for infinite modular lattices. This problem was
put forward by J. Jakubík in [Jak2] and the same author suggested and
solved the generalization with the use of topological equivalence (see the
analysis [Jak9]).

44See Definition 4.6 for the concept of directed multilattice.
45See Definition 4.7 for the concept of distributive multilattice.
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4.4.11 A note on lattice translations [Kol9] (1961)

The term ”translation” was first used in connection with lattices by
G. Szász who adopted it from A. H. Clifford’s right- and left–
translation of semigroups.46 G. Szász studied it first in semilattices47

and then used the same definition of translation for lattices.48

Definition 4.20. A lattice translation is defined as a mapping λ of a
lattice L into itself satisfying the following condition for all x, y ∈ L:

λ(x ∨ y) = λ(x) ∨ y.

G. Szász proved that λ is a closure operation and that it is a ∨–
endomorphism and that λ(L) is a dual ideal of L.
In this note M. Kolibiar concentrates on connections between a

lattice translation and a certain ∨–congruence, and on solving the fol-
lowing two questions:

(1) What is a necessary and sufficient condition so that a
closure operation φ on L is a translation.

(2) Let D be a dual ideal of a lattice L. What are conditions
for the existence of a translation λ such that λ(L) = D?

The answer to (1) was given49 in the following form: a necessary and
sufficient condition is that φ(x)∨y = φ(x)∨φ(y) for each x < y, x, y ∈ L.
M. Kolibiar finds a necessary and sufficient condition concerning fixed
elements of φ:

Theorem 4.86. A closure operation λ on a lattice L is a translation
iff for all x, y ∈ L holds: λ(x) = x and x ≤ y implies λ(y) = y.

The question (2) is answered by M. Kolibiar in the following way:

Theorem 4.87. Let D be a dual of a lattice L. There exist a translation
of L such that λ(L) = D iff the intersection of D and any dual principal
ideal is a principal ideal.

46Clifford, A. H., Extensions of semigroups, Transactions of the American Ma-
thematical Society 68 (1950), 165–173.
47Szász, G., Die Translationen der Halbverbände, Acta Mathematica Academiae
Scientarum Hungaticae 17 (1956), 165–169.
48Szász, G., Translationen der Verbände, Acta fac. rer. nat. Univ. Comenianae,
Mathematica 5 (1961), 449–453.
49Szász, G., Szendrei, J., Über die Translationen der Halbverbände, Acta Sci.
Math. 18 (1957), 44–47.



Chapter 4. Lattice theory in Slovak mathematics . . . 323

4.4.12 On metric multilattices II [Kol10] (1963)

In this note the author comes back to the notion of metric multilattices,
however, this time he investigates metric spaces in which it is possible
to define a partial ordering in such a way that we obtain a metric mul-
tilattice. When solving a similar problem for lattices [Kol7] he used a
characterization by means of convex subsets. The method of this paper
is different as it applies the concept of lines and results of M. Al-
twegg50 concerning the relation ζ defined in a partially ordered set S
as follows:

for x, y, z ∈ S : ζ(x, y, z) iff x ≤ y ≤ z or z ≤ y ≤ x.

M. Kolibiar gives the same definition of multilattice as in [Kol8]
and he also uses the term m–system from [Kol7] meaning a set with the
ternary relation abc.

Definition 4.21. Let a set K be an m–system, L ⊂ K is called a line
iff for all a, b, c, d ∈ L the relations (α), (β), (γ) are satisfied, and for all
x, y, z ∈ L at least one of the relations xyz, yxz, xzy holds;

(α) abc⇒ cba;

(β) abc and acb⇔ b = c;

(γ) abc and acd⇒ bcd.

We shall write l(a, b, . . . ) iff a, b, . . . lie on one line, if not we shall
write l̄(a, b, . . . ). If l(a, b, c) and abc hold, we shall write l∗(a, b, c).

Definition 4.22. A system (M,≤, ρ) will be called a metric multilat-
tice iff (M,≤) is a multilattice, ρ is a metric in M , and the following
conditions are satisfied:
M1. a ≤ b ≤ c⇒ abc,

M2. if c ∈ a ∨ b or c ∈ a ∧ b, then acb.

M. Kolibiar proved the following theorems (using properties of the
relation ζ):

Theorem 4.88. Let (M,ρ) be a metric space. We can define a partial
ordering ≤ in M such that (M,≤, ρ) is a metric lattice iff there exists
a system S of lines in (M,ρ) satisfying:
(a) at least one line from S goes through every point of M ;
(b) l∗(a, b, c), l(b, d) and not l∗(a, b, d) imply l∗(c, b, d);

50Altwegg, M., Zur Axiomatik der teilweise geordneten Mengen, Comment.
Math. Helv. 24 (1950), 149–155.
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(c) let a0, a1, . . . , an = a0, an+1 = a1 be such points in M that
l(ai−1, ai) and l̄(ai−1, ai, ai+1) hold for 1 ≤ i ≤ n, then n is an even
number;
(d) if a1, a2, b ∈M and l(ai, b) (1 ≤ i ≤ l), then there exists a point

m ∈M such that a1ma2, aimb, l(ai,m) for 1 ≤ i ≤ 2 holds.

Theorem 4.89. Let (M,ρ) be a metric space. There exists such a
partial ordering ≤ in M that the system (M,≤, ρ) is a directed metric
multilattice iff there exists a system S of lines in (M,ρ) such that the
conditions (b), (d) and (a’), (c’) are satisfied:
(a’) to each pair of elements a1, a2 ∈M there exist elements d, h ∈M

such that l∗(d, ai, h) (i = 1, 2);
(c’) if each two points out of three points lie on a line, then all three

points lie on a line of S.

Theorem 4.90. LetM be an m–system with the properties (α), (β), (γ).
There exists such a partial ordering ≤ in M that the system (M,≤) is
a directed multilattice in which the conditions M1 and M2 hold iff there
exists a system S of lines in (M,ρ) such that the conditions (a’), (b),
(c’) and (d) are satisfied.

4.5 Other papers of the period

Apart from J. Jakubík and M. Kolibiar we find three more papers
dealing with lattice theory by 1963. They were written by mathemati-
cians beginning their research career at that time. Beloslav Riečan
published two papers: one [Rieč] inspired by M. Kolibiar’s paper con-
cerning postulates for modular lattices [Kol5] and the other one [R-R]
written with Zdena Riečanová which continues in M. Benado’s in-
vestigation on metric multilattices [Ben2, Ben4]. The last analyzed pa-
per of the period [Katr] was written by Tibor Katriňák who gives an
answer to M. Kolibiar’s question from [Kol3].
Beloslav Riečan graduated from the Faculty of Sciences of Come-

nius University in 1958 and then became an assistant at the Slovak
Technical University in Bratislava. Despite the two mentioned papers
touching lattice theory, he has been interested in measure theory since
the very beginning of his research. The focus of his scientific activi-
ties lies mainly in the areas of measure and integral theory on ordered
structures, probability theory and the theory of fuzzy sets.51

51More information about Beloslav Riečan can be found in K životnému jubileu
profesora Beloslava Riečana, Pokroky matematiky, fyziky a astronomie 41 (1996),
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Tibor Katriňák graduated from the Faculty of Sciences of Come-
nius University in 1960 and then he started his academic career there.
He was recommended to study problems concerning lattice theory by
M. Kolibiar, also Stone lattices which became his topic for the thesis.
In 1965 he received his Ph.D. degree being supervised (as the first one)
by M. Kolibiar. T. Katriňák’s primary research interests have be-
come lattices and semilattices with pseudocomplementation and he is a
world recognized authority in the fields of lattice theory and universal
algebra. He is considered to be a successful follower of M. Kolibiar
not only for the field of their research, but also for his positive teaching
activities.52

4.5.1 On axioms of modular lattices [Rieč] (1957)

In this note B. Riečan53 continues in the investigation of M. Kolibiar
on the axioms of modular lattices from [Kol5] in which he raised the
question whether it is possible to simplify the axioms from Theorem
4.74, suggesting the following two postulates:

(a ∧ b) ∨ (a ∧ c) = [(c ∧ a) ∨ b] ∧ a,

(a ∨ b) ∧ b = b.

B. Riečan shows that these identities lead to the theorem:

Theorem 4.91. Let L be a set with two binary operation ∧,∨ having
the following properties:

(a ∧ b) ∨ (a ∧ c) = [(c ∧ a) ∨ b] ∧ a,

(a ∨ b) ∧ b = b,

(a ∨ b) ∨ c = a ∨ (b ∨ c).

Then L is a modular lattice.

The other theorem of the paper is another modification of M. Koli-
biar’s Theorem 4.74 which is in a way its simplification:

333–335.
52More details about T. Katriňák can be found in Haviar, T., Zlatoš, P.,
Jubilee: The Sixtieth Birthday of Professor Katriňák, Acta Univ. M. Belii, Math. 5
(1997), 91–98.
53The author’s first name is wrongly given as ”Jan” in this paper, however, ”Be-
loslav” is correct.
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Theorem 4.92. Let L be a set with two binary operation ∧,∨ having
the following properties:
P1 (a ∧ b) ∨ (a ∧ c) = [(c ∧ a) ∨ b] ∧ a,

P2 [a ∨ (b ∨ c)] ∧ c = c.

Then L is a modular lattice and the identities P1 and P2 are inde-
pendent.

4.5.2 A note on metric multilattices [R-R] (1960)

The authors continue in the investigation of metric multilattices started
byM. Benado in [Ben2] (for defining a multilattice and their types, see
the analyses of [Jak11, Jak12] and [Kol8]), and particularly they answer
a question stated in his other work on multilattices [Ben4]. M. Benado
introduced three types of valuation functions on a multilattice:

Definition 4.23. LetM be a directed multilattice, a, b ∈M and let v(x)
be a real function defined on M . If there exist elements d ∈ a ∨ b, m ∈
a ∧ b such that

v(a) + v(b) = v(d) + v(m), (4.13)

then we shall call v(x) a valuation function of the first type. If the
equation (4.13) holds for all d ∈ a ∨ b (m ∈ a ∧ b) and for some m ∈
a∧ b (m ∈ a∨ b), then we shall call v(x) an upper (a lower) valuation of
type two. If the equation (4.13) holds for all d ∈ a∨ b and all m ∈ a∧ b,
then we shall call v(x) a valuation of the third type.

In [Ben2] M. Benado proved that all directed multilattices with a
positive valuation of type three are modular. In [Ben4] he generalized
this result for directed multilattices with a valuation of the second type:

Theorem 4.93. Let M be a directed multilattice. Let v(x) be a real
function defined on M satisfying the following properties:
V1. for any pair of elements a, b ∈ M there exists d0 ∈ a ∨ b such

that
v(d0) ≤ v(d) for all d ∈ a ∨ b,

V2. for all d0 satisfying the property V1 and all m ∈ a ∧ b holds

v(a) + v(b) = v(d0) + v(m),

V3. if a, b ∈M,a < b, then v(a) < v(b).
Then M is a metric space, in which the metric is defined as ρ(a, b) =

v(d0)− v(m) where D0 ∈ a ∨ b has the property V1 and m ∈ a ∧ b.
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Together with this theoremM. Benado stated the question whether
a multilattice satisfying the properties V1–V3 must be modular. B. Rie-
čan and Z. Riečanová give the negative answer to his question in this
paper. They present a multilattice which satisfies the conditions of the
previous theorem, but it is not modular. Then the authors prove a
modified theorem where the modularity is kept:54

Theorem 4.94. Let M be a multilattice. Let v(x) be a real function
defined on M satisfying the following properties:
M1. for any pair of elements a, b ∈ M there exists d0 ∈ a ∨ b such

that
v(a) + v(b) = v(d0) + v(m),

for all m ∈ a ∧ b,
M2. let a, b, b′, u, t ∈ M such that u ≥ a ≥ m,u ≥ b ≥ b′ ≥ m, (a ∨

b′)u = u, (a ∧ b)m = m, let d0 ∈ a ∨ b, d′0 ∈ a ∨ b′ have the property M1,
then v(d0) = v(d′0),
M3. if a, b ∈M,a < b, then v(a) < v(b).
Then M is a modular multilattice.

The second part of the paper is devoted to a generalization of the
previous theorem to partially ordered sets.

4.5.3 On a question concerning characterization of a
lattice in term of a ternary operation [Katr] (1961)

T. Katriňák continues in investigating the ternary operation defining
a lattice with 0 and 1 which was introduced by M. Kolibiar in [Kol3]
(Theorem 4.72). Specifically, he looks for an answer to Kolibiar’s
question whether different ternary operations defining the same lattice
give the same elements for each triple. First he shows the following
behaviour of the operations:

Theorem 4.95. Let M be a lattice with 0 and 1. Let o1, o2 be ternary
operations defined in T1, T2(T1, T2 ⊂ M ×M ×M) respectively, having
the properties (a), (b), (c), (d1), (d2), (d3) and (d4) of Theorem 4.72
and defining M . Let (x, y, z) ∈ T1, (x, y, z) ∈ T2 and x 6= y 6= z 6= x. If
at least two elements of the set {x, y, z} are comparable, then the triple
(x, y, z) corresponds to the same value for both operations o1 and o2.

54The properties M1 and M3 are equivalent to the statement that v(x) is a valuation
of the second type, the authors also show that a multilattice with a valuation satisfying
the properties M1–M3 is not a valuation of the third type.
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However, there exists a lattice and ternary operations which do not
have the same values as is proved by T. Katriňák on an example:

Theorem 4.96. Let L be a lattice in Figure 4.7. Then there exist such
ternary operations o1 and o2 defining L that (a, b, c) = 7 by the operation
o1 and (a, b, c) = 8 by the operation o2.

a

8

7

b
c

Figure 4.7: Two ternary operations defined on this lattice need not have
the same value for all triples.



Chapter 5

Conclusion

The preceding chapters described the activity within Czechoslovak ma-
thematics devoted and related to lattice theory until 1963. If we look
into the way lattice theory became a part of research in Czechoslovak
mathematics, we identify two different situations when comparing Czech
and Slovak mathematics. While in Czech mathematics lattice theory ap-
peared in the course of the implementation of modern algebra at the end
of 1930’s and in the development of individual algebraists’ own research,
the introduction of lattice theory into Slovak mathematics is closely tied
with the beginnings of mathematical research such as, i. e. with the real
establishing of research centers after WWII.
Before summarizing the main achievements of Czech and Slovak ma-

thematicians in the field of lattice theory until 1963, we shall briefly de-
scribe the position of lattice theory in Czechoslovak mathematics in com-
parison with the position of this theory in international mathematics,
and we shall also recall the main sources influencing Czechoslovak lattice
theoretical research.

5.1 The position of lattice theory in Czechoslo-
vakia and in the world

The reaction of Czech mathematicians to lattice theory at the end of
1930’s appeared at the time when the theory was gaining the world’s
status, however, immediate further development of research was limited
by the period of WWII, which influenced the whole European mathe-
matical community. While e. g. in the U.S.A. mathematicians were at-
tracted to and intensively continued developing this new, ”fashionable”,
field from the end of 1930’s, in this country, it was only after WWII

329
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when lattice theory became a popular area for a wider mathematical
community, especially beginning scientists.

Despite the increasing number of mathematicians working in lat-
tice theory in the post–war years , we can see a shift in the opinions
on this field compared to the end of 1930’s. The optimism surround-
ing its creation was reduced even from the side of its ”originators”:
G. Birkhoff’s description of lattice theory of 1938 as a ”vigorous and
promising younger brother of group theory” ([Bir3], p. 793) is turned
down by O. Ore’s quite a pessimistic remark in the 1950’s: ”I think
lattice theory is played out” [Rot]. Nevertheless, further development
brought lattice theory to a stable place within mathematics though the
early hopes that lattices will play central role as universal algebras have
not been fulfilled. As R. P. Dilworth [Dil] expressed: ”The emphasis
and areas of research in lattice theory had changed since the 1930’s,
[ . . . ] lattice theory provided a useful framework for many topics and
developed into a full-fledged member of the algebraic family with an
extensive body of knowledge and a collection of exciting problems all of
its own, [. . . ].”

The position of lattice theory in Czechoslovak mathematics was set
forward by the approach of the leading algebraists O. Borůvka and
V. Kořínek from the very beginning: they both recognized it as a
theory in its own right, regarded it as worth investigation and presented
it to their students. In 1950’s O. Borůvka often described lattice
theory as a modern and intensively developing field with a significant
position within contemporary mathematics. V. Kořínek expressed an
opinion that lattice theory ”will set the nature of algebraic research in
the following years” [Koř5]. The coming generations could therefore
profit from having their teachers supporting lattice theoretic research.
Even though not all mathematicians making their starts in this theory
carried on in this research, the number of papers reveals a continuing
interest in this field and played its role in the incorporation of lattice
theory into Czech and Slovak mathematics.

A specific position of lattice theory in Slovak mathematics has been
mentioned. This subject became one of the first algebraic areas of re-
search and the development of initial activities in this field can be consid-
ered an illustration of the process of establishing mathematical research
as such. The first step in this process was to provide a new generation
of students with good scientific foundations, motivation and inspiration
for further research, which was achieved by the work of university pro-
fessors in Bratislava. The next step in realizing the aim was to show the
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ability to solve the first rate mathematical problems and at the same
time to continue in encouraging students in pursuing academic careers.
This was accomplished within the field of lattice theory by the person-
alities of J. Jakubík and M. Kolibiar who greatly contributed to the
successful fast growth of Slovak mathematics.
An important event for Czechoslovak algebraic research was the Con-

ference on Ordered Sets in Brno in 1963, at which the mathematicians
had an opportunity to compare the level of their investigation on ordered
sets, including lattice theory, with international research. The outcome
of this encounter was evaluated byM. Novotný [Nov8] in the following
way:

The scientific benefit of the conference is indisputable. Per-
sonal encounters and exchange of opinions of researchers in
the same fields from various countries were enabled. It was
shown that we work intensively in the area of ordered sets in
this country and that the results bear comparison even with
a strict international criteria.

Since 1960’s lattice theory has become an integral part of mathe-
matical research of Czech and Slovak mathematics with specified areas
of interests in which numerous outstanding results have been obtained
(let us mention e. g. L. Beran, J. Tůma, P. Pudlák, J. Ježek,
T. Katriňák).

5.2 The main influences

The initial influences in introducing lattices to Czech mathematics came
especially from O. Ore who is referred to by both O. Borůvka and
V. Kořínek. O. Borůvka also cites G. Birkhoff’s paper [Bir3] and
he must have also known the work of German mathematicians writing on
lattice theory. V. Kořínek took the lattice concepts and terminology
from G. Köthe [Köt, H–K].
The mentioned sources of O. Ore, G. Birkhoff and G. Köthe

suggest that O. Borůvka and V. Kořínek were fully aware of the
developing lattice theory at the end of 1930’s. However, the war pre-
vented the Czech algebraists to get acquainted with the first edition of
G. Birkhoff’s monograph Lattice Theory promptly and to respond to
it. The first edition therefore had no direct impact on Czech mathe-
matics at the time of its publishing, contrary to its second edition which
significantly influenced both Czech and Slovak mathematical research.
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The second edition of Lattice theory [LT–48] and its Russian transla-
tion became key literature and inspiration for a great number of mathe-
maticians engaged in the research on posets, lattices, and other algebraic
structures. As O. Borůvka points out ([UB], p. 208): ”What for the
algebraists of the thirties meant Van den Waerden’s book Modern Alge-
bra, was for the mathematicians after World War II meant by Birkhoff’s
monograph Lattice Theory.”
Apart from G. Birkhoff’s book, other influences depended on the

research area of individual mathematicians. L. Rieger often followed
investigations of M. H. Stone, J. M. M. McKinsey, A. Tarski, and
R. Sikorski, and naturally drew upon classical works dealing with ma-
thematical logic (K. Gödel, A. Heyting, A. Mostowski, W. Sier-
pinski). The other Prague mathematicians cited mainly V. Kořínek
and O. Ore. Brno mathematicians were often inspired by a variety of
sources, depending on their particular interest, even though, many of
them were affected by the work of their teacher O. Borůvka.
J. Jakubík’s andM. Kolibiar’s initial research also bears features

of O. Borůvka’s algebraic influence, although they soon found spe-
cific areas of lattice theory they became engaged in. J. Jakubík often
reacted to contemporary works of various mathematicians. In the case
of S. Szász and M. Benado, we can recognize mutual responses to
each other’s papers. In his papers on graphical isomorphism and direct
product of lattices, J. Jakubík cites S. A. Kiss and J. Hashimoto
several times. J. Jakubík’s and M. Kolibiar’s papers on metric lat-
tices and M. Kolibiar’s works treating the relation ”between” in lat-
tices follow the ideas of E. Pitcher, M. F. Smiley, W. R. Tran-
sue and L. M. Kelly. When studying the ternary operation in lat-
tices, M. Kolibiar builds mainly upon the works of R. Croisot,
G. Birkhoff and S. A. Kiss.

5.3 Achievements of Czech and Slovak mathe-
maticians

5.3.1 The role of O. Borůvka and V. Kořínek

Both O. Borůvka and V. Kořínek are merited for introducing lattice
theory into Czech mathematics and for playing a substantial role in
drawing the attention of young mathematicians to this field.
As far as their own scientific research is concerned, we can follow

two different approaches to the existing lattice theory in the work of
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O. Borůvka and V. Kořínek. O. Borůvka recognized it as a theory
which comprises his theory of decompositions as one of its realizations,
thus he only comments on this relationship in appropriate places, since
his main investigation within partition theory deals with the properties
that cannot be characterized by lattice theory only. V. Kořínek, on the
other hand, concentrated on problems within lattice theory itself, namely
questions concerning the Jordan–Hölder–Schreier–Zassenhaus theorem
in lattices, which was the subject close to his previous investigation on
group theory.
O. Borůvka was the first Czech mathematician to use the term

”lattice” in his work [Bor1] in 1939, while V. Kořínek was the first
Czech mathematician to write a paper ([Koř1], 1941) dealing wholly
with a lattice theoretic problem. Both O. Borůvka and V. Kořínek
developed ideas from the mentioned first papers further. O. Borůvka’s
theory of partitions, upon which he built the theory of groupoids and
groups, met with favorable acknowledgement in the world mathematics,
and his monograph [Bor7a], completing this research, was published by
the renowned VEB Deutcher Verlag der Wissenschaften, in German in
1960 and in English in 1975. V. Kořínek’s results on the Schreier–
Zassenhaus refinement in lattices were followed not only by his pupils,
but also by Romanian mathematicians, and his paper [Koř1] is cited by
G. Birkhoff in [LT–48], p. 89 and also by A. G. Kuroš in Teorija
grupp [Kur2], p. 448.
After WWII several scientists of a new generation started their aca-

demic careers in the area of lattice theory, which is to be attributed to the
influence of O. Borůvka and V. Kořínek. There existed three cen-
ters of studies connected to lattice theory: Prague, Brno and Bratislava
(together with Košice after J. Jakubík moved there) in the period after
WWII. Each centre was characteristic for its special features.
V. Kořínek and mainly O. Borůvka are credited for their help-

ful cooperation with Slovak mathematics. T. Katriňák describes the
significance of O. Borůvka’s role in the following way:

I am convinced that M. Kolibiar and all his Slovak contempo-
raries benefited mightily from Professor Borůvka’s activities
in Bratislava in the late forties and in the fifties. They got
a mathematical push that lasted a decade. This is a good
example of how Slovak mathematics profited from the col-
laboration with Czech mathematical community.1

1Katriňák, T., Milan Kolibiar (1922–1994), Math. Slovaca 46 (1996), 297–304,
p. 298.
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5.3.2 Lattice theoretical research in Prague

V. Kořínek’s results on the Jordan–Hölder–Schreier–Zassenhaus the-
orem were extended in the work of his students L. Janoš, Č. Vit-
ner,V. Vilhelm, and V. Havel. Some of their articles are cited by
G. Grätzer [Grä2]: V. Havel’s paper [Hav2] is referred to when dis-
cussing a direct join representation of elements in a lattice (p. 286), and
G. Grätzer also mentions V. Vilhelm’s paper [Vil2] and O. Hájek’s
[Háj3, Háj]. From the mentioned Czech mathematicians, only V. Havel
continued in work concerning lattice theoretical questions later, the oth-
ers, apart from some exceptional papers, conducted research mainly in
other fields of mathematics. They, however, help to arise and keep in-
terest in lattice theory among Czech mathematicians.
Another Prague mathematician L. Rieger became interested in

Boolean algebras after WWII, making contributions towards solving
some G. Birkhoff’s problems of [LT–48] as well as towards algebraic
representation of mathematical logic. His results are mentioned on seve-
ral places in [LT–67]: the paper [Rie4] on p. 227, [Rie6] on pp. 257 and
260, [Rie8] on p. 252. G. Birkhoff also refers to his investigation of
cyclically ordered sets (p. 301) in his book. L. Rieger’s results are also
included in books on mathematical logic (e. g. R. Sikorski’s Boolean
Algebras [Sik]). G. Grätzer refers to L. Rieger’s papers [Rie4] when
stating properties of the set of all prime ideals of a lattice ([Grä2], p. 86)
and in the chapter about topological representation of lattice ([Grä2],
p. 131), the paper [Rie8] is also cited.

5.3.3 Lattice theoretical research in Brno

The situation in Brno differed from the one in Prague and in Bratislava.
Neither lattice theory nor Boolean algebras became a primary aim of re-
search, however, many results showed their connection to or application
of lattice theory. K. Koutský developed an overall theory of topologi-
cal lattices, M. Mikulík investigated metric lattices from the impulse of
functional analysis, F. Šik was engaged in the investigation of ordered
groups and l–groups, and his results became an integral part of this
field. The personality of M. Novotný has to be stressed on this place
particularly, not only for his first–rate mathematical achievements, but
also for his pedagogical and organizational merits. He was a founder of
Brno seminar on ordered sets and general algebraic structures, and he
greatly participated in organizing regular summer schools on the theory
of ordered sets in which lattice theory constituted one of the research
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areas from the very beginning.

5.3.4 Lattice theoretical research in Slovakia

J. Jakubík and M. Kolibiar belong to the first generation of Slovak
mathematicians, graduating and starting their academic careers in the
difficult time after WWII. Despite the pioneering conditions they soon
succeeded in solving some topical problems of lattice theory and they
highly contributed to the fast development of Slovak algebra after the
war.
J. Jakubík’s results concerned the relationship between graphi-

cal and lattice isomorphisms, direct decomposition of lattices, congru-
ence relations, and the Jordan–Dedekind chain condition in lattices and
Boolean algebras. M. Kolibiar investigated the relation between and
a ternary operation in lattices and developed a set of postulates charac-
terizing modular lattices.
Although the analyzed period presents only a proportion of J. Ja-

kubík and M. Kolibiar work, we can find a number of references to
their papers of this time in [LT–67] and [Grä2]. J. Jakubík’s results
from [Jak16, Jak5] are mentioned as exercises byG. Birkhoff, [LT–67],
pp. 163 and 164. G. Grätzer ([Grä2], p. 72) refers to [J–K, Jak2, Jak3]
while discussing lattice theory from a graph–theoretic point of view; he
also mentions (p. 162) J. Jakubík’s considerations on cardinalities of
maximal chains in Boolean algebras from [Jak13, Jak17] and the paper
[Jak6] is mentioned for J. Jakubík’s investigation of weak projectivity of
prime intervals (p. 208) and when referring to papers discussing lattices
whose congruences form a Boolean lattice (p. 209). M. Kolibiar’s and
B. Riečan’s sets of postulates for modular lattices from [Kol5, Rieč] are
referred to by bothG. Birkhoff (who calls them ”remarkable” [LT–67],
p. 36) and G. Grätzer [Grä2], p. 70. It might be also interesting to
notice that O. Borůvka [Bor7a] refers to the results from [J–K, Kol1,
Kol6].
J. Jakubík and M. Kolibiar also succeeded in introducing lattice

theoretic problems to their students. They were both leading algebraic
seminars, in Košice and Bratislava respectively, for many years and in
the middle of 1960’s they started supervising theses. Some of their stu-
dents themselves became recognized authorities in the field of lattice
theory (e. g. T. Katriňák), some others were attracted by ”com-
peting” areas of mathematics, however some of them started to work
on border subjects (e. g. B. Riečan), thus profiting from the lattice
theoretic knowledge.
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5.3.5 Birkhoff’s problems

In the period until 1963 several of 111 problems stated by G. Birkhoff
in [LT–48] were solved by Czech and Slovak mathematicians. We shall
now present them as they are listed also in the Russian translation of
[LT–67]2 in the Appendix ”Problemy Birkgofa” by V. N. Salij:

– Problem 8 solved by J. Jakubík in [Jak2],

– Problem 33 solved by J. Jakubík in [Jak5],

– Problem 67 solved by J. Jakubík in [Jak6],

– Problem 74 solved by M. Katětov in [Katě] and by L. Rieger
in [Rie8],

– Problem 76 solved by M. Katětov in [Katě],

– Problems 78, 79 and 80 solved by L. Rieger in [Rie6],

– Problem 93 solved by J. Jakubík in [Jak15],

– Problem 99 solved by J. Jakubík in [Jak18].

2Teorija rešetok, Nauka, Moskva 1984.
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