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NIELS HENRIK ABEL:

TRANSFORMATION AND CONTINUITY

OF MATHEMATICS IN THE 1820s.

Henrik Kragh Sørensen

Abstract

My PhD project concern the mathematics of the early 19th

century, in particular the works of the Norwegian mathematician
Niels Henrik Abel (1802–1829). This presentation is a prelimi-
nary version of the introduction to be contained in my thesis and
contains no references or footnotes. The thesis will be handed in
to the Faculty of Science, University of Aarhus in the beginning of
2002. Comments and discussion will be much welcome.

In the aftermath of the French Revolution of 1789, the political and
scientific scenes in Paris underwent radical change. Social and educa-
tional reforms introduced the first massive instruction in mathematics at
the Ecole Polytechnique; and mathematics, itself, changed and erupted
into the form recognizable to modern mathematicians. In the begin-
ning of the 19th century, the neohumanist movement greatly influenced
Prussian academia introducing mathematics into a very prominent po-
sition in the curriculum of secondary schools. At the university level,
mathematics gained a certain autonomy and started to evolve along a
distinctly theoretical line focusing less on applications and mathematical
physics.

The thesis focuses on one of the main innovative figures in mathe-
matics in the 1820s, the Norwegian Niels Henrik Abel (1802–29),
and describes his contribution to and influence on the fermentation of
the mathematical discipline in the early 19th century. Born at the pe-
riphery of the mathematical world and with a lifespan of less than 27
years, Abel nevertheless contributed importantly to the subdisciplines
which he studied. The overall outline of the thesis is recapitulated in
the following three sections which introduce Abel’s professional back-
ground and training, the mathematics of his works, and the illustrated
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themes of development in mathematics in the first half of the 19th cen-
tury. Throughout, Abel’s mathematics is seen in its historical tradition,
and the influences of mathematicians like Cauchy, Gauss, Lagrange,
and Legendre is traced and described. This approach facilitates both
a discussion of aspects of continuity and novel transformation in Abel’s
works.

1 The historical and geographical setting
of Abel’s life

Niels Henrik Abel lived in a politically turbulent time during which
his birthplace, Finnøy, belonged to three different monarchies. When
Abel was born in 1802, it belonged to the Danish-Norwegian twin
monarchy but in the wake of the Napoleonic Wars, the province of Nor-
way was ceeded to Sweden after a short spell of independence. Education
in the twin monarchy was centered in Copenhagen, and only in 1813 was
the university in Christiania (now Oslo) opened. The scientific climate
was beginning to ripe, but mathematics was not studied at a high level.

As was common practice for the sons of a minister, Abel attended
grammar school in Christiania and soon got the young Bernt Michael
Holmboe (1795–1850) as a mathematics teacher. Holmboe was the
first to notice Abel’s affinity with and skills in mathematics and they
began to study the works of the masters in special lessons. In 1821, after
graduating from grammar school, Abel enrolled at the university but
continued his private studies of the masters of mathematics. In 1824, he
applied for a travel grant to go to the Continent and he embarked on his
European tour in 1825. It brought him to Berlin and Paris where he had
the opportunities to meet some of the most prominent mathematicians
of the time and frequent the well equipped continental libraries. More
importantly, Abel came into contact with August Leopold Crelle
(1780–1855) in Berlin, who became Abel’s friend and published most of
Abel’s works in the newly founded Journal für die reine und angewandte
Mathematik. When Abel returned to Norway in 1827 he found himself
without a job and with no family fortune to cover his expences, he took
up tutoring mathematics. He had suffered from a lung infection during
the tour, and in 1829 he succumbed to turberculosis.

Abel’s geographical background thus dictated his approach to ma-
thematics; it forced him to study the masters and do individual original
work. In his short life span he carefully studied works of the previous
generation and went beyond those. During the months abroad, he came
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into contact with the newest trends in mathematics, and immediately
engaged in new research. Almost all his publications were written dur-
ing or after the tour. The presentation of historical and biographical
background serves to provide a framework for tracing ideas, influences,
and connections concerning Abel’s work.

2 The mathematical topics involved

Theory of equations. The essentials of mathematics in the 18th cen-
tury often come down to the work of a single brilliant mind, Leonhard
Euler (1707–83). Through a lifelong devotion to mathematics which
spanned most of the century, Euler reformulated the core of the sub-
ject in many profound ways. Inspired by his attempts to prove that any
polynomial of degree n had n roots (the so-called Fundamental The-
orem of Algebra), Euler introduced another important mathematical
question: Can any root of a polynomial be expressed in the coefficients
by radicals, i.e. only by use of basic arithmetic and the extraction of
roots? This question concerned the algebraic solvability of equations
and to Euler it was almost self-evident. However, mathematicians
strived to supply even the evident with proof, and Joseph Louis La-
grange (1736–1813) developed an entire theory of equations based on
permutations to answer the question. Though a believer in generality,
Lagrange came to recognize that the effort required to solve even the
general fifth-degree equation might exceed the humanly possible. In La-
grange’s native country, Italy, an even more radical perception of the
problem had emerged; around the turn of the century, Paolo Ruffini
(1765–1822) made public his conviction that the general quintic equa-
tion could not be solved by radicals and provided his claim with lengthy
proofs.

Abel’s first and lasting romance with mathematics was with this
topic, the theory of equations; his first independent steps out of the
shadows of the masters were unsuccesful when in 1821 he believed he had
obtained a general solution formula for the quintic equation. Provoked
by the necessity to elaborate, he realized that his argument was in err,
and by 1824 he gave a proof that no such solution formula could exist.
The proof, which was based on an elaborated theory of permutations
and a classification of possible solutions, reached world (i.e. European)
publicity in 1826 when it appeared in the first volume of Crelle’s
Journal für die reine und angewandte Mathematik. But as so often
happens, solving one question only leads to posing another. Realizing
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that the general fifth-degree equation could not be solved by radicals,
Abel set out on a mission to investigate which equations could and
which equations could not be solved algebraically. Despite his efforts —
which were soon distracted to another subject — Abel had to leave it
to the younger French mathematician Evariste Galois (1811–32) to
describe the criteria for algebraic solvability.

Elliptic functions. Since the invention of the calculus towards the
end of the 17th century, the mathematical discipline of analysis had been
able to treat an increasing number of geometrical curves. In his textbook
Introductio in analysin infinitorum of 1748, Euler elevated the concept
of function to the central object of analysis. Concrete functions were
studied through their power series expansions and the brilliant calculator
Euler obtained series expansions for all known functions including the
trigonometric and exponential ones. However, Euler did not stop there
but ventured into the territory of unknown functions of which he tried to
get hold. One important type of function whose analysis had struggled
to treat on a par with the rest was the so-called elliptic integrals that
can measure the length of an arc of an ellipse.

Mathematicians such as Leonhard Euler and Adrien-Marie
Legendre (1752–1833) felt and spoke of an unsatisfactory restriction of
analysis for only being able to treat a limited set of elementary transcen-
dental functions. Admitting new functions into analysis meant obtaining
the kind of knowledge about these functions that would allow them to
be given as answers. If a function today is nothing more than a mapping
of one set into another, the knowledge of a function then included tabu-
lation of values, series expansions and other representations, differential
relations, functional relations, and much more.

When Abel turned his attention towards elliptic integrals as his
main research topic, much knowledge concerning these objects had al-
ready been established. An algebraic inspiration which had profound
influence on Abel was Gauss’ study of the division problem for the
circle (construction of regular n-gons) in the Disquisitiones arithmeticae
(1801). Gauss had hinted that his approach could be applied to the
lemniscate integral, and Abel took it upon himself to provide the claim
with a proof. By a praised new idea, Abel inverted the study of elliptic
integrals into the study of elliptic functions: Instead of considering the
value of an integral as a function of its upper limit, he considered the
upper limit as a function of the value of the integral (compare arcsin
and sin). Through formal substitutions and certain additional formulae,
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Abel obtained elliptic functions of a complex variable. By this inversion
of focus, he managed to place the entire theory of elliptic integrals on
a new and much more fertile footing. Initiated by a fierce competition
between Abel and the German mathematician Carl Gustav Jacob
Jacobi (1804–51), the new theory gained almost immediate momentum
and became one of the central pillars of and main motivations for 19th

century advances in mathematics. To the professional mathematical
community of the 1820s, Abel’s algebraic approach to elliptic functions
must have seemed both classical and profoundly new. Many of the ques-
tions asked were formulated by the mid-18th century, but among Abel’s
methods we find some of the gems of the new attitude to mathematics,
which were incomprehensible to some of his most prominent contempo-
raries.

Although Abel had presented the crucial idea of inverting elliptic
integrals into elliptic functions, his impact on the further development of
the theory stemmed as much from a vast generalization of the addition
formulae which he had handed in to the Parisian Académie des sciences
in 1826 (not published until 1841). In this paper, Abel treated an even
broader class of integrals generalizing the elliptic integrals and — again
using primarily algebraic means — proved that the sum of any num-
ber of similar integrals could be reduced a certain number of integrals
(depending on the form of the integral) and known algebraic and log-
arithmic terms. The quest of later mathematicians to reapply Abel’s
daring inversion of elliptic integrals to this broader class of integrals led
to much of the important development in complex analysis and topology.

Rigor. Although the theory of equations was closest to Abel’s heart,
and the theory of elliptic functions brought him fame in the 19th cen-
tury, his mathematical legacy remembered in the 20th century is just as
much about his intense perception of Cauchy’s new rigor. Picking up
from the theory of functions of Lagrange, Cauchy had placed con-
cepts such as continuity and convergence in the foreground and founded
these concepts on a new interpretation of limits. Equally importantly,
Cauchy had shown a way of working with these concepts to deduce
properties of classes of objects (e.g. continuous functions or convergent
series) rather than a tedious studies of specific objects.

In the memorable and often quoted letter dated 1826 (first pub-
lished 1839), Abel expressed his convertion to Cauchyism and gave
the new rigor its dogmatic manifesto. Apparently more radical than
Cauchy himself, Abel helped to determine the formulation of the new
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rigor through his interpretative readings of Cauchy. In the process of
refounding analysis on rigorous grounds, the central concepts were spec-
ified and changed (stretched) to an extent where they showed behaviour
that was deemed abnormal. The encounter and resolution of these ab-
normalities, exceptions as they were often called, is an integrated part
of the rigorization process; such counter examples shed interesting light
on the role and use of concepts in mathematics in the early 19th century.

3 Themes from early 19th century mathematics

The early 19th century marks a period of transition and fermentation
in mathematics which involves most layers of the discipline, external
as well as internal. Fixing the boundaries at 1790 and 1840, a definite
change in the way mathematics was performed and presented is evident;
research mathematicians began working in institutions set up for instruc-
tion in mathematics and started presenting their results in professional
periodicals with substantial circulation. However, the change even ef-
fected the internals of the discipline: how mathematics was done, what
mathematics was, and which mathematical questions were interesting.
Gradually, concepts and relations between concepts took an increas-
ingly central position in mathematics research; although the concern for
concrete objects never seized completely.

Concept based mathematics. Concepts such as function, continu-
ity of functions, irreducibility of equations, and convergence of series at-
tained central importance in mathematical research in the transitional
period. Cauchy’s contribution to the rigorization of the calculus lay
as much in working with technical definitions of concepts to prove the-
orems as with providing the definitions, themselves. Generalization in
the 1820s turned the attention from specific objects to classes of objects,
which themselves were then investigated. This shift of attention towards
collections of individual objects had a very direct influence on the style of
presenting mathematical research. In the ‘old’ tradition, mathematical
papers could easily be concerned with explicit derivations (calculations)
pertaining to single mathematical objects, e.g. functions. Although this
presentational style far from seized to fill periodicals, a less explicit style
gained impetus in the first half of the 19th century. By deriving proper-
ties of classes instead of individual objects, the arguments became more
abstract and often more comprehensible by lowering the load of cal-
culations and simplifying the mathematical notation. The transition is
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evident in Abel’s works which show deep traces of the calculation based
approach to doing mathematics. On the other hand, Abel’s works were
markedly conceptual at times; his 1826 paper on the binomial theorem
is a fascinating mixture of both approaches.

Abstract definitions and coming to know mathematical ob-
jects. In many evolving fields of mathematics in the early 19th century,
new concepts were specified using abstract definitions based on previous
proofs, intentions, and intuition. In the approach which I term concept
based mathematics, the concepts were defined in the modern sense that
there is nothing more to a concept than its definition. However, when
abstract definitions determine the extent of a concept, representations
and demarcation criteria are required in order to get hold of proper-
ties of objects, and this quest for understanding, coming to know, the
objects is an important aspect of early 19th century mathematics. In
many ways, analogies may be drawn to the effort of coming to know
geometrical objects, i.e. curves, in the 17th century. To mathematicians
of the 17th century, a curve meant more than any single given piece of
information. In particular, an equation (or a method of constructing
any number of points on the curve) was not considered sufficient to ac-
cept the curve as known. Similarly, in the 19th century, knowledge of an
elliptic function meant more than just a formal definition and included
various representations, basic properties, and even tabulation of values.

The question of coming to know a mathematical object can be traced
to the problem of accepting the object as solutions to problems. The
reduction of properties of curves to questions pertaining those basic
curves which were considered well known was important in the 17th cen-
tury. However, certain properties were not expressible in basic curves
(or functions) but required higher transcendentals such as elliptic inte-
grals. Thus, much of Euler’s research on elliptic integrals in the 18th

century can be seen as an effort to make these integrals basic in the
sense of acceptable solutions to problems. This research programme
was continued and reformulated in the 19th century during which the
foundations, definitions, and framework of elliptic functions underwent
repeated revolutions.

Critical revision. The critical mode of thought, rooted in the En-
lightenment, had a profound impact on mathematics. Together with
the demand for wider instruction in mathematics, the critical attitude
brought about a deeply sceptical reading of the masters which focused
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on the foundations. In geometry, some mathematicians began to be-
lieve in the possibility of a non-Euclidean version, and in analysis, the
longstanding problem of the foundation of the calculus was made an
important mathematical research topic.

Cauchy’s definition of the central concept of limits was itself a nov-
elty, but of equal importance was the outlook for a concept based version
of the calculus. Cauchy’s new foundation for the calculus was arith-
metical and introduced the arithmetical concept of equality. In the wake
of the change of foundations of the calculus, certain objects and meth-
ods could no longer be allowed into analysis, and it became a quest
to prop up parts of the mathematical complex recently made insecure.
In particular, Cauchy had to abolish from analysis all divergent series
which had formerly been interpreted by a formal concept of equality.
However, divergent series had provided new insights to mathematicians
which they were reluctant to abolish and it became a legitimate, al-
beit difficult, mathematical problem to investigate how problematic or
outright unjust procedures led to correct results.
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