
Linear Differential Transformations of the Second Order

15 Differential equations with the same central dispersions of the first kind

In: Otakar Borůvka (author); Felix M. Arscott (translator): Linear Differential
Transformations of the Second Order. (English). London: The English Universities Press,
Ltd., 1971. pp. [138]–148.

Persistent URL: http://dml.cz/dmlcz/401685

Terms of use:
© The English Universities Press, Ltd.

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/401685
http://dml.cz


15 Differential equations with the same central 
dispersions of the first kind 

In § 13.12, we stated that to every function <f> defined in the interval (J = ) (— oo, oo), 
with the properties (13.42), there correspond infinitely many oscillatory differential 
equations (q), (with power >$), whose fundamental dispersion of the first kind is 
precisely the function cf>. 

The set of all oscillatory differential equations (q) defined in an intervalj = (a, b) is 
partitioned into classes, each being formed of all differential equations (q) with the 
same fundamental dispersion of the first kind. Now, for a given oscillatory differential 
equation (q), every 1-central dispersion <f>v is obtained by iteration of the corresponding 
fundamental dispersion of the first kind or its inverse, i.e. <f>v == <j>\ for v = 09 ± 1 , ± 2 , 
. . . (12.2). It follows that for all differential equations (q) contained in a given class 
the 1-central dispersions <f>v are the same. 

In what follows we shall be concerned with differential equations (q) with the same 
fundamental dispersion of the first kind. For brevity, instead of speaking of differential 
equations (q), (q), with the same fundamental dispersion of the first kind we shall 
speak of carriers q, q with the same fundamental dispersion; also, instead of <f>± we 
shall write simply <f>. 

We let (q) be, therefore, an oscillatory differential equation in the intervalj = (a, b). 

15.1 Integral strips 

Let <f> be a function defined in the intervalj with the properties (13.42), 
By Q<j>9 or briefly Q9 we denote the set of all carriers with the same fundamental 

dispersion </>, and by (Q^), more briefly (Q), the set of all differential equations (q), 
q e Q<j). All differential equations (q) e (Q) have therefore the same 1-central dis
persions cf>v. 

Further, let J<f>9 more briefly / , denote the set of all integrals of all differential 
equations (q) contained in the set (Q). Since these differential equations (q) all have 
the same 1-central dispersions <f>V9 /consists of functions with the same zeros; that is 
to say, two arbitrary integrals y9 y e / , having one zero in common, have all their 
zeros in common. 

Let c ej be an arbitrary number. By the integral strip of the set (Q) with the node c9 

or more briefly the integral strip (c), we mean the set of all elements of/which vanish 
at the point c9 and we denote this set by Be. The integral strip Be thus consists of all 
integrals vanishing at the point c, of all differential equations (q) which have the 
common fundamental dispersion of the first kind <j>. The elements of Be have therefore 
the same zeros; these zeros are called the nodes of the integral strip Be. Clearly, the 
integral strip Be is uniquely determined by any one of its nodes c'\ i.e. Be = Be'. 
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15.2 Statement of the problem 

We are now in a position to describe more precisely the contents of this paragraph; 
it consists essentially of a study of the following topics: 

1. Properties of the integral strips of the set (Q^). 
2. Relations between carriers with the same fundamental dispersion <f>; that is, 

between functions a, q e Q<f>. 
3. Explicit formulae for carriers with the same fundamental dispersion <f>, 
4. The power of the set Q<j) in the casej = (— oo, oo). 

15.3 Properties of the integral strips of the set (Q<f>) 

Let Be be an integral strip of the set (Q<f>). First we show that: 
For every integral y e Be the following formulae hold: 

(•*<*> ry2(c) 1 1 , 1 ÇФ 

Jx \_y\a) (a - cf 
da = 

c — x + ф(x) 

ҐФ(c) 1 1 У'Ҷç) 
y\a) (a - cf (a - ф(c)fj 

da 
\+ф'(c) \ф"(ć). 
ф(c)-c 2ф'(c)' 

(15.1) 

(15.2) 

where x is an arbitrary number satisfying the inequalities x < c < <f)(x). 
For, let (q) e (Q</>) be an arbitrary differential equation. We have already derived 

the formula (1) (5.45), and so have only to prove (2). 
Let y e Be be an integral of the differential equation (q). We choose an arbitrary 

number t, such that c < t < <f>(c), and apply the formulae (5.43), (5.42) on the intervals 
[c, t] and [t,(f>(c)] 

y'\c) 

Í 
1 ly\o) 

i 

(a - cf. 

1 

L y2(a) (a - ф(c)f 

da = —-cot a0(ł) + 

cot aľ(t) — 

1 

da 

t — c 

1 

t - ф(c) 

Here oc0 and ax are the first phases of the differential equation (q) determined by the 
initial values: 

oc0(c) = 0, oc0(c) = 1, <(c) = 0; a^(c) = 0, a#(c) = h a^(c) = 0. 

From the Abel functional equation a±<f) = a± + TT and from the derivative of this 
relation, we see that at the point c the functions au a[, a[ take the following values: 
ax(c) = ^TT, <(c) = <f>'(c), a[(c) = <f>'(c). 

Then, from (5.39), we see that the values taken by the phases a0(t), a±(t) at the 
point t are related by: 

1 +\c) 
-cot <x0(0 + ф'(c) • cot a^í) = — 

2ф'(c) 
(15.3) 
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The above formulae, which can also be written in the form, 

f f [ y 2 ( c ) 1 . . . . 1 

ў(a) (a — c): -ф'(c) 
(o-4>(c)YJ 

1 

í 
— — cot <x0(ŕ) + 

1 

t — c 

1 *(C г _ _ _ _ 

yҚo) 9 KC) (a - ф(c)Г (a - c)2J 

da 

+ Ф'(c) 

do 

1 1 

give, by addition 

p o ry2(c) 
y2(a) (a — c)2 

ф'(c) 

ф'(c) 

COt OL^t) — 

1 

(o - ф(c))2 

1 

t - #c). 

t - 4>(c) c - <j>(c\ 

+ ф(c) 

da 

—cot a0(t) + (f)ř(c) * cot ocxCt) + U+ФШ <j)(c) - C 

and when we apply (3) to this, it gives (2). 
As a supplement to this result we remark that by using the relations (5.46), or (5.49) 

we can derive formulae which generalize (1), (2) above to the case of 1-central dis
persions <f>v with arbitrary index v ( = 0 , ± 1 , ± 2 , . . .) or derive similar formulae 
for the 2-central dispersions %pv. We shall not concern ourselves further with this, since 
the relations (1), (2) are sufficient for our purposes. 

We now have some further results: 

The (Riemann) integrals which occur on the left of the formulae (1), (2) are independent 
of the elements y of the integral strip Be. 

In other words: these integrals are invariant with respect to the elements y of the 
integral strip Be. 

A further property of the integral strip Be is that the ratio of the derivatives y\ y' of 
two arbitrary elements yJ y in the integral strip Be takes the same value ( = k) at all 
nodes of this strip. 

For, let c' be an arbitrary node of Be. Then we have c' = <f>v(c), v being some integer, 
and (13.5) gives 

which proves our statement. 

We show further that: 

Every two elements y9 y of the integral strip Be are related in the interval j by: 

_ _ -

_y\o) r(ff)_ 

To establish this, we first observe that formulae (1) and (2) show that (4) is valid if 
the number t (= x) satisfies the inequalities t < c < ^(0- Now let t be an arbitrary 

p<f> Vy__) _ _% 

Jt lyHo) f(o 
da = 0 . (15.4) 
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number e j; obviously, there is one node c of Be which satisfies the inequalities t < 
cf < (f)(t)y so that formula (4) holds with cf in place of c. Now, from the above results 
we have /\cr) = Ay'2(c), y'\c') = Xyf\c), in which A ( > 0) is some constant, and 
this fact completes the proof. 

15.4 A sufficient condition for two differential equations to have the same fundamental 
dispersion 

We now wish to examine how far the above properties characterize the integral strips 
of the set (Q<f>); to that end, let us consider two oscillatory differential equations (q), 
(q) in the intervalj = (a, h) with the fundamental dispersions <j>, <f> of the first kind. 

We assume that the differential equations (q), (q) possess integrals y, y which have 
the same zeros and also the property that the ratio of their derivatives y'jy' ( = k) is 
the same at each of these zeros x. Finally, let at least one (always the same one) of the 
two relations 

rФ(t) ì i 
y\a) kӯ\a)j 

cìa = 0, í ІФD 1 1 

.y\a) k ӯ\a)_\ 
cia = 0. (15.5) 

be satisfied at every t e j except for the zeros x. 
Then the fundamental dispersions cf>, <j> coincide, <f> = <̂>, and consequently y, y are 

elements of the integral strip Bx of the set (Q4>). 
To show this, let us assume that the first relation (5) holds and let t e j be arbitrary. 

If t is a (common) zero of the integrals y, y, then from the definition of <f>, <J> it follows 
immediately that </)(t) = <j)(t). We therefore assume that y(t) ^ 0, y(t) -^ 0. 

Let c_ l 9 Cj cx be successive zeros of y and y determined by the inequalities c^x < 
t < c < cx; then <f>(t), <f>(t) lie between c and c±. 

From (5) we have 

řHt) У'2(c) i 
_y\a) (a - cf 

da 
ГФ(t) У\c) 1 

ӯ\a) (a - ćf 
da. 

From this and (5.44) it follows that cot dL<f>(t) = cot a(t); a being the phase of the 
differential equation (q) determined by the initial values a(C) = 0, a(c) = U ®-"(c) = 0. 
We have therefore d.<f>(t) = a(t) + mrr, m being an integer. But since (f>(t) lies between 
c and cl9 m = 1, and consequently a< (̂l) = a(t) + IT. When we compare this rela
tionship with the Abel functional equation 5c$(l) = a(i) + TT, then we obtain <f>(t) = 
<f)(t), and the proof is complete. 

15.5 Ratios of elements of an integral strip 

We consider again an integral strip Be of the set (Q^). Let y, y e Be be arbitrary ele
ments of Be and w the Wronskian of y, y: 

w = yӯ —yy- (15.6) 
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At every point / e j the function w has the derivative 

w' = (q-q)yp. (15.7) 

Clearly, the functions u>, w' vanish at every node cv ( = <f>v(c)) of Be, (v = 0, ± 1 , 
± 2 , . . .; c0 = c), i.e. 

w(cv) = 0, w'(cv) = 0. (15.8) 

Further, from (13.5) and (7) we have 

w<f>v = w , (15.9) 

(fa - <&$>? = q - q. (15.10) 

Now we define the function p in the interval j by: 

'y (0 
— for t^cv; v = 0, ± 1 , ± 2 , . . .; cQ = c, 

p ( t ) = ly{) (15.11) 
for t == cv, 

y fc) 

and the remainder of this paragraph is devoted to studying the properties of the 
function p. 

First, from (13.5), we have the following relationship 

p+*(t) = p(t), (15.12) 

holding in the interval j ; further, the function p is either always positive or always 
negative, according as y'(c)fy'(c) > 0 or < 0. For let us assume, for definiteness, that 
y'(c)jyf(c) > 0. Then both the functions y, y are positive or both are negative in the 
interval (c, <f>(c))9 and consequently p is positive. Thus p(t) > 0 for t e [c, ̂ (c)] and 
consequently, from (12), for all t ej. 

Also, the function p is continuous in the interval/ This follows from the fact that 
by definition it is continuous at every point t -7-= cv and for t -> cv it tends to the limit 
P(cv) (= p(c)). 

The function p belongs, indeed, to the class C2. Obviously it is twice continuously 
diiTerentiable at every point t ^ cv, since 

w 
P' = - 2 (15.13) 

y 

p,' = (q-q)p-2y-p'. (15.14) 
y 

Further, applying L'Hopital's rule, 

lim pXt) = 0, lim p\t) = - [q(cv) - q(cv))p(cv), (15.15) 
t -> Cp t~+Cp 3 

whence the functions p9 p' possess derivatives pf(cv), p,f(cv) at the point cv which are 
equal to the limiting values (15) and our statement is proved. 
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Moreover, from (4) and (11), we have 

ГФU) 1 1 

,p2(a) p2(c\ 

da 

fiã) 
(15.16) 

in the intervalj. Finally we note that the integrand in (16) is continuous in the interval 
j if we define its value at each point cv by the following limit:— 

lim 
(7 - * Cp 

1 1 

./?2(<T) p2(c\ 

l p"(cv) 

y\a) p3(cv)y'2(cv) 
(15.17) 

Coordinating the above facts, the function j? has the following properties: 

1. p =£ 0 for t GJ; 

2. p<f>(t) = p(t) for tej; 

3. pe C2; 

4. pf(c) = 0; 

5. 
ГФ(c) 1 1 

ў(a) pҢc). 

da 

Ã?) 
0. 

(15.18) 

15.6 Relations between carriers with the same fundamental dispersion </» 

We consider arbitrary elements q, q of the set Q<f>; thus the differential equations (q) 
(q) have the same fundamental dispersion </5. For brevity we write A = q — q. 

Let c e j be arbitrary. We shall be concerned with the number of zeros of the func
tion A lying between two neighbouring nodes of the integral strip Be; the possibility 
of an infinite number of such zeros is not excluded. 

Formula (10) shows that the relation A(c) = 0 => A(cv) = 0 for every node cv of 
Be. In other words, if the carriers q, q take equal values at the point c, then they take 
equal values at every node of Be. 

We next show that the number of zeros of A lying between two neighbouring nodes 
of Be is always the same. For, let c, (j>(c) and c\ <f>(cr) be two neighbouring nodes of 
Be and suppose, for definiteness, that c < c\ Then we have c' -= <f>v(c), <f)(cr) = <j>v(f>(c) 
for some positive index v. Since the function (f>v is increasing, it maps the interval 
(c, <f>(c)) simply onto (c\ <f>(c')). But formula (10) shows that in this mapping zeros of 
A are mapped onto zeros, and the result follows. 

Clearly, the number of points lying between two neighbouring nodes of the integral 
strip Be at which the carriers q, q take the same value is always the same, and conse
quently does not depend upon the choice of these nodes. 

We now wish to prove the following important theorem: 

Theorem. The number of the zeros of the function A lying in an arbitrary interval 
[c, <f>(c)), c ej, is always at least four. 

Proof Let j , y e Be be arbitrary elements of Be and p the function defined in the 
intervalj by means of the formula (11). 

First, the relations (18), 1° and 5° show that the function/? takes the valuep(c) at 
a point x e (c, <f>(c)). Consequently, the function/; assumes the same valuep(c) at the 



144 Linear differential transformations of the second order 

points c, x and <f>(c) which are such that c < x < <f)(c). Hence its derivative// vanishes 
at least at two points x[ e (c, x), x2 e (x, <f>(c)). Now, from (13), x[ and x'2 are zeros of 
the function w. Consequently, w vanishes at points x[, x2 such that c < x[ < x2 < 
(f>(c); its derivative w' therefore vanishes at least at three points x±e(c9x[)9 x2e 
(x[, x2), x3 e (x2, <f>(c)). 

From (7) the numbers xu x2, x3 are zeros of the function A. This completes the 
first part of our proof. 

In the second part we show that: if the function A ^ 0 at the point c, and conse
quently also at <f)(c), then it has not less than four zeros in the interval (c, <f>(c)). 

We assume that A(c) # 0, and that there are precisely three zeros xt < x2 < x3 

of A lying in the interval (c, <f>(c)). Then we have 

c < Xi < x2 < x3 < $(c) < ^(xx) < cj>(x2) < <f>(x3) 

and between any two neighbouring elements in this sequence the function A is not 
zero. Consider now the integral strip Bx±. Clearly, between two neighbouring nodes 
x±, <f>(xx) of Bxx there lie precisely two zeros x2, x3 of A. This completes the proof. 

This result may also be formulated as follows: 

Two arbitrary carriers q, q with the same fundamental dispersion of the first kind <f> 
take the same value at not less than four points in each interval [c, <f>(c)), c ej. 

We shall soon show (§ 15.8) that this theorem is best-possible in the sense that 
there are carriers q, q with the same fundamental dispersion (f>,for which the lower bound 
4 in the above theorem is obtained. 

15.7 Explicit formula for carriers with the same fundamental dispersion ^ 

Let q be the carrier of an oscillatory differential equation (q) in the interval j = (a, b) 
and <f> its fundamental dispersion of the first kind. Let c ej be arbitrary and y e Be 
an arbitrary element of the integral strip Be of the set (Q$). Then y is an integral of 
the differential equation, belonging to the set (Q^)» vanishing at the point c; its zeros, 
which are therefore the nodes of Be, are cv = <f>v(c); v = 0, ± 1 , ± 2 , . . ., cQ = c. 

We now have the following theorem:— 

All carriers q with the fundamental dispersion <f) are given by the formula 

q = q+?- + 2£-£. (15.19) 
p P y 

In this, p is an arbitrary function defined in the interval j with the properties (18), and 
the value of the last term is defined at each point cv to be 2p"(cv)lp(c). 

Proof (a) Let q be an arbitrary carrier with the fundamental dispersion <f>, so 
that q, q e Q<f>. 

Moreover, let y be an integral of the differential equation (q) contained in the 
integral strip Be, and p the function defined in the interval j by the expression (11), 
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The function p has therefore the properties (18), and at every point t ej the relation 
(14) holds; the formula (19) then follows immediately. 

(b) Now let q be a function defined in the interval j by (19) where of course p is a 
function with the properties (18) and the value of the last term at each point cv is as 
explained above. 

By elementary calculation, we show that the function 

y(t) = p(t)y(t) 

is a solution of the differential equation (q), and indeed is the (unique) solution deter
mined by the intial values y(c) = 0, y(c) = p(c)/(c). The functions j , y obviously 
have the same zeros cv = <f>v(c) (v = 0, ± 1 , ± 2 , . . .; c0 = c) and from the relation
ship f = p'y + py' it is clear that the ratio y'\f of their derivatives is the same at all 
these zeros, taking the value \\p(c). 

Now let F(a) denote, in the interval j , the integrand of (18), 5°; its value at each 
point cv is specified as the limiting value (17). This function F is continuous in /. 
Further, from (18) property 2° and (13.5), we see that the following relationship holds 
for all / ej: 

m(t)wo) = F(o. 
It follows that 

0 ( 0 
F(a) da 0, 

and further from (18), property 5° 

N>(1) 
F(a) da 

ľФ(C) 

) da = 0. 

Hence for all t ej we have the relationship 

/*<ř(0 1 1 
j/2(cr) k y2(a) 

da = 0 (k= \lp(c)), 

and application of the result of § 15.4 shows that the fundamental dispersion of the 
first kind of the differential equation (q) coincides with </>. This completes the proof. 

15.8 Explicit formulae for elementary carriers 

In § 8.4 we determined all the elementary carriers in an interval j by means of the 
formula (6). The theorem of § 15.7 leads to another and perhaps simpler explicit 
expression for elementary carriers, still of course in the interval j = (— oo, oo). 

An elementary carrier q in the interval j ( = (—• oo, oo)) is characterized by the fact 
that all its first phases a are elementary—that is, a(t + TT) = a(t) + rr sgn a M t ej. 
We recall, in this context, that differential equations (q) with elementary carriers, and 
only such equations, have the zeros of all their integrals separated by a distance TT. 
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Clearly the carrier q defined in j is elementary if and only if its fundamental dis
persion of the first kind, </>, is linear, with <f>(t) = t + rr. 

The elementary carriers in the interval j are therefore precisely those carriers whose 
fundamental dispersion is <f>(t) = t + rr. Among these, naturally, is included the 
carrier —-1; the integral y of this with initial values y(c) = 0, y'(c) = 1 (which may be 
assigned at an arbitrary point c ej) is given by the function y(t) = sin (t — c). 

If we apply the result of § 15.7 we obtain the following theorem: 

Theorem, The set of all elementary carriers in the interval j = (—• GO, OO) is given by 
the folio wing formula 

q(t) = - 1 + - — + 2 -—- COt (t 
p(t) p(t) 

c); (15.20) 

in which c is an arbitrary number and p a function with the following properties in the 
interval j 

1. p 7-- 0 for tej; 

2. p(t + 7r)=p(t) for tej; 

3. peC2; 

4./>'(<:) = 0; 

г 
Jo 

1 1 da 

sin2 (a — c) 
= 0. 

(15.21) 

_p\a) p*(c)_ 

If we set p(t) = p(c) exp/(l), then formula (20) gives 

q{t) = - 1 +/"(/) +f2(t) + 2/(0 • cot (t - c), 

in whichfdenotes a function defined on (—oo, oo) with the following properties: 

f(t + Tr)=f(t) for tej; feC2; f(c) =f'(c) = 0;) 

*-exp(-2/X(T))-l j' 
Jo 

dff = 0 . 

(15.22) 

(15.23) 

sin2 (a — c) 

The above formula (22) is due to F. Neuman ([53]). If, in particular, we choose 

/ ( 0 = - í l o g 1 — - sin 2(ŕ — c) sin2 (t — c) (15.24) 

then we obtain the one-parameter system of elementary carriers q(t\c) which we 
introduced in (8.7). 

This result provides also a simple example of carriers q, q with the same fundamental 
dispersion <f> ( = t + TT), for which the lower limit 4, referred to in the theorem of 
§ 15.6, is in fact attained. This holds, for instance, for the carriers q(t) = — 1 and 

q(t) = q(t|0). In this case, A(l) = q(r) — q(t) = sin 4r + - sin4 t, and it is easy to 

verify that for every number c ej the number of zeros of the function A lying in the 
interval [c, c + ir) is precisely 4. 
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15.9 Relations between first phases of differential equations with the same fundamental 
dispersion </> 

Let (q), (q) be oscillatory differential equations in the interval/' = (—00, 00) and <f>, 
<f> their fundamental dispersions of the first kind. Also, let a, a be arbitrary (first) 
phases of (q), (q) respectively. We then have: 

Theorem. The fundamental dispersions <f>, <f> coincide if and only if the phase functions 
y = aoT1, y"1 = oca""1, (which are inverse to each other), are elementary; that is, if 
Vl e j we have 

y(t + TT) = y(t) + rjTT, y ^ f + TT) = y\t) + rpr 

(?] = sgnyf = sgn(y^) ') . 

Proof (a) Let <f> = <j>. Then in the interval j there hold the Abel functional equations 

a<j> = a + BIT, a</> = a + sir (e = sgn a', e = sgn a'), 

and consequently 

a " 1 ^ + STT) = a~"1(a + err), 

y(a + BIT) — a + err, 

y(t + BIT) = y(t) + en (t ej). 
From the last formula, we have 

y(t + TT) = y(t) + eerr, 

and from the fact that sgn y' = ee, it is clear that the phase function y is elementary. 
The same, naturally, is true of y1. 

(b) Let the phase functions y, y1 be elementary. Then we have in the interval j 

a = ya, 

a^ = y a ^ = y(a + BIT) = ya + £TT = a + BTT = a<^; 

it follows that <f> = $, and the theorem is proved. 
We now apply the above theorem to obtain a further explicit formula for carriers 

with the same fundamental dispersion of the first kind. 
Let q, qe Q(/> be arbitrary carriers with the same fundamental dispersion <f> in 

j = (—ex), 00). We choose arbitrary first phases a, a of (q), (q) respectively; then by 
the above result there is a relationship 

a = ya, (15.25) 

y being an appropriate elementary phase function. The latter is obviously of class C3 

and represents a first phase of a differential equation (g). Since y is elementary, 
the carrier g is also elementary. 

Taking the Schwarz derivative of each side of (25) at an arbitrary point t ej it 
follows that 

{tan a, t) = {tan y, a}a'2 + {a, t) 

and hence, using (5.16), (5.18) 

q = q + [1 + | a ] a ' 2 . 
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We now apply formula (22), writing t for t — c and/( l ) for f(t + c), obtaining 

q = q+ [fa + f2a + 2fa • cot a]a'2. (15.26) 

We have thus the following result: 

All carriers q with the fundamental dispersion <f> are given precisely by the formula 
(26) in which q is a fixed carrier with the fundamental dispersion <f>, a is a fixedfirst phase 
of the differential equation (q) andf is an arbitrary function in the interval j with period TT, 
belonging to the class C2 and having the properties 

/(0) = / ' ( 0 ) = 0, I [exp (-2/(cr)) - I] da/sin2 a = 0 
Jo 

15.10 Power of the set Q(f> 

We now determine the power of the set Q<f>. To do this, we go back to the information 
obtained in § 10, where we studied the algebraic structure of the phase group ©. 

As we know, all elementary phases form a sub-group § of ©. The power of the 
set of all carriers, whose first phases lie in one and the same element of the right residue 
class partition ©/r|) is the same for all elements of (5/r§ and is equal to the power of 
the continuum $$. 

Now let q be a carrier and <f> its fundamental dispersion of the first kind, and let a 
be a first phase of the differential equation (q). From the theorem of § 15.9 it follows 
that the first phases of the differential equations (q) with the fundamental dispersion <f> 
are precisely those phases of the form a = fa, in which y ranges over all elementary 
phases; that is, all elements of the sub-group jr>. In other words, the first phases with 
fundamental dispersion <f> are precisely those elements of © lying in the right residue 
class § a E ©/ r§. Consequently, the carriers q with the fundamental dispersion <f> are 
precisely those carriers whose first phases a lie in the right residue class §a. From the 
above, the power of the set of all these carriers q is equal to the power of the continuum. 

Thus we have the following theorem. 

Theorem. The power of the set of all oscillatory differential equations (q) in the interval 
j = (—oo, oo) with the same fundamental dispersion of the first kind $ is independent 
of the choice of the latter and is equal to the power of the continuum, J$. 

This result calls for some further comment. In the numerical treatment of differen
tial equations we often have to calculate the zeros of an integral of a particular differ
ential equation (q). Such a calculation naturally depends on the carrier q and in 
certain circumstances can be very difficult. We now have the possibility of replacing 
the carrier q by a "representative" q, that is to say a carrier q with the same funda
mental dispersion of the first kind as q; then the integrals of the differential equation 
(q) have the same zeros as those of (q). Naturally, we choose the representative q in 
such a way that the calculation of the zeros of its integrals is as simple as possible. 
The above result ensures that there are always infinitely many representatives q, 
(indeed, the set of these has the power X) which can replace the given carrier q. This 
raises the following problem: to develop methods for discovering representatives of a 
given carrier with advantageous properties for numerical work. 
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