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23 Transformation properties of solutions of the 
differential equation (Qq) 

23.1 Relations between solutions of the differential equations (Qq), (qQ), (qq), (QQ) 

We are only interested in regular solutions of these differential equations, that is to 
say in solutions X e C3 with non-vanishing derivative Xf. If therefore X is such a 
solution of one of these differential equations in a partial interval k of j or / , and 
K = X(k) is its range, then in this interval K there exists the inverse function x e C3 of 
X. This has a derivative x which is always non-zero in this interval. The range of x 
is naturally the interval k; x(K) = k. We use the term homologous (with respect to the 
relevant differential equation) to describe any two numbers t e k, T e K which are 
linked by the relationships T = X(t), t = x(T). 

1. Let X(t), tei (c-j) be a solution of the differential equation (Qq). Then the 
function inverse to X, x(T), Te / ( = X(i) <= / ) is a solution of the differential equation 
(qQ). 
Proof. Let tei, Tel be two homologous numbers. Since X is a solution of (Qq), at 
the point t we have the relation 

_<M + CWr=f. (23.1) 

From this, taking account of formulae (1.10), (1.6) we have 

{^+Q(T)\=q(x)x 
X X 

and further 
- { * , T} + q(x)x* = Q(T). 

This completes the proof. 
2. Let X, x be inverse solutions of the differential equations (Qq), (qQ) with inter

vals of definition i (<--j), / ( c J). Then at any two homologous points tei, Tel 
there hold the symmetric relations 

e w - Y^~ = ?(^ - \ ~P> (23.2) 

eWI' + \ (j)j = q{x)x + i Q"- (23.3) 

To see this, we start from the formula (1); from this and (1.6) it follows that 

W - ^ = # ) i + ̂ } (23.4) 
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and thence, using (1.10), we get the relation (2). Formula (3) is obtained from (4) 
and (1.16). 

3. We continue to employ the symbols X, x with the above meaning. Letf F be 
two functions constructed in the intervals /, /with arbitrary constants a09 ax; A09 Ax as 
follows 

1 1 fX(t) 

f(t) = a0 + a1t+ - . —— + [f - x(ri)]Q(ri) drj9 
4 X (t) Jx(t0) 

} (23.5) 
1 1 fx(T) * x J 

F(T) = A0 + A1T+r—+\ [T - X(H)]q(H) dH; 
- 4 x(T) JX(T0) 

where t0 e /, T0 e I denote arbitrarily chosen homologous numbers. 
Then, at any two homologous points tei9 T e I we have the relationship 

f(t) = F(T), (23.6) 

the proof of which follows from (3) above. 
In order to formulate the following theorems more simply, we shall denote the 

functions Q9 q by Ql9 Q2 and the differential equations (QQ), (Qq), (qQ), (qq) respec
tively by (Q n ) , (Q12), (Qal), (Q22). 

4. Let X, Ybe arbitrary solutions of the differential equations (Qa/?)? (Q0Y) (a? @,y = 
1, 2). Let /, k be the intervals of existence of the functions X9 Y and let L K be the 
ranges of the latter. Moreover let / n K ^ 0 , so that the composite function Z = XY 
is defined in a certain interval k (<=- k). 

We can show that the function Z is a solution of the equation (QaY) in the interval 
k. For, by our assumptions, in the interval k we have: 

^{Y9t}+Q,(Y)Y^^Qv(t)9 

^{X9Y}+QlZ)Xf\Y)^Q,(Y)9 

and at the same time from (1.17) we have 

{Z,t} = {X, Y}Yf\t) + {Y9t}. 

From these relationships it follows that 

^{Z, t} + Qa(Z)Zf2 = Qy(t)9 

and the proof is complete. 

23.2 Reciprocal transformations of integrals of the differential equations (q), (Q) 

We now return to the situation considered in § 22.2 and concern ourselves with the 
question of how far the transformations of the equation (Q) into the equation (q) 
are determined by the solutions of the equation (Qq). 
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Let X be a solution of (Qq) with the interval of definition / ( c j). We know that 
the function x inverse to X, with the definition interval (X(/) = ) / ( ^ J), satisfies the 
differential equation (qQ) (§ 23.1). 

We choose an arbitrary number t0 e /, and denote the values of the functions X, 
X\ X" at the point t0 by X0, X0 (7^ 0), X0; analogously, x0, x0(^ 0), x0 denote the 
values of x, x, x at the point F0 e I homologous to t0. The numbers X0, X0, X0 are 
inter-related, since X0 = F0, x0 = t0, and the formulae (1.6) hold. 

1. If Fis an integral of the differential equation (Q), then the function y, defined 
in the interval / by means of the formula 

AO - ™ (23.7) 
V|A"(<)I 

satisfies the differential equation (q), and this solution y is that portion lying in the 
interval / of the integral y of (q) which is determined by the Cauchy initial conditions 

. ' ° } (23.8) 
Y(X0) v , 1 Y(X0) XI y(t0) = - ^ X'0-
Vj^í ° 2VVQ x-

Proof. Clearly, the function y is everywhere twice differentiable in the interval /, and 
it is easy to verify that the following formulae hold: 

m-^ш.x-+nx)U=)'. 
(23.9) 

V\x'\ V\x'\ 

Since the functions Y, X satisfy respectively the differential equations (Q) and (Qq), 
at every point t e / we have 

Y(X) = Q(X)Y(X), 

-{X,t}=-Q(X)X'*+q(t). 

We have therefore 

m = v w \ Q i X ) x ' 2 + v § \ [-Q(x)x'2+m 

and consequently 

y"(t)^q(t)y. 

so the function y is a solution of the equation (q). The values y(t0), yr(t0) are given 
from (7) and (9) by means of (8). 
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2. Let Y, y be the integrals of the differential equations (Q), (q) considered in 
Theorem 1 above. Then the portion Y of Y defined in the interval / is given by the 
inverse formula to (7), namely 

Y(F) = 4 ^ ^ i (23.10) 
V\x(T)\ 

and the Cauchy initial values Y(T0), Y'(T0) are 

y(x0) 
Y(т0) = 

V|io | 

vлг Ì _ У (x<à • l У(x°) x° 
*• °> ~ /rr-r џX° ~ õ /rr-r ' ~ ' 

V\x0\
 2V\x0\ *o 

(23.11) 

Proof Since j is an integral of (q) and x a solution of (qQ), the theorem above shows 
that the function 

T _ && 
v\m\ 

is a solution of the differential equation (Q) in the Interval /. 
Now, at two homologous points Tel, t e i there hold the relations 

f(T) = * _ - . - , Y[X(t)] = Y(T) = Y(T). 
V\x(T)\ V\x(T) • X'(t)\ 

Consequently, Y is the portion Y of the integral Y defined in /. From formula (8) 
the Cauchy initial conditions for Y are given by the formulae (11). 

The above study thus yields the following theorem. 

Theorem. The ordered pair of functions, w(t) = kj\/\Xf(t)\, X(t) constructed with 
an arbitrary constant k ( ^ 0), represents a transformation [w, X] of the differential 
equation (Q) into the differential equation (q). At the same time, the ordered pair of 
functions W(T) = k~7v1*(-OI> x(T) represents a transformation of the differential 
equation (q) into (Q). 

Every integral Y of the differential equation (Q) is transformed by means of the trans
formation [w, X] into its image 

y(t) = k ,. (23.12) 

V\x\t)\ 

which forms a portion of the image integral y of Y determined by the initial values 

Y(X0) y(t0) = k 

y'(t0) = k 

V|лr'| 
1 °' (23.13) 

VЩ' ° 2VЩ'x'J 
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At the same time, the integral y of the differential equation (q) is transformed by 
means of the transformation [W, x] into its image 

Ӯ(T) = 
1 y[x(T)} 

(23.14) 
k V | i ( T ) | 

which forms a portion of the image integral Yofy determined by the initial values 

Y(T0) = \ y ( X o ) 

Ý(т0) = 

k V | i 0 | 

~/(*o) . 1 y(Xo) X0 x0 

VÍ XQ ï 2V\X0\ *0. 

(23.15) 

3. Let F, y be the integrals of the differential equations (Q), (q), considered in the 
above theorem. Then at every two homologous points Tel9 tei there hold the rela
tions 

V\x(T)\ 

V\x(T)\-kY(T) = V\X'(t)\-y(t), 

8 Ý(T) + 1 Y(T). Җ 
4 x(T). V\x\t)\ L 

" 1 ч X"(t)' 

^ + ï^Ш 
(23.16) 

with s == sgn XQ = sgn x0. 
These relations can be obtained from the formulae (12), (14) and their derivatives, 

by application of (1.6). 
4. The image integrals u, v of two independent integrals U, V of the differential 

equation (Q) formed by the transformation [w9 X] are independent, and an analogous 
statement holds for the transformation [W, x]. This follows immediately from the 
formulae (13) and (15). 

23.3 Transformations of the derivatives of integrals of the differential equations (q), (Q) 

The above results can be used to determine transformations of the integrals (or of 
their first derivatives) of one of the differential equations (q), (Q) into portions of 
integrals (or their derivatives) of the other equation. 

We assume that the carriers q9 Q of the equations (q), (Q) e C2 and are always 
non-zero in their intervals of definition j , /. Then the differential equations (q), (Q) 
admit of associated differential equations (%), (Q;,}, as in § 1.9. Their carriers ql9 Qx 

are determined by means of (1.18) and (1,20) while the relation between the derivatives 
y'9 F of the integrals y9 F of the differential equations (q), (Q) and the integrals yl9 Yx 

of WO, (Qi) is that of (1.21). 
When we apply the above results to the differential equations (q0, (Q) and (%), 

(Qi) w e obtain information about transformations of integrals y9 F of the differential 
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equations (q), (Q) and their derivatives y'9 Y. The transformations corresponding to 
the relations (12), (14) are 

m _ k vm\ ™ . *n - ' r±— &M 
V|r;(r)| * V|Tfc(7-)]| V\UT)\ 

PV) = k 
q(t) 

ß[ВД] 

Ý[X2(t)] .., x 1 

V\Xfr)\ k 
Q(Ћ 

qШT)\ 

y'[xÁT)}. 

^\UT)( 

(23.17) 

Xx, x± here represent mutually inverse solutions of the differential equations (Qqx), 
(qiQ) and X2, x2 are mutually inverse solutions of (Qicy, (qiQi). 

23.4 Relations between solutions of the differential equation (Qq) and first phases of 
the differential equations (q), (Q) 

The phases of the differential equations (q), (Q) considered in this paragraph are 
always first phases so we shall speak in what follows simply of phases instead of first 
phases. 

We continue to use the symbols X, x, etc. as in § 23.2. 
1. Let A be a phase of the differential equation (Q). Then the function a defined in 

the interval / by means of the formula 

a(f) = A[X(t)] (23.18) 

is a portion of a phase a of the differential equation (q) and this phase a is determined 
by the Cauchy initial conditions 

a(l0) = A(X0); *'(t0) = A(X0)X'0; a\t0) = A(X0)X;2 + k(X0)X*0. (23.19) 

Obviously, the phases a, A are linked (§ 9.2). 

Proof The phase A is contained in the phase system of a basis (U9 V) of the differential 
equation (Q), (§ 5.6). Consequently, we have the relation tan A = UjV holding in 
the interval / , except at the zeros of V. 

We consider the transformation w(t) = l/\/\Xf(t)\9 X(t) of the differential equation 
(Q) into the differential equation (q). Let u9 v be the image integrals of U9 V under this 
transformation [w, X], From § 23.2, 4 (u9 v) is a basis of (q); let a0 be a phase of this 
basis. Then we have, for t e i (apart from the singular points), 

, x u(t) U[X(t)] 
u"^,) = W)=nmr^km)l 

and hence a0(t) + mrr = A[X(l)J, m being an appropriate integer. Now, the function 
a = a0 + mn represents a phase of the basis (u9 v) and a is the portion of a defined 
in i. By differentiating (18) we obtain the initial values a'(t0)- ocff(t0) as stated in (19). 
This completes the proof. 
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Naturally, the solution x inverse to X of the differential equation (qQ) transforms 
the phase a into a portion A of A: 

A(F) = a[x(F)] (Te J = X(i)). (23.20) 

2, Let a, A be arbitrary linked phases of the differential equations (q), (Q) and let 

L = a(j) n A(J); k = a ^ L ) , K = A^(L). (23.21) 

Then corresponding to every number tek or Te K there is precisely one number 
Z(t) e K or z(T) e k satisfying respectively the equation 

a(t) = A[Z(l)] or . oc(z(F)] = A(F). (23.22) 

The functions Z(t) = A~1a(l), z(T) = OL~1A(T)9 which are defined by (22) in the 
intervals k, Kand are obviously inverse functions, belong to the class C3 and represent 
regular solutions of the differential equations (Qq), (qQ) respectively. The curves 
defined by the functions Z, z go from boundary to boundary of the rectangular region 
(a, b) X (A, B). 
Proof, (a) Let tek be arbitrary. Then a(t)eL = A(K), and since A increases or 
decreases, there is precisely one number Z(t) e K satisfying the first equation (22). 
A similar result holds for the second equation (22). 

(b) From Z(t) = A^a( l) , z(T) = a^ACF) it follows that the functions Z, z 
belong to the class C3 and their derivatives Z\ z are always non-zero. If we take the 
Schwarzian derivative of (22) it is clear that the functions Z, z satisfy the differential 
equations (Qq), (qQ). 

(c) The validity of the last statement follows from the result of § 9.2 relating to 
the intervals k, K. This completes the proof. 

We call Z, z the solutions of the differential equations (Qq), (qQ) generated by the 
phases a, A. 

The solution X of the differential equation (Qq) considered in 1 above is obviously 
that portion with domain of definition / of the solution Z of the differential equation 
(Qq) generated by the phases a, A. 

23.5 Reciprocal transformations of first and second phases of the differential equations 
(q), (Q) 

From §23.4, 1, a solution X of the differential equation (Qq) transforms each first 
phase A of the equation (Q) into a portion a of a first phase a of the equation (q), 
according to the formula (18). An analogous statement holds for a solution x of the 
equation (qQ) and each first phase a of (q): the function x similarly transforms the 
phase a into a portion A of a first phase of (Q). From § 23.4, 2 any two linked first 
phases a, A of the equations (q), (Q) generate inverse solutions of the equations (Qq), 

(qQ). 
Now we assume that the functions a, Q e C2 and are always non-zero in their 

intervals of definition^, J, so that the differential equations (q), (Q) admit of associated 
differential equations (qi), (Qi). Then every first phase ax of (qx) represents a second 
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phase /? of (q), and similarly every first phase Ax of (Qx) represents a second phase 
B of (Q): ocx = /?, Ax -= B. If we apply the results of § 23.4, 1 and 2, to the differential 
equations (qx), (Q) and (qx), (Qx), we obtain results relating to transformations of 
first and second phases <x, A or /?, B of the differential equations (q), (Q) into each 
other. The transformation formulae corresponding to the relations (18), (20) are 

m = A[X1(t)]; A(T) = P[Xl(T)]; 

ftt) = B[X2(t)]; B(T) = (3[x2(T)]; 

in which Xl9 xx, represent mutually inverse solutions of the equations (Qqi), (AiQ) 
and X2, x2 are similarly mutually inverse solutions of (Q^i) , (qiQi)-
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