Jarník, Vojtěch: Scholarly works

Vojtěch Jarník Zur metrischen Theorie der diophantischen Approximationen

Práce Mat.-Fiz. 36 (1928-29), pp. 91-106

Persistent URL: http://dml.cz/dmlcz/500717

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

June rop Du k. P. Nisori v drameli der. antor.

VOJTECH JARNÍK.

Zur metrischen Theorie der diophantischen Approximationen.

Przyczynek do metrycznej teorji przybliżeń diofantowych.

Es sei $0 \le \theta \le 1$; dann besitzt bekanntlich die Ungleichung

$$|\Theta - \frac{a}{b}| \le \frac{1}{15b^2}$$

unendlich viele Lösungen in ganzen Zahlen a,b. In dieser Ungleichung darf die Zahl $\sqrt{5}$ durch keine grössere Zahl ersetzt werden 1); andererseits gibt es irrationale Zahlen Θ , die sich "beliebig gut" durch rationale Zahlen approximieren lassen 2). Dieser Umstand führt zu folgender Fragestellung.

Es sei f(x) eine für x>0 stetige und positive Funktion; $x^2 f(x)$ sei für x>0 abnehmend. Wir wollen sagen, dass eine Zahl θ mit $0\leq \theta \leq 1$ "die Approximation f(x) gestattet" (oder auch, dass die Approximation f(x) durch die Zahl θ realisiert wird), wenn die Ungleichung

$$|\Theta - \frac{a}{b}| < f(b)$$

unendlich viele Lösungen in ganzen Zahlen a, b besitzt. Wir fragen nun: wie gross ist das Lebesguesche Mass der Menge derjenigen Zahlen Θ ($0 \le \Theta \le 1$), welche die Approximation f(x) gestatten? Diese Frage

^{&#}x27;) Wegen der Sätze über Kettenbrüche, die im folgenden angewandt werden, vgl. z.B. O. Perron, Die Lehre von den Kettenbrüchen (Leipzig und Berlin, 1913), insbes. S. 37 — 55.

²) Man denke nur an eine Irrationalzahl, in deren Dezimalentwickelung "sehr lange" Reihen von Nullen vorkommen.

wurde vom Herrn Khintchine folgendermassen beantwortet 1): Dieses Mass ist gleich 0, wenn $\int_{-\infty}^{+\infty} x f(x) dx$ konvergiert und dieses Mass ist gleich 1, wenn $\int_{-\infty}^{+\infty} x f(x) dx$ divergiert.

Es werde nun für $\alpha > 2$ mit P_{α} die Menge derjenigen Zahlen Θ mit $0 \le \Theta \le 1$ bezeichnet, welche die Approximation $\frac{1}{x^{\alpha}}$ gestatten; nach dem Satze des Herrn Khintchine ist das Mass von P_{α} gleich 0. Trotzdem kann man die Mengen P_{α} , die zu verschiedenen Werten von α gehören, in bezug auf ihre "Ausdehnung" untereinander unterscheiden, wenn man statt des Lebesgueschen Masses den Hausdorffschen Mass—und Dimensionsbegriff einführt 2).

Diese Hausdorffsche Dimension kann folgendermassen eingeführt werden:

Es sei eine reelle Zahl s gegeben; es sei E eine Menge von reellen Zahlen; wir überdecken E mit höchstens abzählbar vielen Intervallen, deren Längen mit l_1, l_2, \ldots bezeichnet werden mögen und bilden die Summe $\sum_i l_i^s$ (diese Summe möge $+\infty$ bedeuten, wenn $\sum_i l_i^s$ divergiert). Wenn $\rho > 0$, so sei $L_{s,\rho}$ (E) die untere Grenze aller solchen Summen $\sum_i l_i^s$, gebildet für alle solchen Überdeckungen der Menge E, für welche $l_1 \leq \rho$, $l_2 \leq \rho$, $l_3 \leq \rho$, \ldots Wenn ρ abnimmt, so nimmt $L_{s,\rho}$ (E) offenbar nicht ab, also existiert der Grenzwert

$$\lim_{\rho = 0} L_{s,\rho}(E) = L_{s}(E) \ (0 \leq L_{s}(E) \leq +\infty).$$

(Für s=1 ist $L_{s,\rho}$ (E) offenbar von ρ unabhängig und gleich dem äusseren Lebesgueschen Mass von E.) Für s < s' ist $L_{s',\rho}$ (E) $\leq \rho^{s'-s} L_{s,\rho}$ (E); aus L_s (E) $< +\infty$ folgt also $L_{s'}$ (E) = 0. Weiter ist offenbar L_s (E) = 0 für s > 1 (man denke sich z. B. die ganze reelle Zahlenachse durch abzählbar viele Intervalle überdeckt, deren Längen l_1 , l_2 , . . . durch $l_i = \frac{\rho}{i}$ gegeben sind); für s < 0 ist offenbar L_s (E) = $+\infty$, wenn E nicht leer ist-

¹⁾ Einige Sätze über Kettenbrüche usw., Mathem. Annalen 92 (1924), S. 115—125.

²) F. Hausdorff, Dimension und äusseres Mass, Mathematische Annalen 79 (1919), S. 157 — 179. Der Leser braucht von der Hausdorffschen Theorie nichts zu kennen.

Also gibt es — falls E nicht leer ist — eine Zahl σ , so dass $0 \le \sigma \le 1$, $L_s(E) = 0$ für $s \ge \sigma$, $L_s(E) = \infty$ für $s \le \sigma$. Diese Zahl σ heisse die Hausdorffsche Dimension der Menge E, in Zeichen

$$\lim_{n \to \infty} E = \sigma.$$

Nach dem Gesagten ist folgendes klar:

- 1. Bei der Definition von $L_{s,\rho}(E)$, $L_{s}(E)$, dim E ist es gleichgültig, ob wir bei der Überdeckung von E nur offene oder nur abgeschlossene Intervalle oder beides zugleich zulassen.
 - 2. Aus $E \subset E'$ folgt dim $E \leq \dim E'$.
- 3. Wenn D eine höchstens abzählbare Menge von reellen Zahlen ist, so ist

$$\dim (E + D) = \dim E$$

(wenn wir, wie immer, E als nichtleer voraussetzen).

Nach diesen Vorbereitungen ist schon dem Leser der Sinn des folgenden Satzes klar: Für $\alpha > 2$ ist 1)

$$\dim P_{\alpha} = \frac{2}{\alpha} \cdot$$

Bei diesem Satz handelte es sich um die Approximation $\frac{1}{r^{\alpha}}$ ($\alpha > 2$),

welche nur auf einer Menge vom Lebesgueschen Mass Null realisiert wird; wir wollen uns nun solchen Approximationen f(x) zuwenden, die im Gegenteil für alle θ ($0 \le \theta \le 1$) mit Ausnahme einer Menge vom Lebesgueschen Mass Null realisiert werden; dies ist z.B. für die Funktion

$$f(x) = \frac{1}{x^2 \max \left(1, \log^{\alpha} x\right)}$$

 $(0 < \alpha \le 1)$ der Fall (denn das Integral

$$\int_{-\infty}^{+\infty} x f(x) dx$$

divergiert für $0 < \alpha \le 1$; für $\alpha > 1$ konvergiert aber schon das Integral). Hier hat freilich die Menge der Zahlen θ ($0 \le \theta \le 1$), welche die Approximation f(x) gestatten, das Lebesguesche Mass 1, also umsomehr die Dimension 1. Man muss hier also die Menge Q_{α} derjenigen Zahlen θ $(0 \le \theta \le 1)$ untersuchen, welche die Approximation

¹⁾ Dieser Satz wird in meiner Abhandlung "Diophantische Approximationen und Hausdorffsches Mass" (im Druck in Recueil mathématique de la Société mathématique de Moscou) bewiesen.

$$f(x) = \frac{1}{x^2 \max (1, \log^{\alpha} x)} (0 < \alpha \le 1)$$

nicht gestatten; die Dimension von Q_{α} ist aber keine wachsende Funktion von α , wie man vielleicht vermuten könnte, sondern es gilt der

Satz 1. dim $Q_{\alpha} = 1$ für $0 < \alpha \leq 1$.

Diesen Satz und noch viel mehr wollen wir in dieser Note beweisen. Es sei M_{∞} die Menge derjenigen Zahlen θ mit $0 \le \theta \le 1$, welche folgende Eigenschaft haben: zu θ gibt es eine nur von θ abhängige positive Zahl c (θ), so dass für alle ganzen p, q mit q > 0 die Ungleichung

$$|\theta - \frac{p}{q}| > \frac{c(\theta)}{q^2}$$

gilt. Offenbar ist $M_{\infty} \subset Q_{\alpha}$ für $0 < \alpha \leq 1$; der Satz 1. wird also bewiesen sein, wenn wir folgenden Satz beweisen:

Satz 2. dim $M_{\infty} = 1$.

Wir wollen aber noch mehr beweisen. Bekanntlich lassen sich alle Irrationalzahlen θ mit $0 < \theta < 1$ und alle Folgen a_1, a_2, a_3, \ldots (a_i ganz und positiv für $i=1,2,\ldots$) eineindeutig so zuordnen, dass für die Zahl θ und die ihr zugeordnete Folge a_1,a_2,a_3,\ldots die Beziehung

(1)
$$0 = \frac{1}{a_1 + 1} \quad 1 \quad a_2 + \frac{1}{a_3 + 1}$$

gilt. a_n heisse der n—te Teilnenner von θ ; wenn

$$\frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_n}}} = \frac{p_n}{q_n},$$

wo $n \ge 1$, $q_n > 0$, $(p_n, q_n) = 1$, so heisse p_n der n—te Näherungszähler, q_n der n—te Näherungsnenner von θ ; um grössere Gleichförmigkeit zu erreichen, erweitern wir diese Ausdrucksweise auch auf die Fälle n = -1 und n = 0, indem wir $p_{-1} = 1$, $q_{-1} = 0$, $p_0 = 0$, $q_0 = 1$ setzen.

Wenn n ganze positive Zahlen a_1 , a_2 , ..., a_n gegeben sind, so haben alle Irrationalzahlen θ (0 < θ < 1), deren regulärer Kettenbruch mit

$$\frac{1}{a_1+}\frac{1}{a_2+}\cdot\cdot\cdot+\frac{1}{a_n}$$

anfängt, dieselben Näherungszähler p_i und dieselben Näherungsnenner q_i für $-1 \le i \le n$; wir wollen diese Zahlen als die i—ten zu den Teilnennern a_1, a_2, \ldots, a_n gehörigen Näherungszähler und Näherungsnenner bezeichnen; und wir benutzen diese Ausdrucksweise auch für n=0).

Aus (1) folgt bekanntlich

(2)
$$\begin{cases} p_{n+1} = a_{n+1} p_n + p_{n-1} \\ q_{n+1} = a_{n+1} q_n + q_{n-1} \end{cases} (n \ge 0),$$

(3)
$$p_{n+1} q_n - p_n q_{n+1} = (-1)^n \qquad (n \ge -1),$$

$$rac{1}{q_n\;(q_{n+1}+q_n)}<\mid 0-rac{p_n}{q_n}\mid <rac{1}{q_n\;q_{n+1}} \qquad (n\geq 0),$$
also

(4) $\frac{1}{(a_{n+1}+2) \ q_n^2} < |0-\frac{p_n}{q_n}| < \frac{1}{a_{n+1} \ q_n^2} .$

Ausserdem ist bekannt: aus

$$|0-\frac{r}{s}| < \frac{1}{2s^2}$$
, r ganz, s ganz

folgt $\frac{r}{s} = \frac{p_n}{q_n}$ für ein geeignetes n,

Man sieht also, dass die reguläre Kettenbruchentwickelung einer Irrationalzahl θ einen sehr guten Aufschluss gibt über die Annäherungsmöglichkeiten der Zahl θ durch rationale Zahlen. Insbesondere ist M_{∞} genau die Menge aller Irrationalzahlen θ mit $0 < \theta < 1$ und mit beschränkten Teilnennern.

Wir wollen ausser M_{∞} noch folgende Mengen untersuchen: wenn α ganz, $\alpha \geq 2$, so sei M_{α} die Menge aller Irrationalzahlen θ (mit $0 < \theta < 1$), deren Teilnenner sämtlich höchstens gleich α sind (die analoge Menge M_1 wäre trivial, sie würde aus einer einzigen Zahl

¹) Im folgenden werden wir, wenn a_1, a_2, \ldots, a_n gegeben sind, mit p_i, q_i (— $1 \le i \le n$) stets die zu den Zahlen a_1, a_2, \ldots, a_n gehörigen i-ten Näherungszähler und Näherungsnenner bezeichnen, ohne es ausdrücklich zu erwähnen, wenn keine Verwirrung zu befürchten ist.

$$\frac{\sqrt{5}-1}{2} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}$$

bestehen).

Die Bedeutung von M_{α} für unsere Approximationsprobleme ist nach (4) klar. Und wir werden zeigen: schon die Menge M_2 hat eine positive Dimension; die Dimension von M_{α} ist aber stets kleiner als 1; erst ihre Vereinigungsmenge

$$M_{\infty} = M_2 + M_3 + M_4 + \dots$$

hat die Dimension 1. Und noch schärfer werden wir die beiden folgenden Sätze beweisen (aus welchen Satz 1. und Satz 2. unmittelbar folgen):

Satz 3. dim
$$M_2 > \frac{1}{4}$$
.

Satz 4. Für ganzes $\alpha > 8$ ist

$$1 - \frac{4}{\alpha \cdot \log 2} \le \dim M_{\alpha} \le 1 - \frac{1}{8 \alpha \log \alpha}.$$

§ 2. Beweis der Sätze 3. und 4.

1. In diesem ganzen Paragraphen sei ein festes ganzes $\alpha \geqq 2$ vorgegeben.

Im folgenden werden wir mit (a, b) das abgeschlossene Intervall bezeichnen, dessen Endpunkte a und b sind (a < b oder a > b).

Es seien nun n ganze positive Zahlen a_1 , a_2 , ..., a_n gegeben, wo $n \geq 0$, $a_i \leq \alpha$ für $i=1,2,\ldots,n$. Diejenigen Irrationalzahlen θ mit $0 < \theta < 1$, deren i-ter Teilnenner für $i=1,2,\ldots,n$ gleich a_i ist, sind genau alle Zahlen

$$\theta = \frac{\varepsilon p_n + p_{n-1}}{\varepsilon q_n + q_{n-1}},$$

wo $\varepsilon > 1$, ε irrational. Diese Zahlen θ sind also genau alle Irrationalzahlen eines bestimmten abgeschlossenen Intervalls, welches mit I^n und, wenn nötig, auch ausführlicher mit $I^n_{a_1, a_2, \ldots, a_n}$ bezeichnet werden möge.

Wir wollen jedes I^n ein "langes Intervall n-ter Ordnung" nennen. Es ist

$$I_{a_1, a_2, \ldots, a_n}^n = \left(\frac{p_n}{q_n}, \frac{p_n + p_{n-1}}{q_n + q_{n-1}}\right)$$

Analog: Es seien n ganze positive Zahlen a_1, a_2, \ldots, a_n gegeben, wo $n \ge 0$, $a_i \le \alpha$ für $i = 1, 2, \ldots, n$; diejenigen Irrationalzahlen θ mit $0 < \theta < 1$, deren i—ter Teilnenner für $i = 1, 2, \ldots, n$ gleich a_i ist und deren (n+1)—ter Teilnenner höchstens gleich α ist, sind genau alle Zahlen

$$\theta = \frac{\varepsilon p_n + p_{n-1}}{\varepsilon q_n + q_{n-1}},$$

wo ε irrational, $1 < \varepsilon < \alpha + 1$. Diese Zahlen θ sind also genau alle Irrationalzahlen eines bestimmten abgeschlossenen Intervalls, welches mit K^n und, wenn nötig, auch ausführlicher mit $K^n_{a_1, a_2, \ldots, a_n}$ bezeichnet werden möge. Wir wollen jedes K^n ein "kurzes Intervall n— ter Ordnung" nennen. Es ist

$$K_{a_1, a_2, \ldots, a_n}^n = \left(\frac{(\alpha+1) p_n + p_{n-1}}{(\alpha+1) q_n + q_{n-1}}, \frac{p_n + p_{n-1}}{q_n + q_{n-1}}\right).$$

Jedes $K_{a_1, a_2, \ldots, a_n}^n$ entsteht offenbar dadurch, dass man von dem entsprechenden $I_{a_1, a_2, \ldots, a_n}^n$ ein Stück abschneidet, welches nach (3) für gerades n am linken, für ungerades n am rechten Ende von $I_{a_1, a_2, \ldots, a_n}^n$ liegt. Da zwei lange Intervalle I^n derselben Ordnung, die nicht zu demselben System a_1, a_2, \ldots, a_n gehören, offenbar höchstens einen Punkt gemeinsam haben, haben die beiden zugehörigen kurzen Intervalle K^n überhaupt keinen gemeinsamen Punkt.

Es gibt genau α^n lange und ebensoviel kurze Intervalle n - ter Ord nung; offenbar ist

(5)
$$\begin{cases} I_{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}}^{n+1} & \subset I_{a_{1}, a_{2}, \ldots, a_{n}}^{n} \\ K_{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}}^{n+1} & \subset K_{a_{1}, a_{2}, \ldots, a_{n}}^{n} \end{cases}$$

Die Länge eines Intervalls I bezeichnen wir allgemein mit |I|; also ist

$$|I_{a_{1}, a_{2}, \ldots, a_{n}}^{n}| = \frac{1}{q_{n} (q_{n} + q_{n-1})}$$

$$|K_{a_{1}, a_{2}, \ldots, a_{n}}^{n}| = \frac{\alpha}{((\alpha + 1) q_{n} + q_{n-1}) (q_{n} + q_{n-1})}.$$

2. Es sei nun V_n für ein gegebenes ganzes $n \ge 0$ die Vereinigungsmenge aller langen Intervalle n-ter Ordnung, W_n die Vereinigungsmenge aller kurzen Intervalle n-ter Ordnung, also

$$V_0 = I^0$$
, $W_0 = K^0$, $V_n = \sum_{a_i=1}^{\alpha} I^n_{a_i, a_2, \ldots, a_n}$. $W_n = \sum_{a_i=1}^{\alpha} K^n_{a_i, a_2, \ldots, a_n}$ für $n > 0$.

Es ist nach (5) 1)

$$V_0 \supset W_0 \supset V_1 \supset W_1 \supset V_2 \supset W_2 \supset \dots$$

also ist die abgeschlossene, nur von α abhängige Menge

$$N_{\alpha} = V_0 V_1 V_2 \dots$$

nichtleer und mit W_0 W_1 W_2 ... identisch. N_α ist sogar perfekt; denn die Länge eines K^n ist für n>0 kleiner als $\frac{1}{n^2}$ (wegen $q_n \geq n$) und jedes K^n enthält mindestens zwei (nämlich genau α) Intervalle K^{n+1} , die paarweise fremd sind und von welchen jedes mindestens einen Punkt von N_α enthält. Die in N_α enthaltenen Irrationalzahlen sind offenbar genau alle Zahlen aus M_α ; daher ist $N_\alpha = M_\alpha + D$, wo D aus lauter rationalen Zahlen besteht, also höchstens abzählbar ist; also ist nach § 1

$$\dim N_{\alpha} = \dim M_{\alpha}$$
.

3. Wir fragen also nach der Dimension von N_{α} . Im Rest dieses Paragraphen sei eine Zahl s fest gewählt, 0 < s < 1. Wenn t ein System von höchstens abzählbar vielen Intervallen ist, deren Längen l_1, l_2, l_3, \ldots heissen, so setzen wir

$$\Lambda_s\left(\mathbf{u}\right) = \sum_i l_i^s$$
.

Unsere Aufgabe besteht im folgenden: wenn ein $\rho > 0$ gegeben ist, so soll die untere Grenze von Λ_s (11) für alle Systeme 11 abgeschätzt

¹⁾ Oder direkt nach der Definition von I^n und K^n , die sogar $W_n = V_{n+1}$ liefert.

werden, welche die Menge N_{α} überdecken und den Ungleichungen $l_i \leq \rho$ $(i=1,2,\ldots)$ genügen. Offenbar ist es gleichgültig, ob wir in den Systemen t nur abgeschlossene oder nur offene Intervalle oder beides zugleich zulassen.

Es sei also ${\bf 11}$ ein Überdeckungssystem von N_{α} , welches aus höchstens abzählbar vielen offenen Intervallen besteht, deren Längen eine gegebene positive Zahl ρ nicht überschreiten. Nach dem Borelschen Satz können wir aus diesen Intervallen endlich viele herausgreifen, welche auch die (abgeschlossene, beschränkte) Menge N_{α} überdecken; von diesen Intervallen lassen wir noch diejenigen weg, die keinen Punkt von N_{α} enthalten. Jedes übriggebliebene Intervall G des Systems ${\bf 11}$ enthält im Inneren mindestens einen Punkt von N_{α} , also (da N_{α} perfekt ist) unendlich viele Punkte von N_{α} . Es sei a die untere, b die obere Grenze des Durchschnittes G. N_{α} (a, b sind entweder Punkte von G oder Endpunkte von G, sie gehören aber sicher zu N_{α} , da N_{α} abgeschlossen ist); wir ersetzen G durch das abgeschlossene Intervall (a, b). Wenn wir im System ${\bf 11}$ diese Änderungen durchführen, so wird dadurch die Zahl Λ_s (${\bf 11}$) nicht vergrössert und das modifizierte System überdeckt wieder die Menge N_{α} .

- 4. Wir betrachten daher nur Überdeckungssysteme $\mathfrak B$ folgender Art: $\mathfrak B$ ist ein System von endlich vielen abgeschlossenen Intervallen, welche die Menge N_{α} überdecken. Jedes Intervall des Systems $\mathfrak B$ hat zu Endpunkten Punkte von N_{α} und enthält unendlich viele Punkte von N_{α} (die Einschränkung $l_i \leq \rho$ lassen wir fallen). Dann ist nach 3. für jedes $\rho > 0$ die untere Grenze der Zahlen Λ_s ($\mathfrak B$) für alle solchen $\mathfrak B$ sicher nicht grösser als $L_{s,\rho}$ (N_{α}), also auch sicher nicht grösser als $\lim_{\alpha \to 0} L_{s,\rho}$ (N_{α}).
- 5. Es sei also ein solches System $\mathfrak B$ vorgelegt; es sei G ein abgeschlossenes Intervall des Systems $\mathfrak B$. Da $N_\alpha \subset K^0$, so ist auch $G \subset K^0$. Da jeder Punkt von N_α für jedes ganze $n \geq 0$ in einem kurzen Intervall n ter Ordnung K^n liegt, da weiter $|K^n| < \frac{1}{n^2}$ für n > 0 gilt, und da endlich G unendlich viele Punkte von N_α enthält, so gibt es auch ein n, so dass G Punkte von mehr als einem kurzen Intervall n ter Ordnung enthält.

Wegen $G \subset K^0$ gibt es also eine ganze Zahl $m \ge 0$ mit folgender Eigenschaft: es gibt m ganze positive Zahlen a_1, a_2, \ldots, a_m mit $a_i \le \alpha$ $(i = 1, 2, \ldots, m)$, so dass

$$G \subset K_{a_1, a_2, \ldots, a_m}^m$$
;

es gibt aber zwei Intervalle

$$K_{a_1,a_2,\ldots,a_m,k}^{m+1}$$
; $K_{a_1,a_2,\ldots,a_m,l}^{m+1}$ $(1 \leq k \leq \alpha, 1 \leq l \leq \alpha, k \neq l)$,

von welchen jedes mindestens einen Punkt von G enthält,

Nach 1. ist (mit Benutzung von (2))

(6)
$$\begin{cases} K_{a_{1}, a_{2}, \ldots, a_{m}, k}^{m+1} = \left(\frac{(\alpha+1)(kp_{m}+p_{m-1})+p_{m}}{(\alpha+1)(kq_{m}+q_{m-1})+q_{m}}, \frac{kp_{m}+p_{m-1}+p_{m}}{kq_{m}+q_{m-1}+q_{m}} \right), \\ K_{a_{1}, a_{2}, \ldots, a_{m}, l}^{m+1} = \left(\frac{(\alpha+1)(lp_{m}+p_{m-1})+p_{m}}{(\alpha+1)(lq_{m}+q_{m-1})+q_{m}}, \frac{lp_{m}+p_{m-1}+p_{m}}{lq_{m}+q_{m-1}+q_{m}} \right). \end{cases}$$

Wegen (3) ist für gerades m in (6) rechts der links geschriebene Endpunkt beidemal grösser als der entsprechende rechts geschriebene Endpunkt; umgekehrt für ungerades m. Bei geeigneter Bezeichnung ist also der Abstand der beiden Intervalle in (6) gleich (man benutze (3))

$$\left| \frac{(\alpha+1)(k p_{m}+p_{m-1})+p_{m}}{(\alpha+1)(k q_{m}+q_{m-1})+q_{m}} - \frac{l p_{m}+p_{m-1}+p_{m}}{l q_{m}+q_{m-1}+q_{m}} \right| =$$

$$= \frac{|(\alpha+1)(k-l-1)+1|}{((\alpha+1)(k q_{m}+q_{m-1})+q_{m})((l+1) q_{m}+q_{m-1})} \ge$$

$$\ge \frac{1}{4 \alpha^{3} q_{m} (q_{m}+q_{m-1})}$$

(denn $\alpha \ge 2$, $k \le \alpha$, $l \le \alpha$; $|(\alpha + 1)(k - l - 1) + 1|$ ist gleich 1 für k - l - 1 = 0, sonst mindestens gleich $\alpha > 1$).

Die Länge von G ist also mindestens

$$\frac{1}{4 \, \alpha^3 \, q_m \, (q_m + q_{m-1})};$$

die Länge von I_{a_1,a_2,\ldots,a_m}^m ist gleich

$$\frac{1}{q_m\left(q_m+q_{m-1}\right)}.$$

Wenn wir also im System ${\mathfrak B}$ jedes Intervall G durch das entsprechende Intervall $I^m_{a_1,\,a_2,\,\ldots,\,a_m}$ ersetzen, bekommen wir ein System ${\mathfrak B}$ von abgeschlossenen Intervallen, welches die Menge N_α überdeckt und die Ungleichung erfüllt

$$\Lambda_s\left(\mathfrak{B}\right) \leq 4^s \ \alpha^{3s} \ \Lambda_s\left(\mathfrak{B}\right).$$

Wenn nun im System \mathfrak{W} zwei Intervalle I^m , I^n mit m > n vorkommen, so das $I^m \subset I^n$, so wird Λ_s (\mathfrak{W}) verkleinert, wenn wir I^m aus \mathfrak{W} weglassen. Wenn wir dies Verfahren wiederholen, kommen wir zu einem Überdeckungssystem \mathfrak{X} , welches aus endlich vielen langen Intervallen n-ter Ordnung (n kann freilich von einem Intervall zum anderen variieren) besteht, von welchen keines Teilmenge eines anderen ist; dabei ist

$$\Lambda_s(\mathbf{X}) \leq 4^s \alpha^{3s} \Lambda_s(\mathbf{X}).$$

6. Wir wollen uns daher auf Systeme X folgender Art beschränken: X sei ein System von endlich vielen langen Intervallen n-ter Ordnung (wobei n von einem Intervall zum anderen variieren kann), welche die Menge N_{α} überdecken und von welchen keines Teilmenge eines anderen ist.

Nach 4. und 5. ist $L_s\left(N_{\alpha}\right)$ sicher nicht kleiner als die untere Grenze der Zahlen

$$\frac{1}{4^s \alpha^{3s}} \Lambda_s (\mathcal{X})$$

für alle solchen Systeme **X**. Wenn wir also für irgend ein s und irgend ein α zeigen können, dass Λ_s (**X**) ≥ 1 für alle solchen Systeme **X**, dann ist L_s (N_{α}) > 0, also dim $N_{\alpha} \geq s$.

7. Wir beweisen nun folgenden

Hilfssatz 1. Voraussetzung.

s und a seien fest gegeben; 0 < s < 1, a ganz, $\alpha \ge 2$. Für jedes ganze n > 0 und jedes System von ganzen Zahlen $a_1, a_2, \ldots, a_{n-1}$ $(1 \le a_i \le \alpha \text{ für } i = 1, 2, \ldots, n-1)$ sei

(7)
$$|I_{a_1, a_2, \ldots, a_{n-1}}^{n-1}|^s \leq \sum_{k=1}^{\alpha} |I_{a_1, a_2, \ldots, a_{n-1}, k}^n|^s.$$

Behauptung.

 $\dim \ \mathcal{N}_{\alpha} \geqq s.$

Beweis. Es sei \mathcal{X} ein Überdeckungssystem von N_{α} von der in 6. geschilderten Art. Diejenigen I^n , die in \mathcal{X} vorkommen, können von verschiedener Ordnung n sein; die höchste auftretende Ordnung sei l ($l \ge 0$), sie möge "Ordnung des Systems \mathcal{X} " heissen. Wenn l > 0, so kommt in \mathcal{X} ein Intervall l- ter Ordnung $I^l_{a_1, a_2, \ldots, a_{l-1}, a_l}$ vor, aber kein Intervall höherer als l- ter Ordnung und kein Intervall I^n mit n < l, für welches $I^l_{a_1, a_2, \ldots, a_{l-1}, a_l} \subset I^n$ wäre. Da jedes lange Intervall l- ter Ord-

nung unendlich viele Punkte von N_lpha enthält, müssen also in $oldsymbol{\mathcal{X}}$ alle Intervalle

$$(8) I_{a_1, a_2, \ldots, a_{l-1}, k}^{l} (1 \leq k \leq \alpha)$$

(da sie zu je zwei höchstens einen gemeinsamen Punkt haben) vorkommen. Wenn wir diese Intervalle (8) aus \mathcal{X} weglassen und durch das Intervall $I_{a_1,a_2,\ldots,a_{l-1}}^{l-1}$ ersetzen, bekommen wir wieder ein Überdekkungssystem \mathcal{X}' von der in 6. geschilderten Art. Nach (7) ist

$$\Lambda_s\left(\mathbf{X}'\right) \leq \Lambda_s\left(\mathbf{X}\right)$$
.

Indem wir dieses Verfahren für die vielleicht noch existierenden Intervalle l- ter Ordnung aus \mathcal{X}' wiederholen, kommen wir endlich zu einem System (l-1)- ter Ordnung \mathcal{X}_1 mit $\Lambda_s\left(\mathcal{X}_1\right) \leq \Lambda_s\left(\mathcal{X}\right)$ und durch weitere Wiederholung bekommen wir endlich ein System nullter Ordnung \mathfrak{Y} mit $\Lambda_s\left(\mathfrak{Y}\right) \leq \Lambda_s\left(\mathfrak{X}\right)$. Da aber \mathfrak{Y} die Menge N_α überdeckt und von nullter Ordnung ist, besteht \mathfrak{Y} genau aus einem Intervall (0,1), also ist $\Lambda_s\left(\mathfrak{Y}\right) = 1^s = 1$, $\Lambda_s\left(\mathfrak{X}\right) \geq 1$, womit nach 6. die Behauptung bewiesen ist.

8. Wir beweisen nun den Satz 3:

$$\dim M_2 > \frac{1}{4}.$$

Wir sollen also zeigen, dass für $\alpha=2$ und ein geeignetes $s>\frac{1}{4}$ die Voraussetzungen des Hilfssatzes 1. erfüllt sind. Die Ungleichung (7) lautet jetzt

$$\frac{1}{q^{s_{n-1}} (q_{n-1} + q_{n-2})^{s}} \leq \frac{1}{(q_{n-1} + q_{n-2})^{s} (2 q_{n-1} + q_{n-2})^{s}} + \frac{1}{(2 q_{n-1} + q_{n-2})^{s} (3 q_{n-1} + q_{n-2})^{s}}$$

oder

$$1 \leq \frac{1}{\left(2 + \frac{q_{n-2}}{q_{n-1}}\right)^s} + \frac{1}{\left(2 + \frac{q_{n-2}}{q_{n-1}}\right)^s \left(3 - \frac{2 q_{n-2}}{q_{n-1} + q_{n-2}}\right)^s}.$$

Wegen $0 \le q_{n-2} \le q_{n-1}$ ist diese Ungleichung sicher erfüllt, wenn $\frac{1}{3^s} + \frac{1}{9^s} \ge 1$; diese Ungleichung ist aber für ein geeignetes $s > \frac{1}{4}$ erfüllt; denn $\frac{1}{3^{1/4}} + \frac{1}{9^{1/4}} > \frac{2}{9^{1/4}} > \frac{2}{16^{1/4}} = 1$.

9. Wir beweisen nun die erste Hälfte des Satzes 4., nämlich die Behauptung: für ganzes $\alpha > 8$ ist

$$\dim N_{\alpha} \geq 1 - \frac{4}{\alpha \log 2}.$$

Wir setzen also $s=1-\frac{4}{\alpha \log 2}$, wo $\alpha>8$, α ganz und haben zu zeigen, dass die Voraussetzung des Hilfssatzes 1. erfüllt ist. Die zu beweisende Ungleichung (7) lautet

(8)
$$\frac{1}{q^{s_{n-1}}(q_{n-1}+q_{n-2})^{s}} \leq \sum_{k=1}^{\alpha} \frac{1}{(k \, q_{n-1}+q_{n-2})^{s} \cdot ((k+1) \, q_{n-1}+q_{n-2})^{s}}.$$

Nach (3) ist

$$\sum_{k=1}^{\alpha} \frac{1}{(k q_{n-1} + q_{n-2}) ((k+1) q_{n-1} + q_{n-2})} =$$

$$= (-1)^{n-1} \sum_{k=1}^{\alpha} \left(\frac{k p_{n-1} + p_{n-2}}{k q_{n-1} + q_{n-2}} - \frac{(k+1) p_{n-1} + p_{n-2}}{(k+1) q_{n-1} + q_{n-2}} \right)$$

$$= (-1)^{n-1} \left(\frac{p_{n-1} + p_{n-2}}{q_{n-1} + q_{n-2}} - \frac{p_{n-1}}{q_{n-1}} \right)$$

$$+ (-1)^{n-1} \left(\frac{p_{n-1}}{q_{n-1}} - \frac{(\alpha+1) p_{n-1} + p_{n-2}}{(\alpha+1) q_{n-1} + q_{n-2}} \right)$$

$$= \frac{1}{q_{n-1} (q_{n-1} + q_{n-2})} - \frac{1}{q_{n-1} ((\alpha+1) q_{n-1} + q_{n-2})}$$

$$= \frac{1}{q_{n-1} (q_{n-1} + q_{n-2})} \left(1 - \frac{\tau}{\alpha} \right),$$

wo τ noch von verschiedenen Argumenten abhängt, sicher aber

$$\frac{1}{9} < \tau < 2$$

ist.

Der Ausdruck
$$\sum_{k=1}^{\alpha} \frac{1}{(k q_{n-1} + q_{n-2})^s ((k+1) q_{n-1} + q_{n-2})^s}$$

entsteht aus $\sum_{k=1}^{\alpha} \frac{1}{(k \, q_{n-1} + q_{n-2}) \, ((k+1) \, q_{n-1} + q_{n-2})}$,

wenn man darin den k-ten Summanden mit dem Ausdruck

(9)
$$(k q_{n-1} + q_{n-2})^{1-s} ((k+1) q_{n-1} + q_{n-2})^{1-s}$$

multipliziert. Der Ausdruck (9) ist aber mindestens gleich (man setze k = 1)

$$(q_{n-1}+q_{n-2})^{1-s} (2 q_{n-1}+q_{n-2})^{1-s} \ge (2 q_{n-1} (q_{n-1}+q_{n-2}))^{1-s};$$

also ist

$$\sum_{k=1}^{\alpha} \frac{1}{(k q_{n-1} + q_{n-2})^s ((k+1) q_{n-1} + q_{n-2})^s}$$

$$\geq \frac{1}{q_{n-1}^s (q_{n-1} + q_{n-2})^s} \cdot 2^{1-s} \left(1 - \frac{2}{\alpha}\right).$$

Die Ungleichung (8) ist also richtig, wenn $2^{1-s}\left(1-\frac{2}{\alpha}\right) \ge 1$, d. h. wenn $(1-s)\log 2 \ge -\log\left(1-\frac{2}{\alpha}\right)$; und dies ist wegen $(1-s)\log 2 = \frac{4}{\alpha}$, $-\log\left(1-\frac{2}{\alpha}\right) = \frac{2}{\alpha} + \frac{1}{3}\left(\frac{2}{\alpha}\right)^2 + \ldots < \frac{4}{\alpha}$ der Fall. Damit ist die Behauptung bewiesen.

10. Hilfssatz 2. Voraussetzung. s und α seien fest gegeben; 0 < s < 1, α ganz, $\alpha \ge 2$. Für jedes ganze n > 0 und für jedes System von ganzen Zahlen $a_1, a_2, \ldots, a_{n-1}$ $(1 \le a_i \le \alpha \text{ für } i = 1, 2, \ldots, n-1)$ sei

(10)
$$|I_{a_1, a_2, \ldots, a_{n-1}}^{n-1}|^s \geq \sum_{k=1}^{\alpha} |I_{a_1, a_2, \ldots, a_{n-1}, k}^n|^s.$$

Behauptung. dim $N_{\alpha} \leq s$.

Beweis. Aus (10) folgt

$$1 = |I^0|^s \ge \sum |I^1|^s \ge \sum |I^2|^s \ge \dots,$$

wo die Summe $\Sigma |I^n|^s$ über alle langen Intervalle n-ter Ordnung erstreckt wird. Es sei nun ein $\rho > 0$ gegeben; wir wählen ein festes n so gross, dass alle langen Intervalle n-ter Ordnung kürzer als ρ sind (das ist möglich, da $|I^n| \leq \frac{1}{n^2}$ für n > 0).

Alle langen Intervalle n-ter Ordnung überdecken die Menge N_{α} ; also ist $L_{s,\rho}(N_{\alpha}) \leq \sum |I^n|^s \leq |I^0|^s = 1$, also $L_s(N_{\alpha}) = \lim_{\rho = 0} L_{s,\rho}(N_{\alpha}) \leq 1$, also dim $N_{\alpha} \leq s$, wie behauptet.

11. Wir beweisen nun die zweite Hälfte des Satzes 4, d. h. die Behauptung: für ganzes $\alpha > 8$ ist

$$\dim\,N_\alpha \leqq 1 - \frac{1}{8\;\alpha\log\alpha}\,\cdot$$

Wir setzen also $s=1-\frac{1}{8\alpha\log\alpha}$, wo $\alpha>8$, α ganz und haben zu zeigen, dass die Voraussetzung des Hilfssatzes 2. erfüllt ist. Die zu beweisende Ungleichung (10) lautet

$$(11) \ \frac{1}{q_{n-1}^s (q_{n-1}+q_{n-2})^s} \ge \sum_{k=1}^{\alpha} \frac{1}{(k \, q_{n-1}+q_{n-2})^s ((k+1) \, q_{n-1}+q_{n-2})^s}.$$

Nun haben wir in 9. gezeigt, dass

$$(12) \sum_{k=1}^{\alpha} \frac{1}{(k q_{n-1} + q_{n-2}) ((k+1) q_{n-1} + q_{n-2})} \leq \frac{1 - \frac{1}{2 \alpha}}{q_{n-1} (q_{n-1} + q_{n-2})}.$$

Der Ausdruck rechts in (11) entsteht aus dem Ausdruck links in (12), wenn dort das k-te Glied mit dem Ausdruck

$$(k q_{n-1} + q_{n-2})^{1-s} ((k+1) q_{n-1} + q_{n-2})^{1-s}$$

multipliziert wird. Dieser Ausdruck ist aber höchstens gleich (man setze k=lpha)

$$(\alpha q_{n-1} + q_{n-2})^{1-s} ((\alpha + 1) q_{n-1} + q_{n-2})^{1-s}$$

$$\leq (\alpha + 1)^{2-2s} q_{n-1}^{1-s} (q_{n-1} + q_{n-2})^{1-s}$$

$$< (2\alpha)^{2-2s} q_{n-1}^{1-s} (q_{n-1} + q_{n-2})^{1-s}.$$

Also ist

$$\sum_{k=1}^{\alpha} \frac{1}{(k q_{n-1} + q_{n-2})^s ((k+1) q_{n-1} + q_{n-2})^s} \leq \frac{\left(1 - \frac{1}{2\alpha}\right) (2\alpha)^{2-2s}}{q_{n-1}^s (q_{n-1} + q_{n-2})^s}$$

und wir haben nur

$$\left(1-\frac{1}{2\alpha}\right)(2\alpha)^{2-2s} \leq 1$$

zu zeigen; dies ist aber wegen

$$(2-2s)\log 2\alpha = \frac{1}{4\alpha \log \alpha} \log 2\alpha < \frac{1}{2\alpha}$$

$$<\sum_{n=1}^{\infty}\frac{1}{n}\left(\frac{1}{2\alpha}\right)^n=-\log\left(1-\frac{1}{2\alpha}\right)$$

in der Tat der Fall, womit die Behauptung bewiesen ist.

Praha, den 2. Dezember 1929.