Jarník, Vojtěch: Scholarly works

Vojtěch Jarník Sur les nombres dérivés approximatifs

Fund. Math. 22 (1934), pp. 4--16

Persistent URL: http://dml.cz/dmlcz/500740

Terms of use:

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

Sur les nombres dérivés approximatifs.

Par

Vojtěch Jarník (Praha).

§ 1. Notations et résultats.

On dit qu'une fonction mesurable x(t) (d'une variable réelle 1) possède au point t_0 une limite approximative égale à A, s'il existe un ensemble mesurable E, dont t_0 est un point de densité 1) tel que $\lim_{t\to t_0} x(t) = A$ (notation: $\lim_{t\to t_0} ap x(t) = A$).

La limite approximative

$$\lim_{t'=t} \operatorname{ap} \frac{x(t')-x(t)}{t'-t},$$

si elle existe, s'appelle la dérivée approximative de x(t) au point t. S'il existe un ensemble mesurable E dont t est un point de densité supérieure droite égale à un^3) tel que l'on ait

$$\lim_{t'=t+} \frac{x(t') - x(t)}{t' - t} = A,$$

on dit que A est une dérivée droite sur une épaisseur supérieure égale à un de la fonction x(t) au point t (plus brièvement, nous convenons de dire que A est une dérivée essentielle droite de x(t) au point t). Pour le côté gauche, on a une définition symmétrique.

¹⁾ Tous les nombres de cette Note sont réels.

²⁾ C'est-à-dire $\lim (h+k)^{-1} \mu [E (t_0-h, t_0+k)] = 1$ pour $h \to 0, k \to 0$, $h \ge 0, k \ge 0, h+k > 0$ (μM signifie la mesure lebesguienne de M).

²) C'est-à-dire $\limsup_{t\to 0} h^{-1} \mu \left[E \cdot (t, t+h)\right] = 1$.

On connaît le théorème suivant très remarquable, dû à MM. De n-joy¹) et Khintchine²): Soit x(t) une fonction mesurable et finie dans un intervalle (a, b); dans tous les points t de (a, b), excepté au plus un ensemble de mesure nulle, un de deux cas suivants se présente:

- 1). x(t) possède au point t une dérivée approximative finie.
- 2). Au point t, chacun des deux nombres $+\infty$ et $-\infty$ est une dérivée essentielle droite et gauche de x(t).

Je vais ajouter à ce théorème deux compléments. Pour commencer, je vais démontrer le théorème suivant:

Théorème 1. Il existe une fonction x(t), continue dans l'intervalle (fermé) $\langle 0, 1 \rangle$ et telle que l'on ait

$$\lim_{t \to t} \operatorname{ap} \left| \frac{x(t') - x(t)}{t' - t} \right| = \infty$$

presque partout dans $\langle 0, 1 \rangle$.

Ici, c'est donc le cas 2) du théorème de D en joy-Khintchine qui se trouve réalisé presque partout; et, au surplus, on voit que pour cette fonction les valeurs limites finies de (x(t')-x(t)):(t'-t) sont pour ainsi dire négligeables à côté des valeurs $+\infty$ et $-\infty$. Mais les fonctions ayant cette propriété ne sont que des fonctions exceptionnelles dans l'espace des fonctions continues. En fait, nous allons démontrer le théorème suivant, qui montre que, pour la plupart des fonctions continues, les valeurs limites de (x(t')-x(t)): (t'-t) sont au contraire dispersées d'une manière complètement uniforme parmi tous les nombres réels:

Théorème 2. Il existe, dans l'espace C^s , un résiduel A jouissant de la propriété suivante: à tout $x(t) \in A$ on peut faire correspondre un ensemble B(x(t)) de mesure nulle tel que tous les nombres réels (y compris ∞ et $-\infty$) soient des dérivées essentielles droites de x(t) à tout point $t \in (0, 1)$ -B(x(t)).

¹⁾ Mémoire sur la totalisation des nombres dérivés non sommables, Ann. Ecole normale 33 (3), 1916, p. 127—222.

³) Recherches sur la structure des fonctions mesurables, *Rec. math. Soc. math. Moscou* 31 (1924), p. 265-285 et 377-433.

³) C est l'espace de toutes les fonctions x(t) réelles et continues pour $0 \le t \le 1$, avec la définition usuelle de l'écart. Toutes les notions relatives, tant qu'il s'agit des ensembles de fonctions, sont à interpréter par rapport à l'espace C. Un résiduel est le complémentaire d'un ensemble de première catégorie. C étant lui-même de seconde catégorie, un résiduel ne peut pas être vide.

(Il est inutile d'énoncer le théorème tout-à-fait symmétrique pour le côté gauche).

Remarquons encore que le théorème 1^{er} se trouve en une liaison étroite avec quelques théorèmes bien connus que voici: x(t) étant une fonction finie absolument quelconque, la relation

$$\lim_{t'-t+}\frac{x(t')-x(t)}{t'-t}=\infty$$

n'est pas valable que dans un ensemble de valeurs de t de mesure nulle. On peut généraliser ce théorème de M. Banach 1) dans deux directions différentes: d'un côté, on peut remplacer l'expression (x(t')-x(t)):(t'-t) par sa valeur absolue, de l'autre côté, on peut — au moins si x(t) est mesurable — remplacer lim par lim ap; dans les deux cas, le théorème subsiste 2). Mais, d'après notre théorème 1^{er} , il n'est pas permis de généraliser le théorème de M. Banach dans les deux directions simultanément.

§ 2. Démonstration du théorème 1er.

Nous construisons tout d'abord deux suites de nombres positifs $k_1, k_2,...; d_1, d_2,...$ jouissant des propriétés suivantes (pour n=1,2,...):

(a)
$$\sum_{m=1}^{n} k_m < \frac{1}{10} \sqrt[4]{k_{n+1}};$$
 (b) $k_{n+1} > 2^n k_n;$ (c) $k_n > 25;$

(d)
$$\frac{1}{2}k_n - \frac{1}{5}\sqrt{k_n} > \frac{1}{2}\sqrt{k_n}$$
; (e) $\frac{1}{d_n}$ est un nombre pair;

(f)
$$k_{n+1} d_{n+1} < 2^{-2n-1} d_n$$
; (g) $k_{n+1} d_{n+1} < \frac{1}{2} k_n d_n$; (h) $d_{n+1} < 2^{-n} d_n$.

L'existence de telles suites est manifeste. Ensuite, nous définissons $x_n(t)$ de la manière suivante:

pour
$$t=2ld_n(l=0, 1, 2, ..., \frac{1}{2d_n})$$
 on a $x_n(t)=0$;

¹⁾ Sur les ensembles de points où la dérivée est infinie, C. R. Acad. Sc. Paris, 173, 1921, p. 457-459.

²⁾ La première généralisation est dûe à MM. Saks et Zygmund, Sur les faisceaux des tangentes à une courbe, Fund. Math. 6, 1924, p. 117—121; la seconde est une conséquence directe du théorème de Denjoy-Khintchine.

pour
$$t = (2l+1) d_n \left(l = 0, 1, 2, ..., \frac{1}{2d_n} - 1\right)$$
 on a $x_n(t) = k_n d_n$;
pour $l d_n \le t \le (l+1) d_n \left(l = 0, 1, 2, ..., \frac{1}{d_n} - 1\right)$,
 $x_n(t)$ est une fonction linéaire.

L'image de la fonction $x_n(t)$ se compose alors de d_n^{-1} segments rectilignes dont les coefficients angulaires sont alternativement k_n et $-k_n$. On a toujours (voir (q))

(1)
$$0 \leq x_n(t) \leq k_n d_n \leq 2^{-n+1} k_1 d_1;$$

donc, la fonction

$$x(t) = \sum_{k=1}^{\infty} x_k(t)$$

est une fonction continue dans (0, 1). Nous allons démontrer qu'elle jouit de la propriété annoncée au théorème 1er.

Nous allons appeller "points du n-ème ordre" tous les points ld_n $\left(l=0,1,2,\ldots,\frac{1}{d_n}\right)$. Pour chaque n soit E_n l'ensemble de tous les points de l'intervalle $\langle 0,1\rangle$ dont la distance du chaque point du n-ème ordre surpasse $2^{-n}d_n$. Soit $E=\liminf_{n\to\infty}E_n=\sum\limits_{n-1}^\infty \prod\limits_{k=n}^\infty E_k$; en posant $F=\langle 0,1\rangle-E$, $F_n=\langle 0,1\rangle-E_n$, on aura évidemment μ $F_n=2^{-n+1}$, $F=\prod\limits_{n=1}^\infty \sum\limits_{k=n}^\infty F_k$, d'où $\mu F\leqq \sum\limits_{k=n}^\infty 2^{-k+1}=2^{-n+2}$ pour chaque n, donc μ F=0, μ E=1. Pour compléter la démonstration, il suffira donc de démontrer: pour chaque $t_0\in E$ on a

(2)
$$\lim_{t\to t_0} \sup \left| \frac{x(t) - x(t_0)}{t - t_0} \right| = \infty^{-1}.$$

Soit donc t_0 un point de E qui va rester fixe dans la suite. Il existe alors un nombre entier $n_0 > 1$ tel que $t_0 \in \overset{\circ}{H} E_n$.

Nous désignons pour $n \ge n_0$ par τ_n le point du n-ème ordre qui satisfait aux inégalités $t_0 < \tau_n < t_0 + d_n$ (donc tous les autres

¹⁾ A cause de la symétrie de x(t) et de E, on peut se borner à la considération de la limite approximative du côté droit, par exemple.

points du n-ème ordre sont ou bien $< t_0$ ou bien $> \tau_n$). L'assertion (2) va évidemment être démontrée, si nous démontrerons le lemme suivant:

Lemme 1. Soit $n \ge n_0$; pour chaque T de l'intervalle $\tau_{n+1} \le T \le \tau_n$ soit M(T) l'ensemble de toutes les valeurs t de l'intervalle $t_0 < t \le T$, pour lesquelles

$$\left|\frac{x(t)-x(t_0)}{t-t_0}\right|<\frac{1}{2}\sqrt{k_n};$$

alors on a

(3)
$$\mu[M(T)] \leq \left(\frac{1}{2^n} + \frac{72}{Vk_n}\right)(T - t_0).$$

(Remarquons que $k_n \rightarrow \infty$ à cause de (b)).

Démonstration. n étant fixé ($\geq n_0$), désignons par N l'ensemble de toutes les valeurs de t qui satisfont aux inégalités

$$t_0 < t \leq au_n, \quad \left| rac{x(t) - x(t_0)}{t - t_0}
ight| < rac{1}{2} \sqrt[h]{k_n}.$$

Evidenment on a (pour $\tau_{n+1} \leq T \leq \tau_n$)

$$M(T) = N \cdot \langle t_0, T \rangle.$$

A cause de $t_0 \in E_n E_{n+1}$ on a (voir (h))

(5)
$$2^{-n-1} d_{n+1} < \tau_{n+1} - t_0 < d_{n+1} < 2^{-n} d_n < \tau_n - t_0.$$
 Pour

(6)
$$t_0 + 2^{-n} (\tau_{n+1} - t_0) \leq t \leq \tau_n$$

on a (voir (a), (1), (6), (g), (5), (f), (e))

$$\left|\sum_{m=1}^{n-1} \frac{x_m(t) - x_m(t_0)}{t - t_0}\right| \leq \sum_{m=1}^{n-1} k_m < \frac{1}{10} \bigvee k_n,$$

$$\left|\sum_{m=n+2}^{\infty} \frac{x_m(t) - x_m(t_0)}{t - t_0}\right| \leq \sum_{m=n+2}^{\infty} k_m d_m \frac{2^n}{\tau_{n+1} - t_0} < 2 k_{n+2} d_{n+2} 2^{2n+1} d_{n+1}^{-1} < \frac{1}{2} < \frac{1}{10} \bigvee k_n;$$

ďoù

$$\left|\frac{x(t)-x(t_0)}{t-t_0}-\frac{x_n(t)-x_n(t_0)}{t-t_0}-\frac{x_{n+1}(t)-x_{n+1}(t_0)}{t-t_0}\right|<\frac{1}{5}\sqrt{k_n}.$$

Mais pour les valeurs de t que nous avons en vue, on a évidemment $(x_n(t) - x_n(t_0)): (t - t_0) = + k_n$.

Les deux cas étant tout-à fait symétriques, il en suffit de considérer le premier $(+k_n)$. On aura donc

(7)
$$\left| \frac{x(t) - x(t_0)}{t - t_0} - k_n - \frac{x_{n+1}(t) - x_{n+1}(t_0)}{t - t_0} \right| < \frac{1}{5} \sqrt[3]{k_n}$$

pour toutes les valeurs t, satisfaisant aux relations (6). Ceci étant, nous allons montrer que

$$(8) \qquad N \subset \langle t_0, t_0 + 2^{-n}(\tau_{n+1} - t_0) \rangle + \langle \tau_{n+1}, \tau_{n+1} + 2k_{n+1}d_{n+1}k_n^{-1} \rangle.$$

En effet, pour $t_0 + 2^{-n}(\tau_{n+1} - t_0) < t < \tau_{n+1}$ on a $(x_{n+1}(t) - x_{n+1}(t_0)) : (t - t_0) = \pm k_{n+1},$

d'où (voir (7), (b), (d))

$$\left| \frac{x(t) - x(t_0)}{t - t_0} \right| > k_{n+1} - k_n - \frac{1}{5} \sqrt[n]{k_n} > \frac{1}{2} \sqrt[n]{k_n};$$

de même, pour $\tau_{n+1} + 2k_{n+1}d_{n+1}k_n^{-1} < t \le \tau_n$ on a (voir (1))

$$|x_{n+1}(t) - x_{n+1}(t_0)| : |t - t_0| < k_{n+1} d_{n+1} 2^{-1} k_{n+1} d_{n+1}^{-1} k_n = \frac{1}{2} k_n,$$

d'où (voir (7), (d))

$$\left|\frac{x(t)-x(t_0)}{t-t_0}\right| > k_n - \frac{1}{2} k_n - \frac{1}{5} \sqrt{k_n} > \frac{1}{2} \sqrt{k_n}.$$

Soit $I_l = \langle \tau_{n+1} + l d_{n+1}, \tau_{n+1} + (l+1) d_{n+1} \rangle$, où l parcourt tous les nombres entiers de l'intervalle

$$(9) 0 \le l \le 2k_{n+1}k_n^{-1}.$$

Chaque nombre t de l'intervalle $\langle \tau_{n+1}, \tau_{n+1} + 2k_{n+1} d_{n+1} k_n^{-1} \rangle$ étant contenu dans un (au moins) intervalle I_l , on a d'après (8)

(10)
$$N \subset \langle t_0, t_0 + 2^{-n}(\tau_{n+1} - t_0) \rangle + \sum_{0 \leq l \leq 2k_{n+1}} NI_l.$$

Evaluons $\mu[NI_t]$. Soit Z_t l'ensemble de toutes les valeurs t, pour lesquelles

(11)
$$t \in I_{l}, \left| \frac{x_{n+1}(t) - x_{n+1}(t_{0})}{t - t_{0}} + k_{n} \right| \leq \sqrt{k_{n}}.$$

Pour $t \in I_t - Z_t$ on aura alors (voir (7))

$$\left| \frac{x(t) - x(t_0)}{t - t_0} \right| > \sqrt{k_n} - \frac{1}{5} \sqrt{k_n} > \frac{1}{2} \sqrt{k_n},$$

donc $t \in I_t - NI_t$, d'où

$$Nl_{\iota} \subset Z_{\iota}.$$

Evaluons μZ_l : pour $t \in I_l$, on a ou bien $x_{n+1}(t) = (t - \tau_{n+1} - l d_{n+1})k_{n+1}$ ou bien $x_{n+1}(t) = k_{n+1} d_{n+1} - (t - \tau_{n+1} - l d_{n+1})k_{n+1}$. Posons $x_{n+1}(t_0) = y_0$; les relations (11) entraînent alors ou bien la relation

$$\left| \frac{(t - \tau_{n+1} - l \, d_{n+1}) \, k_{n+1} - y_0}{t - t_0} + k_n \right| \leq \sqrt{k_n}$$

ou bien la relation

$$\left| \frac{(t - \tau_{n+1} - l d_{n+1}) k_{n+1} - k_{n+1} d_{n+1} + y_0}{t - t_0} - k_n \right| \leq \sqrt{k_n}.$$

En observant que $t - t_0 \le (l+1) d_{n+1} + (\tau_{n+1} - t_0) < (l+2) d_{n+1}$, on en déduit les deux relations suivantes, correspondant respectivement aux deux cas indiqués:

$$\begin{aligned} |(t-t_0)(k_{n+1}+k_n)+(t_0-\tau_{n+1}-ld_{n+1})k_{n+1}-y_0| &< (l+2)d_{n+1}\sqrt{k_n}, \\ |(t-t_0)(k_{n+1}-k_n)+(t_0-\tau_{n+1}-ld_{n+1})k_{n+1}-k_{n+1}d_{n+1}+y_0| &< \\ &< (l+2)d_{n+1}\sqrt{k_n}. \end{aligned}$$

Donc, l'ensemble Z_l est contenu tout entier dans un intervalle dont la longueur ne dépasse pas le plus grand des deux nombres $2(l+2) d_{n+1} \sqrt[l]{k_n} (k_{n+1}+k_n)^-$, $2(l+2) d_{n+1} \sqrt[l]{k_n} (k_{n+1}-k_n)^{-1}$, d'où (voir (b))

(13)
$$\mu Z_{l} \leq 4(l+2) d_{n+1} \sqrt{k_{n}} k_{n+1}^{-1}.$$

Soit maintenant $\tau_{n+1} \leq T \leq \tau_n$; nous allons distinguer deux cas: A. Soit $\tau_{n+1} + 2k_{n+1}d_{n+1}k_n^{-1} \leq T \leq \tau_n$; alors on a, d'après (4), (10), (12), (13)

$$\begin{split} \mu[M(T)] & \leq 2^{-n} (\tau_{n+1} - t_0) + \sum_{l \leq 2k_{n+1}k_n^{-1}} 4(l+2) \, d_{n+1} \sqrt[l]{k_n} \cdot k_{n+1}^{-1} \\ & 0 \leq l \leq 2k_{n+1}k_n^{-1} \\ & \leq 2^{-n} \, d_{n+1} + 4 \, (2k_{n+1}k_n^{-1} + 2)^2 \, d_{n+1} \sqrt[l]{k_n} \cdot k_{n+1}^{-1}. \end{split}$$

Mais, d'autre part, $T-t_0 > 2k_{n+1}d_{n+1}k_n^{-1} > d_{n+1}$, d'où (remarquons que $2k_{n+1}k_n^{-1} + 2 < 4k_{n+1}k_n^{-1}$ et $2^5 < 72$)

$$\mu[M(T)] \leq \left(\frac{1}{2^n} + \frac{72}{\sqrt{k_n}}\right)(T - t_0).$$

B. Soit $\tau_{n+1} \leq T < \tau_{n+1} + 2k_{n+1} d_{n+1} k_n^{-1}$; il existe alors un nombre entier l de l'intervalle (9) tel que $T \varepsilon I_l$. On a alors d'après (4), (10), (12), (13)

$$\mu[M(T)] \leq 2^{-n}(\tau_{n+1}-t_0) + \sum_{\leq \lambda \leq l} 4(\lambda+2) d_{n+1} \sqrt{k_n} k_{n+1}^{-}.$$

Si
$$l = 0$$
, on aura $T - t_0 \ge t_{n+1} - t_0 > 2^{-n-1} d_{n+1}$, d'où (voir (b))
$$\mu[M(T)] \le (2^{-n} + 8 \sqrt{k_n} k_{n+1}^{-1} \cdot 2^{n+1}) (T - t_0)$$
$$\le \left(\frac{1}{2^n} + \frac{72}{\sqrt{k_n}}\right) (T - t_0).$$

Si l>0, on aura $T-t_0>l\,d_{n+1}>\tau_{n+1}-t_0$, $l+2\leq 3\,l$, d'où (voir (9))

$$\begin{split} \mu\left[M(T)\right] & \leqq 2^{-n}(T-t_0) + 4(l+2)^2 d_{n+1} \sqrt{k_n} \ k_{n+1}^- \\ & \leqq 2^{-n}(T-t_0) + 36 \ l \sqrt{k_n} \ k_{n+1}^{-1} \ (T-t_0) \\ & \leqq \left(\frac{1}{2^n} + \frac{72}{\sqrt{k_n}}\right) (T-t_0). \end{split}$$

Nous avons ainsi démontré l'inégalité (3) dans tous les cas possibles. Remarque. La fonction x(t) que nous avons construit satisfait à la relation

(14)
$$\lim_{t \to t} \operatorname{ap} \left| \frac{x(t') - x(t)}{t' - t} \right| = \infty$$

presque partout dans $\langle 0, 1 \rangle$. On en peut facilement déduire une fonction y(t) de la deuxième classe de Baire, satisfaisant à la relation

(15)
$$\lim_{t \to t} \operatorname{ap} \left| \frac{y(t') - y(t)}{t' - t} \right| = \infty$$

partout dans (0,1). En effet, soit $G \subset (0,1)$ un ensemble de mesure nulle qui est un G_{δ} et qui contient tous les points $t \in (0,1)$ pour lesquels (14) est en défaut. Posons y(t) = x(t) pour $t \in (0,1) - G$, y(t) = -1 pour $t \in G$; pour $t \in G$, la relation (15) est évidente à cause de la relation $y(t') - y(t) = x(t') + 1 \ge 1$, valable pour

presque toutes les valeurs t' (remarquons que $x(t') \ge 0$); pour $t \in (0, 1) - G$, la relation (15) est une conséquence de (14), parce que y(t') - y(t) = x(t') - x(t) pour presque toutes les valeurs t'. Enfin, y(t) est une fonction de la deuxième classe de Baire, étant continue sur chacun des ensembles G et (0, 1) - G, dont le premier est un G_{δ} , le deuxième un F_{σ}^{-1}).

§ 3. Démonstration du théorème 2ème.

Soit (a, b) un intervalle fini; nous dirons que (a, b) est un intervalle essentiel de la fonction x(t) au point t, s'il existe un ensemble mesurable E dont t est point de densité supérieure droite égale à un tel que les relations $t' \in E$, t' > t entraînent les inégalités

$$a < \frac{x(t') - x(t)}{t' - t} < b.$$

Nous allons montrer: pour démontrer le théorème 2ème, il suffit de démontrer le lemme suivant:

Lemme 2. Soit (a, b) un intervalle fini. Soit A(a, b) l'ensemble de toutes les fonctions $x(t) \in C$ qui ont la propriété suivante: l'intervalle (a, b) est un intervalle essentiel de x(t) à tous les points $t \in \{0, 1\}$, excepté au plus un ensemble de valeurs t de mesure nulle. Alors A(a, b) est un résiduel.

En effet, supposons que le lemme 2ème soit démontré. Soit

$$(16) (a_1, b_1), (a_2, b_2), \dots$$

la suite de tous les intervalles à extrémités rationnelles. Soit $A = \prod_{n=1}^{\infty} A(a_n, b_n)$; donc A lui-même est aussi un résiduel. Soit $x(t) \in A$; soit $B_n(x(t))$ l'ensemble de toutes les valeurs $t \in (0, 1)$, pour lesquelles (a_n, b_n) n'est pas un intervalle essentiel de x(t); on a $\mu[B_n(x(t))] = 0$. Posons $B(x(t)) = \sum_{n=1}^{\infty} B_n(x(t))$; on a alors $\mu[B(x(t))] = 0$.

Soit maintenant $t \in (0, 1)$ — B(x(t)), — $\infty \le e \le \infty$; nous allons montrer que e est une dérivée essentielle droite de x(t) au point t.

¹⁾ Voir p. ex. H. Hahn, Reelle Funktionen I (Leipzig 1932), p. 287, théorème 35 · 2 · 7.

Soit (a_{k_n}, b_{k_n}) (n = 1, 2, ...) une suite partielle de (1), pour laquelle $a_{k_n} \rightarrow e$, $b_{k_n} \rightarrow e$. Pour u > t soit

$$H_n(u) = E_{t'} \left(a_{k_n} < \frac{x(t') - x(t)}{t' - t} < b_{k_n}; \ t < t' \le u \right).$$

 (a_{k_n}, b_{k_n}) étant un intervalle essentiel de x(t) au point t, on peut choisir une suite de nombres positifs h_1, h_2, \ldots tels que

$$h_{n+1} < \frac{1}{n} h_n, \quad \mu H_n(t+h_n) > \left(1 - \frac{1}{n}\right) h_n.$$

Posons $H = \sum_{n=1}^{\infty} (t + h_{n+1}, t + h_n) \cdot H_n(t + h_n)$; on aura:

$$\mu[H \cdot (t, t + h_n)] > \left(1 - \frac{2}{n}\right) h_n, \quad \lim_{t' = t+} \frac{x(t') - x(t)}{t' - t} = e,$$
q. e. d

Pour démontrer le lemme $2^{\text{ème}}$, posons $\frac{1}{2}(a+b)=c$, $\frac{1}{2}(b-a)=d$ (donc d>0). Pour $x(t) \in C$ soit E(x(t)) l'ensemble de toutes les valeurs $t \in (0, 1)$, pour lesquelles l'ensemble

$$E\left(\left|\frac{x(t')-x(t)}{t'-t}-c\right|< d\right)$$

possède au point t une densité supérieure droite inférieure à un. Evidemment $\mu[E(x(t))] > 0$) équivaut à $x(t) \in C - A(a, b)$.

Soit $E_n(x(t))$ l'ensemble de toutes les valeurs $t \in (0, 1)$, pour lesquelles on a

$$(17) \quad \mu \left[\underbrace{E}_{t'} \left(\left| \frac{x(t') - x(t)}{t' - t} - c \right| < d, \quad t < t' \leq t + u \right) \right] \leq \left(1 - \frac{1}{n} \right) u$$

pour toutes les valeurs u de l'intervalle $0 < u \le \frac{1}{n}$. (Remarquons que l'on peut mettre (17) sous la forme équivalente

(18)
$$\mu \left[\underbrace{E}_{t'} \left(\left| \frac{x(t') - x(t)}{t' - t} - c \right| \ge d, \quad t < t' \le t + u \right) \right] \ge \frac{u}{n} \right).$$

On a évidemment $E(x(t)) = \sum_{n=1}^{\infty} E_n(x(t))$; alors la relation

¹⁾ La mesurabilité de tous les ensembles envisagés dans la suite est manifeste.

 $\mu[E(x(t))] > 0$ équivant à la propriété suivante: il existe edux nombres entiers positifs n, k tels que $\mu[E_n(x(t))] \ge k^{-1}$.

Soit $C_{n,k}(a,b)$ l'ensemble de toutes les fonctions $x(t) \in C$, pour lesquelles on a $\mu[E_n(x(t))] \geq k^{-1}$; on a alors $C - A(a,b) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} C_{n,k}(a,b)$ et il nous suffit de montrer que $C_{n,k}(a,b)$ est non dense. Pour cela, il suffit à son tour de démontrer les lemmes suivants:

Lemme 3. $C_{n,k}(a,b)$ est fermé.

Lemme 4. K étant une sphère quelconque de l'espace C, l'ensemble $K - C_{n,k}(a,b)$ n'est pas vide.

Démonstration du lemme 3. Soit $x_l(t) \to x(t)$ uniformément pour $0 \le t \le 1$. Soit $\mu[E_n(x_l(t))] \ge k^{-1}$; il faut démontrer l'inégalité $\mu[E_n(x(t))] \ge k^{-1}$. Soit $F = \limsup_{l \to \infty} E_n(x_l(t)) = \prod_{l \to \infty}^{\infty} \sum_{k=1}^{\infty} E_n(x_l(t))$; donc $\mu F \ge k^{-1}$. Il suffit alors de démontrer que $F \subset E_n(x(t))$. Soit donc $t \in F$. Il existe alors une suite partielle $y_1(t) = x_{l_1}(t)$, $y_2(t) = x_{l_1}(t)$,... $(l_1 < l_2 < ...)$ telle que $t \in E_n(y_m(t))$ pour m = 1, 2, ... Soit $0 < u \le \frac{1}{n}$; d'après (18), on a

$$\mu \left[\underbrace{E \left(\left| \frac{y_m(t') - y_m(t)}{t' - t} - c \right| \ge d, \ t < t' \le t + u \right)} \right] \ge \frac{u}{n}.$$

Soit

$$G(t, u) = \limsup_{m \to \infty} E\left(\left|\frac{y_m(t') - y_m(t)}{t' - t} - c\right| \ge d, \ t < t' \le t + u\right);$$

on a μ $G(t, u) \ge \frac{u}{n}$. D'autre part, pour $t' \in G(t, u)$ on a (à cause de $y_m(t) \to x(t)$)

$$\left| \frac{x(t') - x(t)}{t' - t} - c \right| \ge d, \quad t < t' \le t + u;$$

c'est-à-dire

$$G(t, u) \subset E\left(\left|\frac{x(t') - x(t)}{t' - t} - c\right| \ge d, \ t < t' \le t + u\right);$$

donc, la mesure de ce dernier ensemble est $\geq \frac{u}{n}$. Alors $t \in E_n(x(t))$.

q. e. d.

Démonstration du lemme 4. Soit K une sphère de l'espace C. Il existe alors un polynome $w(t) \in K$ et un nombre r > 0

tel que les relations $z(t) \in C$, $|z(t)| \le r$ (pour chaque $t \in (0, 1)$) entraînent la relation $w(t) + z(t) \in K$. Il existe ensuite un nomber P > 0 tel que les relations $0 \le t \le 1$, $0 \le t' \le 1$, $t \ne t'$ entraînent

$$\left| \frac{w(t') - w(t)}{t' - t} \right| < P - |c|, |w'(t)| < P - |c|.$$

Il existe enfin un nombre entier m>0 tel que P< mr et tel que les relations $0 \le t \le 1$, $0 \le t' \le 1$, $0 < |t-t'| \le m^{-1}$ entraînent

$$\left|\frac{w(t')-w(t)}{t'-t}-w'(t)\right|<\frac{d}{2}, \quad |w'(t')-w'(t)|<\frac{d}{2}.$$

Nous définissons une fonction z(t) pour $0 \le t \le 1$ comme il suit:

Pour $t = \frac{s}{m}$ (s = 0, 1, 2,..., m) soit z(t) = 0.

Pour $\frac{s}{m} \le t \le \frac{s+1}{m} - \frac{1}{2km}$ (s = 0, 1, 2, ..., m-1) soit

$$z(t) = \left(-w'\left(\frac{s}{m}\right) + c\right)\left(t - \frac{s}{m}\right).$$

Pour
$$\frac{s+1}{m} - \frac{1}{2km} \le t \le \frac{s+1}{m}$$
 $(s = 0, 1, 2, ..., m-1)$ soit $z(t)$ une fonction linéaire.

On a alors

$$|z(t)| \leqslant (\max_{0 < t < 1} |w'(t)| + |c|) \cdot \frac{1}{m} < \frac{P}{m} < r,$$

done $w(t) + z(t) \in K$.

D'autre part, soit $\frac{s}{m} \leq t < \frac{s+1}{m} - \frac{1}{2km}$ (s entier, $0 \leq s \leq m-1$).

Alors il existe un nombre u tel que $0 < u \le \frac{1}{n}$ et tel que t+u <

 $<\frac{s+1}{m}-\frac{1}{2km}$; pour tous les t' de l'intervalle $t< t' \le t+u$ on aura (avec $|\vartheta|<1$)

$$\left|\frac{w(t')+z(t')-w(t)-z(t)}{t'-t}-c\right| = \left|\frac{w(t')-w(t)}{t'-t}-w'\left(\frac{s}{m}\right)+c-c\right| = \left|w'(t)-w'\left(\frac{s}{m}\right)\right| + \vartheta\frac{d}{2} < d,$$

ďoù

$$\mu\left[\underset{t'}{E}\left(\left|\frac{w(t')+z(t')-w(t)-z(t)}{t'-t}-c\right|\geq d,\ t< t'\leq t+u\right)\right]=0<\frac{u}{n};$$

donc t n'appartient pas à $E_n(w(t) + z(t))$; l'ensemble $E_n(w(t) + z(t))$ est donc tout entier contenu dans la somme des intervalles

$$\left\langle \frac{s+1}{m} - \frac{1}{2km}, \frac{s+1}{m} \right\rangle \ (s=0, 1, 2, ..., m-1);$$

done sa mesure est $\leq \frac{1}{2k} < \frac{1}{k}$; nous avons done

$$w(t) + z(t) \in K - C_{n,k}(a, b), \qquad q. e. d.$$