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REPRESENTATIONS OF FUNCTIONS BY DERIVATIVES
BY
S. J. AGRONSKY, R. BISKNER, A. M. BRUCKNER' AND J. MARIK

ABSTRACT. Let A’ be the class of all derivatives. The main goal of this paper is the
investigation of the vector space generated by A’ and O’Malley’s class BY; this
-space is identical with our system [A’}. We show, in particular, that each approxi-
mately continuous function and each approximate derivative belongs to [A’} and
that [A] is the system of all functions of the form g’ + hk’, where g, h and k are
differentiable.

17 Introduction. In recent years a number of authors have studied various sorts of
functions important to differentiation theory and found that in many instances
their functions possess structures very similar to the structure of ordinary deriva-
tives. For example, each approximately differentiable function is differentiable on a
dense, open set and its approximate derivative has the Darboux property, belongs
to the first class of Baire and even to Zahorski’s class 9;, Weil’s class Z and
Preiss’ class 9N*. (See [5], [13], [11], [12], [10].) Related results involving Peano
derivatives, selective derivatives, approximately continuous functions and B} func-
tions are also known ([11], [12], [6], [7]).

The purpose of this paper is to point out some other relations between functions
of certain of the classes mentioned above and the derivatives. In Theorem 3, for
example, we show that each approximate derivative, each approximately continu-
ous function and each B} function can be expressed in the form g" + hk’ with g, h
and k differentiable. This result is a consequence of Theorem 2 which characterizes
a certain class of functions in three ways. We then study this class and some related
classes in detail. In particular, we investigate functions representable in the form
hk’ with k differentiable and 4 either differentiable or continuous or a derivative.
Our results show, among other things, that the function g’ in the representation
g’ + hk’ cannot be dropped in Theorem 2.

The work presented here originated with a paper by the first three authors
submitted to the Transactions of the American Mathematical Society in June of
1978, but never published, in which they showed that approximate derivatives,
approximately continuous functions and B} functions can be written as f, + f, f; f,
+ fs fof; where each of these seven functions 1s a derivative. After reading a
preprint of that paper the fourth author, with extensive collaboration from the
third, shortened the proofs and improved the results to the present form.

Received by the editors June 26, 1978 and, in revised form, September 29, 1978 and February 5, 1980.

1980 Mathematics Subject Classification. Primary 26A24; Secondary 26A21, 26A27.

Key words and phrases. Derivatives, approximate derivatives, approximately continuous functions,
functions of Baire class 1.

IThis author’s work was supported in part by a grant from the National Science Foundation.

© 1981 American Mathematical Society
0002-9947/81/0000-0061/$03.00

493



494 S. J. AGRONSKY, R. BISKNER, A. M. BRUCKNER AND ]J. MARIK

2. Preliminaries. The main results of this paper depend on certain concepts,
constructions of functions and decompositions of sets with special properties. We
find it convenient to set off these technical considerations in this preliminary
section.

We begin with some notation. Throughout this paper, R = (-0, 00); the word
function means a mapping to R; J is the set of all integers; if V' is either an open
set in R or an interval (not necessarily open), then A(V') is the family of all
functions differentiable on ¥V and A'(V) = {f’; f € A(V)}; we set A = A(R),
A" = A'(R) and © = {g|S; g €A, S C R}. For each open interval I let A(]) be
the system of all increasing functions A on J such that inf A(J) = inf I, sup A(J) =
sup I. If A € A() and j € J, we write A; = A()). If 1 is an open interval, f and w
functions continuous on / and if w > 0 on /, then A(J, f, w) is the system of all
A € A(I) with the following property: if j € J and if x,y,z €[A,_;, A], then
| f(¥) — f(x)] <w(z). If f and g are mappings, then f o g is the mapping 4 defined
by h(x) = f(g(x)) for all x for which the expression f( g(x)) has a meaning.

LEMMA 1. Let 1, f and w be as above. Then A(1, f, w) #* <.
(The proof is left to the reader.)

LEMMA 2. Let Q > 1, let I be an open interval and let @, w be functions continuous
onl,w > 0on I. Then there are functions v, h and k infinitely differentiable on I with
the following properties:

M ]e — o <who=hk',0<h<w,0<k<wonl.

(2) For each x € I there is a 8 € [0, Q] and points x,, x, € I such that x, < x <
x, and v'(x) = 0(p(x;y) — @(x)))/(x; — x)).

PrROOF. There is an ¢ € (0, 1) and nonnegative functions a, 8, y_,, v, infinitely
differentiable on R with the following properties: a = 0 on (— 0, 2¢), a = 1 on
(1 —2¢ 00),0<a’"<QonR,B=00on(—o0,e) U(l —¢ 0),B8=10n2e 1 —
2¢),0< B<lonR, y_,=0o0on(—00,0),y_,=1—aon(e o), 0<y_, <1
onR,y,=aon(—o0,1—¢),y,=0o0n(l, ©),0<y <1on R. Obviously, for
n=1 and -1, «’ = nBy, on R. Let A € A(I, ¢, w?). Define y, =0 on R. For
x € Rlet 1(x) =(x —A_)/N\ —A_)). Forj € J let p; = (\) — ¢(A;_)), 0; =
sgnm, v=@N_)+n-acT, h=|nV?-Bor and k=|y[/?-y, o7, on
[A_1» A Tt is easy to see that the functions v, & and k satisfy our requirements.

PROPOSITION 1. Let Q > 1. Let S be a closed set in R, T = R\S. Let F € A and
G € A(T). Then there are g, h, k € A with the following properties: h 2 0, k > 0 on
R; h, k are infinitely differentiable on T; h = k =Qon S; g = Fand g = g + hk’
=F'onS;g + hk' = G onT;if I isacomponent of T and if x € I, then there is
aé¢€landal €[0, Q] such that (hk'Y(x) = 8- (G — F)'(§).

PROOF. Let w € A, w =00n S, w > 0on 7. Define p = G — F on T. On each
component / of T construct v, h and k according to Lemma 2. Set g, = ¢ — v on
T,go=h=k=0o0nSand g =g,+ Fon R. Obviously gg=h"=k'"=0o0n S
and g+ hk"=g'=F on S.Since g+ v=¢ + F= G on T, we have g’ + hk’
= G’ on T. The rest follows from Lemma 2.
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LEMMA 3. Let A be closed in R with int A = & and let B be open in R. Then there
is a countable system of pairwise disjoint closed sets with union A N B.

PrROOF. We may suppose that B is an interval. Since int A = J, there is a
A € A(B) such that 4 N A(J) = . The system {4 N[A,_,A]; j € J} has the
required properties.

REMARK. If we add to the assumptions of Lemma 4 the requirement that the sets
A, be pairwise disjoint, we obtain a part of Theorem 4.5 of Petruska-Laczkovich
[9].

LEMMA 4. Let A, A}, A,, ... be closed, A = \U A, CR,intA =U. Let f be a
function such that f|A, € D forn=1,2,.... Then f|A € D.

PrOOF. By Lemma 3, for each natural number n there is a countable system %,
of pairwise disjoint closed sets with union 4,N\(4, U + + - UA,_,). The union 9D of
all the systems 9, is a countable system of pairwise disjoint closed sets with union
A and we have f|B € D for each B € % . Now we apply the theorem of Petruska-
Laczkovich mentioned above.

LEMMA 5. Let K be a system of subsets of R such that A € K whenever
A C B € K. Then the following two conditions are equivalent

(i) There is a countable system of closed elements of K with union R.

(i) For each nonempty closed set S C R there is an open interval I such that
d#+SnlIeX.

PrOOF. The condition (i) follows from (i) by Baire’s category theorem. Now
suppose that (ii) holds. Let 9L be the system of the unions of all countable systems
of closed elements of K. If 4 is an F,-set, A C M € 9, then, obviously, 4 € .
Let T be the set of all points x € R for which there is an open interval 7 such that
x € I € 9. Since for each x € T there is such an interval with rational end-
points, we have 7 € 9. Set S = R\T and suppose that S # . There is an open
interval I such that J# S NI € K. It follows that I = (SN I)u (T nl)E
9N, I c T, which is a contradiction. Therefore, S = Fand R = T € 9.

We shall need a bit more notation.

Let & be the system of all (finite real) functions on R. Let C, Cap» By, A,,p, A;p be
the systems of all continuous functions, of all approximately continuous functions,
of all functions of Baire class 1, of all approximately differentiable functions and of
all approximate derivatives on R, respectively. For each system B C & let 5B be
the system of all bounded elements of B and let [*B] be the system of all functions f
on R with the following property: There are v, € B and closed sets 4,, such that
UA,=Randf=v,0nd,(n=12,...).

REMARK. Obviously B C [8B] = [[B]]. If B is a vector space (an algebra), then [B]
is a vector space (an algebra). It is well known that a function f is in B, if and only
if {x; f(x) > c} and {x; f(x) < c} are F,-sets for each ¢ € R. This easily implies
that [B,] = B,.

We shall often apply the fact that for each f € B, and each closed set S # <&
there is an x € § such that f|.S is continuous at x.



496 S. J. AGRONSKY, R. BISKNER, A. M. BRUCKNER AND J. MARIK

PROPOSITION 2. Let B C & and f € . Then f € [B] if and only if for each closed
set S 7 J there is an open interval I and a v € B such that S N I # B and f = v
onS NI

(This follows from Lemma 5.)
PROPOSITION 3. Let f € B, and let the range of f be isolated. Then f € [C].

PROOF. Let S be closed, S # <. There is an open interval / such that S N I # &
and that f is constant on § N /. Now we apply Proposition 2.

THEOREM 1. Let f € B,. Then there are f, € [C] (n =1, 2,...) such that f, —> f
uniformly .

Proor. Forn = 1, 2, ... thereis an f, € B, such that f,(R) is isolated and that
|f — f,] < 1/n on R. By Proposition 3 we have f, € [C].

PROPOSITION 4. Let f € [A’] and let S be a nowhere dense set. Then f|S € D.
(This follows from Lemma 4.)

3. The representation f = g’ + hk’. We are now ready to give three characteriza-
tions of the class [A’). (See Theorem 2.) We prove, in particular, that every function
f € [A’] can be expressed in the form f = g’ + hk’ where g, h and k are differentia-
ble. Theorem 3 shows that [A’] contains all approximately continuous functions, all
approximate derivatives and all functions of O’Malley’s class B}.

THEOREM 2. Let f € . Then the following four conditions are equivalent:

(i) There are g, h and k in A such that h', k' € [Cland f = g’ + hk'.

(i1) Thereisa @ € A" and ay € [C) such that f = @ + V.

(i) f € [A').

(iv) There is a dense open set T such that f|T € A'(T) and f|R\T € D.

Proor. The implications (i) — (ii) and (ii) — (iii) are obvious. Now let f € [A"]
and let T be the set of all points x € R for which there is an open interval /
containing x such that f|I € D. Then T is open and, by Proposition 2, dense. It is
easy to see that f|T € A'(T) and it follows from Proposition 4 that f|R\T € 9.
Thus, (iii) — (iv). Finally, the implication (iv) — (i) follows directly from Proposi-
tion 1.

COROLLARY 1. The system [A’] is the vector space generated by A’ and [C].

REMARK. It follows from Theorem 2 that every function f € [A’] can be ex-
pressed in the form g’ + hk’ with g, h and k in A. If either of the functions A" or K’
is locally summable, then hk’ € A’ and, of course, f € A" as well. (See, e.g.,
Fleissner [4] for a discussion of such products hk’.) Condition (iv) of Theorem 2
implies that, for example, the function sgn is in [A’] so that sgn = g’ + hk’ for some
g, h and & in A; but, no matter how we choose such g, 4 and k, neither A" nor k' is
locally summable. (We see that the product of a differentiable function and a
derivative need not be in A’; however, according to Theorem 4 of the next section,
such a product is always in [A"].)
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Theorem 3 below describes three important classes of functions contained in [A'].

THEOREM 3. Each approximately continuous function, each approximate derivative
and each function in BY meets the conditions of Theorem 2.

PROOF. According to Lemma 5, the class B defined in [6] is the same as our
class [C] and, obviously, [C] c [A’]. In [8], O’Malley proved that each approximate
derivative is in [A’]. Finally, let f be approximately continuous and let S be a
nonempty closed set. Since f € B,, there exists an open interval / and an M € R
such that S N I # & and that |f| < M on S N I. Let ¢ = max(— M, min(f, M)).
Since ¢ is approximately continuous and bounded, it is the derivative of its
indefinite Lebesgue integral. This implies that f|S N I € D. According to Lemma
5 we have f € [A’].

REMARK. We close this section with the observation that each function in the
first class of Baire can be approximated uniformly by a function of the form
g + hk’ with g, h and k in A. This follows immediately from Theorems 1 and 2.

4. The use of bounded derivatives. The definition of [A’] involves a certain
decomposition of its members into derivatives which must be finite but need not be
bounded. In this section we show that we could have restricted our attention to
bounded derivatives and we obtain some additional results. For example, Corollary
3 shows that [A’] is precisely the class of functions representable as g’ + hk’ with g,
h and k in A.

LEMMA 6. Let L be an interval and Q a compact subset of L. Let f € A(L) and
B € R. Suppcse that |f(t) — f(x)| < B|t — x|, whenever x € Q and t € L. Then
there is a g € A(L) such that |g'| < B+ 1on L and g’ = f on Q.

PrROOF. We may suppose that Q has at least two points and that L is the smallest
interval containing Q. Let S = (a, b) be a component of L\Q. According to [9,
Lemma 4.15], there is a function gg € A([a, b]) such that gz = ' on {a, b},
|gsl < B + 1 on[a, b] and that the graph of gg is contained in the convex hull of
the graph of f|[a, b]. Now we set g = fon Q and g = g on each component S of
LN Q. 1t is easy to see that g has the required properties.

PROPOSITION 5. We have A’ C [bA'].

PROOF. Let f € A. Let 4, be the set of all points x € R such that | f(r) — f(x)| <
n|t — x| forallt € R for which |t — x| < 1/n(n=1,2,...).Itis easy to see that
A, is closed and that U A4, = R. Fix an n, choose a § € (0, 1/n) and for j € J
define L; = [(j — 1)§, j§]. On each interval L; construct a function g; = g accord-
ing to Lemma 6 where we take Q = 4, N L; and B = n. If x is either (j — 1)8 or
J6 and if x & Q, we choose g; in such a way that g/(x) = 0. There are numbers c;
such that g(j8) + ¢; = g;,,(J8) + ¢, . Setting h = g; + ¢; on [(j — 1)4, j§] for
Jj €J wehave |h'| <n+ 1on R and ' = f" on A,. This completes the proof.

LEMMA 7. Let f € B,. Then there is a countable system & of closed sets with union
R such that f|A is bounded for each A € Q.
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(This follows from Lemma 5.)

PROPOSITION 6. We have C,, C [bC,,]

(This follows easily from Lemma 7.)

COROLLARY 2. We have [C,,] = [bC,,), [A'] = [b4].
(This follows from Propositions 5 and 6.)

THEOREM 4. Let ¢ € [C, ), ¥ € [A']. Then ¢ € [4].

PROOF. It follows from Corollary 2 that there are ¢, € bC,,, y,, € bA" and closed
sets A, such that U 4, = Rand ¢y, = @ on 4, (n=1,2,...). According to
Theorem 3.6 of [4] we have ¢,y, € A’ for each n.

COROLLARY 3. Let f € §. Then f € [A'] if and only if there are g, h and k in A
such that f = g’ + hk'.

(This follows from Theorems 2 and 4.)

CoRrOLLARY 4. Let A C B C[C,], AC B CA,,. Then [A'] is the vector space

generated by the products hk,,, where h € B and k € B.

(This follows from Theorems 2-4.)

REMARK. We see, in particular, that hk;,, € [A’] whenever h and k& are in Aa,,- Itis
also clear that two parts of Theorem 3 follow immediately from Theorem 4. We
cannot, however, extend Theorem 4 to the assertion that ¢ € [A’] whenever ¢ and
¥ are in [A’]. In fact, it is not difficult to construct a ¢ € bA’ such that ¢? is not a
derivative on any interval (see [2]). It is clear that @? cannot be in [A'].

5. Representations of the form hk’. It is natural to ask whether the function g’ in
the representation f = g’ + hk’ (see Corollary 3) is really necessary, i.e. whether
one can represent each function in [A’] as hk’ with A and k in A. This turns out not
to be possible even for the function sgn; namely, according to a remark following
Theorem 7.5 of [3], the product of a continuous function with a derivative always
has the Darboux property. In fact, we shall see that even “very well behaved”
Darboux functions may fail to be representable in that form.

In this section we shall consider functions of the form Ak’ with k € A and 4 in
various classes. Let By, = {hk’; h, k € A}, B, = {(hk'; h € C, k € A}, B, = (W' k’;
h, k € A}. We begin with an elementary lemma.

LEMMA 8. Let a,b,c ER, b<a <0, c #0. Let f(x) = x°sin(cx?), g(x) =
x? cos(cx?), h(x) = x?- (sin(cx®))? for x >0 and let f=g =h =0 on (— o0, 0].
Then f,g € A, h & A'.

PROOF. Set F(x) = x* %*'. cos(cx?®), fo(x) = (@ — b + 1)x*~® - cos(cx?®), h,(x)
= x?, hy(x) = x? cos(2cx?) for x >0, F=fy=h,=h, =0 on (—o,0]. As
F’' = f, — bcf, we have f € A’; similarly it can be shown that g € A’. Since A, & A,
h, € A" and 2h = h; — h,, we have h & A'.
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THEOREM 5. We have proper inclusions
A’ C;BOCSBl CS'Bza s‘B] C[A’]’ (*)
but neither the inclusion B, C [A’] nor the inclusion [A'} C B, is valid.

Proor. It follows immediately from Theorem 4 that B, C [A’]; the other inclu-
sions in (*) are obvious.

To see that PyNA' = JF, set @(x) = x?sinx ™3, Y(x) = x 2sinx3 for x >0
and ¢ = ¢ = 0 on (— 00, 0]. Obviously ¢ € A. By Lemma 8 we have ¢ € A" and
oy & A

To see that B, \B, # J, set f(x) = x'/?sin x ™1, g(x) = x~"/2sin x ! for x > 0
and f= g = 0 on (— o0, 0]. Obviously f € C. By Lemma 8 we have g € A" and
fg & A’. Now suppose that A, kK € A and that fg = hk'. If, e.g., A(0) > O, then
k" > 0 on some neighborhood of 0 so that, according to Theorem 4.2 of [4],
hk’ € A’ which is a contradiction. Therefore, A(0) = 0. There is an M € R such
that |A(x)/x| < M for each x € (0, 1). Set x, = (n7)"'(n =1,2,...). We have

X, +1
f fe = f(" )'”t‘z(sin t)2 dt > wx?,,/2;
nmw

on the other hand,
72 [ fg < Mk(x,) = k(X0 )|/ %,
k(x,) = k(0)  k(x,1) = k(0) X,y

xn xn +1 Xn

= Mi -0
which is impossible.

According to [2] there is an f € A’ such that f2 is not a derivative on any
interval. Then f2 € B, but (see Theorem 2, (iv)) f* & [A'].

In the example below we shall show more than that the inclusion [A"] C B, is not
valid. This will complete the proof of Theorem 5.

ExAMPLE. Let d,,, < a, < b, <c, <d,, a, - 0; let the set G = U (a,, d,) have
density 0 at 0. Define L, = (b,, c,), @, = (c, — b,)"' (n=1,2,...). There is a
function F on R which is infinitely differentiable on (0, o0) such that F = 0 on
R\G and F' >af on L,. Set f= F,,. Then f is infinitely many times approxi-
mately differentiable. Suppose that f = h’k’ with h, k € A. If A" and k' are both
positive on L, we have, for each x € L,, either h'(x) > a, or k’'(x) > a, whence
h" + k' > a, on L,. The other possibility is that both 4" and k’ are negative on L,
in which case we have »’ + k¥’ < — a,on L,. Let ¢ = h + k. Then

lo(e) ~ (b)) =| [ g’

n

> an(cn - bn) = 1

for each n. This is impossible because ¢ is continuous.

We note that the function fis in C,, N [C] N A,; it is very well behaved except
at the origin, yet cannot be expressed as the product of two derivatives.

REMARK. Suppose that f; > 0, f; € C, f, € A, f, = f, f,. Assume without loss of
generality that both f, and f, are positive. By Theorem 4.2 of [4] we have f, € A".
Thus, each positive function in B, is a derivative.
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In contrast, observe that the function ¢y in the proof of Theorem 5 belongs to
B, is nonnegative, but is not a derivative.

In general, if ® € BNA" and ® > O, then & + 1 &€ B, (for otherwise & would
have to be in A’). Thus, neither B, nor B, is a vector space.

6. Additional remarks. The work of the previous sections suggests certain other
possibilities. First, we may ask for other classes of functions f for which the
representation f = g’ + hk’ with g, h, k € A is valid (which means f € [A"]).
Possible candidates are various generalized derivatives (e.g. Peano derivatives and
selective derivatives) or functions related to differentiation theory (e.g. Darboux
Baire 1 functions or semicontinuous functions). We do not know whether each
Peano or selective derivative is in [A’]. But there exist semicontinuous Darboux
functions which vanish almost everywhere and are positive on some dense set (see
[1]). Such a function cannot be a derivative on any interval and therefore cannot
belong to [A’]. It would be of interest to know which generalized derivatives are in
[A"].

We ended §3 with the observation that each Baire 1 function is a uniform limit
of functions of the form g’ + hk’ with g, h, k € A. It is, of course, clear that an
f € B, need not itself be expressible in this form. We have not been able to
determine, however, whether each f € B, is in the algebra generated by A’. More
specifically, we have not been able to construct an f € B, which cannot be
expressed in the form f = g’ + W'k’ with g, h, kK € A.
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