Jan Mařík On a space of functions representable by derivatives

Real Anal. Exchange 7 (1) (1981/82), 135-148

Persistent URL: http://dml.cz/dmlcz/502130

Terms of use:

© Michigan State University Press, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

Real Analysis Exchange Vol. 7 (1981-82)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

ON A SPACE OF FUNCTIONS REPRESENTABLE BY DERIVATIVES

The present note was inspired by the original version of [1] where the first three authors proved that

 (A) the characteristic function of a closed set
of real numbers can be expressed as the product of two derivatives.

This assertion, however, played only an auxiliary role and is not contained in the final version of [1]. Various generalizations of (A) will appear elsewhere; some of the corresponding results have been mentioned in [2], part IV.

This note deals with the space a_0 of bounded functions on the interval [0,1] which have only a finite number of discontinuities and with its uniform closure a. It is easy to see that a is an algebra containing all monotone functions. The main result says, in particular, that for each $f \in a$ there are derivatives $f_j \in a$ such that $f = f_1 + f_2 f_3$.

Notation. 1° The word function means a mapping to $R = (-\infty, \infty)$. For each nondegenerate interval $J \subset R$ let

 $\mathcal{F}(J) = \{f'; f \text{ is a function differentiable on } J\}$.

2° Let f be a bounded function on a nondegenerate interval J. For each $x \in J$ and each $h \in (0, \infty)$ set

$$\begin{split} & w^{*}(f,x,h) = \sup f(M), \quad w_{*}(f,x,h) = \inf f(M) \quad (M = J \cap [x-h,x+h]), \\ & w^{*}(f,x) = \lim w^{*}(f,x,h), \quad w_{*}(f,x) = \lim w_{*}(f,x,h) \quad (h \searrow 0), \\ & w_{f}(x) = w^{*}(f,x) - w_{*}(f,x), \quad \sigma_{f}(x) = \frac{1}{2}(w^{*}(f,x) + w_{*}(f,x)) \quad . \end{split}$$

<u>Lemma 1</u>. Let f,g be bounded functions on R. Then $w_{f+g} \leq w_f + w_g$. If f is continuous at a point x, then $w_{fg}(x) = |f(x)| \cdot w_g(x)$.

(The proof is left to the reader.)

Lemma 2. Let $J = (0, \infty)$ and let $\delta \in J$. Let f be a nonnegative function continuous on J. Then there are functions $\gamma, \varphi \in \mathcal{F}([0,\infty))$ which are continuous on J such that $\gamma(0) = \varphi(0) = 0, \varphi = 0$ on (δ, ∞) and $\gamma \ge 0, f = \gamma + \varphi^2$ on J.

<u>Proof</u>. Choose numbers y_n such that $\delta = y_0 > y_1 > \cdots$, $y_n \to 0$, $y_{n-1}/y_n \to 1$. Set $J_n = [y_n, y_{n-1}]$, $M_n = \max\{f(x); x \in J_n\}$. For $n = 1, 2, \cdots$ find a $\delta_n \in J$ such that $\delta_n M_n^{1/2} < y_n/n$ and that |f(y) - f(x)| < 1/n, whenever $x, y \in J_n$ and $|y - x| < \delta_n$; further choose an integer r_n such that $y_{n-1} - y_n < r_n \delta_n$. Let

$$S = \{y_n + k(y_{n-1} - y_n)/r_n; n = 1, 2, ..., k = 1, ..., r_n\}.$$

We have $S = \{x_0, x_1, \dots\}$, where $\delta = x_0 > x_1 > \dots$. For k = 1, 2, ... set $L_k = [x_k, x_{k-1}], d_k = x_{k-1} - x_k$, $w_k = \max\{|f(y) - f(x)|; x, y \in L_k\}, m_k = \min\{f(x); x \in L_k\},\$ $s_k = \frac{1}{2}(x_k + x_{k-1})$. It is easy to construct a function φ continuous on L_k such that $\varphi \ge 0$ on $[x_k, s_k]$, $\varphi \leq 0$ on $[s_k, x_{k-1}], \varphi = 0$ on $\{x_k, x_{k-1}\}, \varphi^2 \leq m_k$ on L_k , $\int \varphi = 0$, $\int \varphi^2 > m_k d_k - 2^{-k} x_k$. In this way we define a function φ on $(0,\delta]$. Further we set $\varphi = 0$ on $\{0\} \cup (\delta, \infty)$, $\gamma = f - \varphi^2$ on J, $\gamma(0) = 0$. Then φ, γ are continuous on J. Obviously $\gamma \ge 0$, $\int_{L} Y < w_k d_k + 2^{-k} x_k$. Let $x \in (0, \delta]$. There are k, nsuch that $y_n \leq x_k < x \leq x_{k-1} \leq y_{n-1}$. It follows from the choice of r_n, r_{n+1}, \cdots that $w_j < 1/n$ (j = k, k+1,...). Therefore $\int_{0}^{x} \gamma \leq \sum_{j=k}^{2} (w_{j}d_{j} + 2^{-j}x_{j}) \leq \frac{1}{2}$ $x_{k-1}/n + 2^{-k+1}x_k < x(y_{n-1}/(ny_n) + 2^{-k+1}), \quad 0 \le \int_0^{\infty} \varphi =$

 $= \int_{x_{k}}^{x} \varphi \leq \frac{1}{2} d_{k} m_{k}^{1/2} \leq \delta_{n} m_{n}^{1/2} < y_{n}/n < x/n. \text{ For } x \neq 0$ we have $k \neq \infty$, $n \neq \infty$ so that $x^{-1} \int_{0}^{x} \gamma \neq 0$, $x^{-1} \int_{0}^{x} \varphi \neq 0$. This completes the proof.

Lemma 3. Let $\delta \in (0,\infty)$. Let f be a function bounded on R and continuous on $\mathbb{R}\setminus\{0\}$. Then there are functions $\gamma, \varphi, \psi \in \mathcal{B}(\mathbb{R})$ which are continuous on $\mathbb{R}\setminus\{0\}$ such that $\varphi = \psi = 0$ on $\mathbb{R}\setminus(-\delta,\delta)$,

(1) $f = \gamma + \varphi \psi$, $f \wedge f(0) \leq \gamma \leq f \vee f(0)$, $\varphi^2 = \psi^2 \leq |f - f(0)|$, (2) $w_{\gamma} \leq w_{f}$, $w_{\varphi} \vee w_{\psi} \leq 2 w_{f}^{1/2}$.

<u>Proof</u>. We may suppose that f(0) = 0. Let $f_1 = f \lor 0, f_2 = (-f) \lor 0$. By Lemma 2 there are functions $\gamma_j, \varphi_j \in \mathcal{F}(\mathbb{R})$ which are continuous on $\mathbb{R} \setminus \{0\}$ such that $\gamma_j(0) = 0, \varphi_j = 0$ on $\mathbb{R} \setminus (-\delta, \delta), \gamma_j \ge 0$ and that $f_j = \gamma_j + \varphi_j^2$ (j = 1, 2). Set $\gamma = \gamma_1 - \gamma_2, \varphi = \varphi_1 + \varphi_2,$ $\psi = \varphi_1 - \varphi_2, A = \{x \in \mathbb{R}; f(x) \ge 0\}, B = \mathbb{R} \setminus A.$ On A we have $\gamma_2 = \varphi_2 = 0, 0 \le \gamma = \gamma_1 \le f_1, \varphi = \varphi_1 = \psi,$ $\varphi_1^2 \le f_1 = |f|;$ on B we have $\gamma_1 = \varphi_1 = 0,$ $-f_2 \le -\gamma_2 = \gamma \le 0, \varphi = \varphi_2 = -\psi, \varphi_2^2 \le f_2 = |f|.$ Obviously $f = \gamma + \varphi \psi.$ This proves (1).

Now let $\theta^{*}(t) = w^{*}(f,0,|t|), \theta_{*}(t) = w_{*}(f,0,|t|)$ $(t \neq 0), \theta^{*}(0) = w^{*}(f,0), \theta_{*}(0) = w_{*}(f,0).$ It follows from (1) that $\theta_{*} \leq Y \leq \theta^{*}, \phi^{2} = \psi^{2} \leq \theta^{*} - \theta_{*}.$ This easily implies (2). Lemma 4. Let $a, b \in \mathbb{R}$ and let A be a finite set of real numbers. Let f be a function on R which is continuous on R\A such that a < f < b. Then there are functions $\gamma, \varphi, \psi \in \mathcal{F}(\mathbb{R})$ such that

$$\begin{split} \mathbf{f} &= \mathbf{\gamma} + \mathbf{\phi} \psi, \quad \mathbf{a} < \mathbf{\gamma} < \mathbf{b}, \quad \mathbf{\phi}^2 &= \psi^2 < \mathbf{b} - \mathbf{a}, \\ \mathbf{w}_{\mathbf{\gamma}} &\leq \mathbf{w}_{\mathbf{f}}, \quad \mathbf{w}_{\mathbf{\phi}} \quad \mathbf{\vee} \quad \mathbf{w}_{\psi} \leq 2 \ \mathbf{w}_{\mathbf{f}}^{1/2} \ . \end{split}$$

(This follows easily from Lemma 3.)

Lemma 5. Let $\varphi, \psi \in \mathscr{J}(\mathbb{R})$. Suppose that φ, ψ are bounded and that at each point of \mathbb{R} at least one of the functions φ, ψ is continuous. Then $\varphi \psi \in \mathscr{J}(\mathbb{R})$.

(The proof is left to the reader.)

Lemma 6. Let f be a bounded function on the interval J = [0,1]; let $\eta \in (0,\infty)$ and let $w_f < 2\eta$ on J. Then there is a function h continuous on J such that $h(0) = \sigma_f(0)$, $h(1) = \sigma_f(1)$ and $|h-f| < \eta$.

<u>Proof</u>. Let Y be the set of all points $y \in (0,1]$ with the following property:

(P) There is a function g continuous on [0,y]such that $g(0) = \sigma_f(0)$ and $|g-f| < \eta$ on [0,y].

There is a $y_1 \in (0,1]$ such that $|f - \sigma_f(0)| < \eta$ on $[0,y_1]$. Setting $g = \sigma_f(0)$ on $[0,y_1]$ we see that $y_1 \in Y$. Therefore $s = \sup Y > 0$. There are s_1 , s_2 such that $0 < s_1 < s < s_2$ and that $|f - \sigma_f(s)| < \eta$ on

 $J \cap [s_1, s_2]. Choose a \ y \in Y \cap (s_1, s] and a function$ $g as in (P). Let <math>\lambda$ be a linear function such that $\lambda(s_1) = 0, \ \lambda(y) = 1.$ Define a function h on $[0, s_2]$ setting h = g on $[0, s_1], h = g + \lambda \cdot (\sigma_f(s) - g)$ on $[s_1, y], h = \sigma_f(s)$ on $[y, s_2].$ Then h is continuous on $[0, s_2], h(0) = \sigma_f(0)$ and $|h - f| < \eta$ on $[0, s_2] \cap J.$ This shows that s = 1 and that our assertion holds.

Lemma 7. Let f be a bounded function on the interval $J = (0, \infty)$. Then $w_f(0+) = 0$ if and only if there is a function h continuous on J such that (f - h)(0+) = 0.

<u>Proof</u>. If there is such an h, then, for each $x \in J$, $w_f(x) = w_{f-h}(x)$ and, obviously, $w_{f-h}(0+) = 0$. Now suppose that $w_f(0+) = 0$. Let $x_n \in J$, $x_0 > x_1 > \cdots$, $x_n \to 0$. Let $\eta_n = 1/n + \sup\{w_f(x); x_n \leq x \leq x_{n-1}\}$. It follows from Lemma 6 that there is a function h continuous on J such that $|f-h| < \eta_n$ on $[x_n, x_{n-1}]$ $(n = 1, 2, \cdots)$. It is easy to see that (f-h)(0+) = 0.

Lemma 8. Let f be a bounded function on R, let $\eta \in (0,\infty)$ and let A be a finite set of real numbers. Suppose that $w_f(t) \rightarrow 0$ $(t \rightarrow x)$ and $w_f(x) < 2\eta$ for each $x \in A$. Then there is a function h on R which is continuous on R\A such that $|h| < \eta$ and that f - his continuous at each point of A. <u>Proof.</u> There are disjoint open intervals I_x such that $x \in I_x$ and $|f - \sigma_f(x)| < \eta$ on I_x ($x \in A$). Let $x \in A$. By Lemma 7 there is a function h_x on R which is continuous on $\mathbb{R} \setminus \{x\}$ such that $h_x(x) = f(x)$ and that $f - h_x$ is continuous at x. There is a closed interval J_x containing x in its interior such that $J_x \subset I_x$ and that $|h_x - \sigma_f(x)| < \eta$ on J_x . Now it is easy to construct a function h on R which is continuous on $\mathbb{R} \setminus A$ such that $|h| < \eta$ and that $|h = h_x - \sigma_f(x)$ on J_x for each $x \in A$. It is obvious that $f - h_x = 0$ for each $x \in A$.

<u>Notation</u>. In the rest of this note, J will stand for [0,1]. Let \mathcal{A}_0 be the system of all bounded functions f on J such that f is continuous on J\A for some finite set A. Let \mathcal{A} be the system of all bounded functions f on J such that

(3) $w_f(t) \rightarrow 0 \quad (t \in J, t \rightarrow x) \quad \text{for each } x \in J.$

<u>Proposition 1</u>. Let f be a bounded function on J. Then $f \in \mathcal{A}$ if and only if the set $\{x \in J; w_f(x) > \eta\}$ is finite for each $\eta \in (0, \infty)$.

(The proof is left to the reader.)

<u>Proposition 2</u>. Let f be a bounded function on J. Then $f \in \mathcal{A}$ if and only if for each $x \in J$ there is a function h on J which is continuous on $J \setminus \{x\}$ such that f-h is continuous at x.

(This follows easily from Lemma 7.)

<u>Proposition 3</u>. Let $f_n \in \mathcal{A}$ (n = 1, 2, ...) and let $f_n \neq f$ uniformly. Then $f \in \mathcal{A}$.

<u>Proof</u>. It is easy to see that $w_{f_n} \rightarrow w_{f}$ uniformly. This implies (3).

<u>Remark</u>. Obviously $\mathcal{A}_0 \subset \mathcal{A}$. If f is a bounded function on J such that f(x+) exists for each $x \in [0,1)$ and that f(x-) exists for each $x \in (0,1]$, then $f \in \mathcal{A}$. In particular, each function of bounded variation on J is in \mathcal{A} .

Lemma 9. Let $f \in a$. Let $\alpha_n \in (0, \infty)$, $2 \alpha_0 > \max\{w_f(x); x \in J\}, \alpha_0 > \alpha_1 > \cdots, \sum_{n=0}^{\infty} \alpha_n < \infty$. Let

 $A_n = \{x \in J; \alpha_{n+1} \leq \omega_f(x)/2 < \alpha_n\}$.

Then there are functions g, h_0, h_1, \cdots on J such that g is continuous on J, h_n is continuous on $J \setminus A_n$, $f - h_n$ is continuous at each point of A_n , (4) $|h_n| < \alpha_n \ (n = 0, 1, \ldots)$ and $f = g + \sum_{n=0}^{\infty} h_n$.

<u>Proof</u>. For n = 0, 1, ... let h_n be a function constructed according to Lemma 8 where we take $A = A_n$, $\eta = \alpha_n$. It is easy to see that the function $f - \sum_{n=0}^{\infty} h_n$ is continuous.

<u>Proposition 4</u>. Let f be a function on J. Then f $\in \mathcal{A}$ if and only if there are $f_n \in \mathcal{A}_0$ such that $f_n \rightarrow f$ uniformly.

(This follows from Lemma 9 and Proposition 3.)

<u>Proposition 5.</u> Let $f,g \in a$. Then f+g, $fg \in a$.

<u>Proof</u>. If $f,g \in a_0$, then, obviously, f+g, $fg \in a_0$. Now we apply Proposition 4.

<u>Theorem</u>. Let $f \in \mathcal{A}$, $\varepsilon \in (0,\infty)$, $\varepsilon > \max\{w_f(x); x \in J\}$. Then there is a function g continuous on J and functions $\lambda, \varphi, \psi \in \mathcal{A} \cap \mathcal{B}(J)$ such that

(5) $f = g + \lambda + \varphi \psi$, $|f - g| < \varepsilon/2$, $|\lambda| < \varepsilon/2$, $\varphi^2 \vee \psi^2 < \varepsilon$, (6) $w_{\lambda} \leq 5(\varepsilon w_f)^{1/2}$, $w_{\varphi} \vee w_{\psi} \leq 2w_f^{1/2}$.

<u>Proof</u>. Set $\eta = \epsilon/2$, $\beta = \beta(J)$. Choose a $\beta_0 \in (0,\infty)$ such that $\max\{w_f(x); x \in J\} < 2\beta_0^2 < \epsilon$ (hence $\beta_0^2 < \eta$) and then a $b \in (0, \frac{1}{2})$ such that

(7)
$$\beta_0^2 + b(2 + 4\beta_0) < \eta$$

Further choose $\beta_n \in (0,\infty)$ such that $\beta_0 > \beta_1 > \cdots$ and $\sum_{n=1}^{\infty} \beta_n < b$. Notice that

(8)
$$(\beta_0 + b)^2 < \eta$$
.

Set $\alpha_n = \beta_n^2$ and find sets A_n and functions g, h_n according to Lemma 9. It follows from (4) and (7) that $|f-g| < \sum_{n=0}^{\infty} \alpha_n < \alpha_0 + b < \eta$.

By Lemma 4 there are $\gamma_n, \phi_n, \psi_n \in \mathcal{F}$ such that

$$(9) h_n = \gamma_n + \varphi_n \psi_n ,$$

(10)
$$|\gamma_n| < \alpha_n, \quad |\phi_n| = |\psi_n| < \beta_n \cdot 2^{1/2},$$

(11)
$$w_{\gamma_n} \leq w_{h_n}, \quad w_{\varphi_n} \vee w_{\psi_n} \leq 2 w_{h_n}^{1/2}.$$

Because of (10) we may define $\gamma = \sum_{n=0}^{-\infty} \gamma_n$, $\varphi = \sum_{n=0}^{\infty} \varphi_n$, $\psi = \sum_{n=0}^{\infty} \psi_n$, $\rho = \varphi \psi - \sum_{n=0}^{\infty} \varphi_n \psi_n$; further set $\lambda = \gamma - \rho$. Obviously $\gamma, \varphi, \psi \in \mathcal{F}$. Since $|\varphi_j \psi_k| \leq 2 \beta_j \beta_k$ and, according to Lemma 5, $\varphi_j \psi_k \in \mathcal{F}$ whenever $j \neq k$, we have $\rho \in \mathcal{F}$. Therefore $\lambda \in \mathcal{F}$. By (4) and (9),

$$f = g + \gamma + \sum_{n=0}^{\infty} \varphi_n \psi_n = g + \lambda + \varphi \psi .$$

For each nonnegative integer p let S_p be the set of all pairs (j,k) of nonnegative integers such that $j \neq p \neq k \neq j$ and let $\sigma_p = \sum \varphi_j \psi_k$ ((j,k) $\in S_p$). Obviously

(12)
$$|\sigma_0| < 2b^2 < b$$
.

Set $\gamma_p^* = \gamma - \gamma_p$, $\varphi_p^* = \varphi - \varphi_p$, $\psi_p^* = \psi - \psi_p$. We have (see (10))

(13)
$$|Y| \vee |Y_p^*| < \alpha_0 + b$$

(14)
$$|\varphi_0^*| \vee |\psi_0^*| < b \cdot 2^{1/2}$$

and, by (8),

(15)
$$|\varphi| \vee |\varphi_p^*| \vee |\psi| \vee |\psi_p^*| < (\beta_0 + b) \cdot 2^{1/2} < \epsilon^{1/2}$$

It is easy to show that

(16)
$$\rho = \varphi_p \psi_p^* + \psi_p \varphi_p^* + \sigma_p .$$

Taking p = 0 we get, according to (10), (14) and (12), $|\rho| < 2 \cdot 2 \beta_0 b + b$ so that, by (13) and (7), $|\lambda| < \alpha_0 + b + 4\beta_0 b + b < \eta$. This proves (5).

Now let $x \in J$. If f is continuous at x, then all the functions $h_n, \gamma_n, \dots, \lambda, \varphi, \psi$ are continuous at x. Otherwise we choose a p such that $x \in A_p$. Then the functions $\gamma_p^*, \varphi_p^*, \psi_p^*, \sigma_p$ are continuous at x. Since $f - h_p$ is continuous at x, we have $\omega_{h_p}(x) = \omega_f(x)$. Now it follows from (11) that $\omega_{\gamma}(x) = \omega_{\gamma_p}(x) \leq \omega_f(x) \leq (\varepsilon \omega_f(x))^{1/2}, \omega_{\varphi}(x) = \omega_{\varphi_p}(x) \leq 2(\omega_f(x))^{1/2}, \omega_{\psi}(x) = \omega_{\psi_p}(x) \leq 2(\omega_f(x))^{1/2}$. By (16), Lemma 1 and (15) we get
$$\begin{split} & w_{\rho}(\mathbf{x}) \leq w_{\phi_{p}}(\mathbf{x}) \cdot |\psi_{p}^{*}(\mathbf{x})| + w_{\psi_{p}}(\mathbf{x}) \cdot |\phi_{p}^{*}(\mathbf{x})| \leq 4 (w_{f}(\mathbf{x}))^{1/2} \cdot \varepsilon^{1/2}. \\ & \text{Therefore } w_{\lambda}(\mathbf{x}) \leq 5 (\varepsilon w_{f}(\mathbf{x}))^{1/2}. \quad \text{This proves (6) which} \\ & \text{implies that } \lambda, \phi, \psi \in \mathcal{Q}. \end{split}$$

<u>Remark</u>. It is natural to ask whether each function $f \in \mathcal{A}$ can be expressed as $\gamma + \varphi \psi$, where $\gamma, \varphi, \psi \in \mathcal{F} = \mathcal{F}(J)$ and where at least one of these three functions is continuous. The answer to this question is contained in Proposition 6. We need four lemmas.

Lemma 10. Let $a,b,c \in R, 0 \leq a < b \leq 1, c > 0$. Let $\varphi, \psi \in \mathcal{F}$ and let $\varphi \psi \geq c$ on (a,b). Then $\varphi(a)\psi(a) \geq c$.

<u>Proof</u>. For each $x \in (a,b)$ we have $(x-a)^2 \cdot c \leq (\int_{L} (\varphi \psi)^{1/2})^2 \leq \int_{L} |\varphi| \cdot \int_{L} |\psi| = \int_{L} \varphi \cdot \int_{L} \psi$ (L = (a,x)).

Lemma 11. Let $a \in (0,1)$. Let γ be a function on J which is continuous at a and let $\varphi, \psi \in \mathcal{E}$. Define $f = \gamma + \varphi \psi$,

(17) $\Lambda_{+} = \lim \sup f(x), \lambda_{+} = \lim \inf f(x) (x \lor a)$,

(18) $\Lambda = \lim \sup f(x), \lambda = \lim \inf f(x) (x / a),$

(19) $M = \max(\lambda_+, \lambda_-), \quad m = \min(\Lambda_+, \Lambda_-)$.

1° If $\gamma(a) < M$, then $f(a) \ge M$.

2° If $\gamma(a) > m$, then $f(a) \leq m$.

<u>Proof</u>. Suppose that $\gamma(a) < M$. Let, e.g., $M = \lambda_+$. Choose numbers p,q such that $\gamma(a) . There$ $is a <math>b \in (a,1)$ such that $\gamma < p, q < f$ on (a,b). Then $\varphi \psi = f - \gamma > q - p$ on (a,b). By Lemma 10 we have $(\varphi \psi)(a) \ge q - p$ whence $(\varphi \psi)(a) \ge M - \gamma(a), f(a) \ge M$. This proves 1° which easily implies 2°.

Lemma 12. Let $a \in (0,1)$ and let f be a function on J. Define m, M by (17)-(19). If m < f(a) < M, then f cannot be expressed as $\gamma + \varphi \psi$, where γ is a function continuous at a and $\varphi, \psi \in \mathcal{B}$.

(This follows at once from Lemma 11.)

Lemma 13. Let $\psi \in \mathcal{F}$ and let φ be a function continuous on J. Then there is an interval $L \subset J$ such that the restriction of the function $\varphi \psi$ to L is in $\mathcal{F}(L)$.

(This follows from [1], Theorem 4.)

<u>Proposition 6</u>. Let f be an increasing function on J. Suppose that the set $\{x \in (0,1); f(x-) < f(x+)\}$ is dense in J and that f(x-) < f(x) < f(x+) for some $x \in (0,1)$. Let $f = \gamma + \varphi \psi$, where $\gamma, \varphi, \psi \in \mathcal{B}$. Then none of the functions γ, φ, ψ is continuous on J.

(This follows from Lemmas 12 and 13.)

REFERENCES

- S.J. Agronsky, R. Biskner, A.M. Bruckner and J. Mařík, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), 493-500.
- [2] A.M. Bruckner, Current trends in differentiation theory, Real Analysis Exchange, Vol. 5, No. 1 (1979-80), 9-60.

Received September 14, 1981