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FLOQUET THEORY FOR, AND BIFURCATIONS 
FROM SPATIALLY PERIODIC PATTERNS 

ALEXANDER MIELKE 

ABSTRACT. We consider elliptic systems of PDEs on infinite long cylindrical 
domains allowing applications such as travelling waves in reaction-diffusion sys
tems or fluid flow in pipes. We develop a method for studying solutions which are 
close to a given solution uo which is periodic with respect to the axial variable 
x. Using spatial Floquet theory we are able to construct a spatial center manifold 
and to show that all orbitally close solutions can be described by an ODE. 

1. Introduction 

According to K i r c h g a s s n e r [Ki82] it is advantageous to study elliptic 
problems in cylinders by the so-called method of spatial dynamics. This means 
that the axial variable plays the role of a time-like variable. Then, the associated 
differential equation can be treated using tools from dynamical systems theory. 
For illustration we consider the following reaction-diffusion system 

dtu = DAXiyu + f(\,u), in Sl = R x E , u\dn = 0. (1) 

Here, u G Km contains the concentrations, D is the diffusion matrix, and / is 
the reaction term. xGMis the axial variable, j / G S the cross-sectional variable, 
and AXiV = d% + Ay the Laplacian. Looking for travelling waves with speed c, 
we can rewrite the system as a spatial dynamical system with respect to x. Let 
u = dxu G Mm and w = (u, u), then we are lead to 

TxW = HW) = ( -Ayu - D-i [cl - f(X,«)] ) • ( 2 ) 

Now, w(x, •) is an element of the Hilbert space H = H^S)"1 x L2(E)m. 
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We are interested in solutions which are close to a given periodic solution p 
with p(x + T) = p(x) for all x and T > 0. In a neighborhood of this orbit we 
introduce a local coordinate system via 

W(X(T)) =P(T) + V(T) with (P'(T),V(T))=0. (3) 

We use T as new independent time-like variable instead of x and obtain 
( '= d/dr) 

x' = l + a(r,v) = [(P'(T),P'(T)) - {P"(T),V)]/(P'(T), F(P(T) + v)) , 

„' = T(T, V) =(l + a(T, v)) (T(P(T) + V)- T(P(T))) . (4) 

By construction, the functions a and T are T-periodic in r . Note that T(T, V) 
is quasilinear in v even for semilinear T(w). 

For the study of the second equation we first treat the linear part to con
struct a spectral splitting corresponding to the Floquet multipliers on the unit 
circle (see Section 2). Writing T(T,V) = A(T)V + N(T,V) with A(T) = A + 
B(T): D(A) -+ H and M = 0(\\v\\2) we find the following 

THEOREM 1. Let A: D(A) —• H be a closed operator with compact resolvent 
such that \\(A + if)"1!! < cl{1 + l£l) for a11 £ G K - Further assume B G 
Cr+1(R,C(D(Af3),H)) for some 0 G [0,1) and that the linear operator Lv = 
v' — A(-)v has only a finite number of Floquet multipliers on the unit circle. 
Moreover, assume JV" G C r + 1 (R x D(A), H) . 

Then, there exist projections P(x) such that P(-) G Cr(R,C(H, H)) , 
P(x + T) = P(x), and n = dim P(x)H < oo. Furthermore there exists a 
(n + 1)-dimensional local center manifold Mc C H given as 

{p(r) + v0 + h(r, v0) G D(A): P(T)V0 = v0 , P(r ) / i ( r , v0) = 0, 

(p'(T),vo + h(T,vo))=0, \\v0\\<e} 

where heCr and h(r,v0) = h(r + T,v0) = O(||^o||2) • 

Note that this theorem allows the nonlinear term to have the same loss of 
smoothness as the linear part, hence we are able to treat certain quasilinear 
systems. The C r-smoothness of Mc is just one order less than that of the 
nonlinearity. 

This spatial center manifold contains the original periodic orbit p and all 
solutions w: R —> D(A) which exist on the whole infinite cylinder and stay 
orbitally close to p. All bifurcating solutions can now be found by studying the 
reduced problem 

J J 

— X = I + a(T,V0 + h(T,V0)), —V0 - A(T)V0 = P(T)M(T,V0 + h(T,V0)), 
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which is an ODE with periodic coefficients. For the analysis of such systems we 
refer to [MS86] and to [I088, IA92] where an associated normal form theory is 
developed. 

The purpose of this note is to establish the proper functional analytic setup 
and to give the basic ideas how to be able to handle such problems. The reader 
should be a acquainted with the theory for elliptic systems with autonomous 
linear part as presented in [Mi88]. Because of the limited space we have to 
refer for most of the technicalities to [DFMK94]; there all details as well as 
applications to reaction-diffusion systems and fluid dynamics are given. 

2. The spectral splitting 

We have to study a linear elliptic system Lv = -£pv — A(r)v = f(r) G 

Z v̂-R? H) where A satisfies the assumptions of Theorem 1. The Floquet multi
pliers and exponents of the problems are defined by considering the associated 
periodic operator 

L # : D(L#) - # # = L2((0,T),H) ; v - v1 - 1 ( > , 

where D(L#) = H^((0,T),H) n L 2((0,T) ,D(A)) . Here and further on the # 
stands for periodic functions with period T. 

We call the eigenvalues A of this operator the Floquet exponents of the 
problem and p = ex the Floquet multipliers. Note that even for constant A we 
have infinitely many Floquet multipliers inside and outside the unit circle. This 
is due to the ellipticity of the underlying problem. Thus, it is nontrivial to show 
that the resolvent set of L# is nonempty, see [Ku82, DFKM93] for positive and 
negative results. However, if the resolvent set is nonempty, then the standard 
application of Fredholm's alternative shows that the set of Floquet exponents is 
discrete. Since A + i^jr is a Floquet exponent whenever A is, we see that the 
critical part on the imaginary axis has to be infinite dimensional (if nonempty). 
Nevertheless, we are able to construct a spectral projection which separates this 
critical part. 

LEMMA 2. Let A be as above and assume that the resolvent set of L# is 

nonempty. Then, there is a projection P on H# with the following proper

ties: (i) PL# = L#P, (ii) PL# has spectrum only on the imaginary axis, 

(iii) L# + i£\ (I - P)D(L#) -> (I - P)H# is invertible for all £ G R, and 

(iv) P has the form 

N 

[Pf](x) = P(x)f(x) with P(x)g = J2(9,M*))4>k(*)> (5) 
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where (f>k, ^k € D(L#). 

R e m a r k . Note that the spectral projection acts pointwise in x. The commu
tation relation (i) with L# readily implies 

P'(x) = A(x)P(x) - P(x)A(x), x G R. (6) 

P r o o f . For simplicity assume T = 2n. We choose e > 0 such that the 
strip { A G C: | Re A| < e} contains exactly the spectrum of L# which lies on 
the imaginary axis. For each I C K we let 

E/ = {A6 Spectrum(L#): | Re A| < e, Im A G / } C iR, 

Since the spectrum is discrete we can define the spectral projection Pj as the 
Dunford integral Pj = ^ 7 J(-^# ~" A ) " 1 ^ , where T/ is a positively oriented 

closed C1-curve, such that £ / lies in its interior whereas E ( L # ) \ E j lies outside. 

Our aim is to define P = P R as the spectral projection of the whole strip. 
Since the Dunford integral does not exist for this unbounded set, we use the 
special structure connecting the eigenfunctions corresponding to Floquet expo
nents which only differ by ifc, k G Z. Since L# has a compact resolvent, the 
projection P(-i/2,i/2] can be written as 

jv 2 7 r 

P(-i /2 , i /2] / (z) = ] C 2^ / ^ ^ ' ^k(y))dy <t>k(x), 
fc=l Q 

where IN is sum of the algebraic multiplicities of the eigenvalues in £(-.1/2.1/2] • 
Since elrnx<j)k(x) (eimxi/;k(x)) are eigenvectors to the shifted eigenvalue Xk + im 

(Xk — im) we find 

n IV 2тr 

P(-n-l/2,n+l/2]/(*) = £ JT ±- í (f(y), ̂ ^(y^dy e*™ *h{x) 
m=—nk=l Q 

IV 

= Y,Qn((f^k))(x)<i>k(x)-
k=l 

Here Qn is the orthogonal projection from .L2((0,27r),C) onto the span of 

e~inx,... , einx. Thus, for each / G # # the limit Pf = P R / of P ( - „ - i / 2 | n + i / 2 ] / 
exists and satisfies (5). D 
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Now the linear problem v' — A(T)V = f G L2(R, H) can be solved by decou
pling the critical part. Let VO(T) = P(T)V(T) and v\ = v — vo, then 

v'0-A(T)v0 = f0(T) = P(T)f(T), 

v[ - A(T)VX = h(T) = (I - P ( r ) ) / ( r ) . 

The tlo-equation generates a polynomially growing fundamental solution while 
v\ contains the exponentially growing and decaying modes. We construct the 
solution operator v\ = K\f\ by the use of the direct integral and Fourier trans
form. Every function / G L2(R,H) can be written as a direct integral in the 

1 

sense of [RS80]: f(x) = f eiuxF(uj,x) du, where F(u>,-) G L2((0, 2TT), H) . In 
o 

fact, if / (£) is the Fourier transform of / we have F(u,x) = ]T elkxf(k + u). 
kez 

Hence, the solution in question is given by the formula 

i 

Vl(x) = je^Џф-І^F^,.)}^. 

As PF(u, •) = 0 the inverse exists and is bounded over UJ G [0,1]. Standard 
regularity theory (cf. [Mi87]) then implies v\ G Hl(~l, H) HL2(R,D(A)) . Using 
the methods from [Mi87] it is then possible to generalize this result to all Lp-
spaces, p G (l,oo) as well as to exponentially weighted spaces (cf. [DFKM93]). 
We arrive at 

LEMMA 3. Assume that A satisfies the assumptions of Theorem 1. Then, 
there is a 6 > 0 such that for all a G (0, £) and all p G (l ,oo) there is a 
constant C such that (7) has, for all (To5£o>/) with To G K, £o = P(To)€o, 
and f with e~OL\x\f(x) G LP(R, H), a unique solution v = KTo(£oif) with 
V0(T0) = P(T0)V(T0) = & and | |C-«l*Ut;(*)| | < Cfl&l + l |e" a | a ; | /(x) | |p) . 

3. The center manifold 

The center manifold is now constructed by a contraction mapping argument 
completely analogous to [Mi88]. The only difference appearing here is that the 
linear part is nonautonomous as well. Hence, after multiplying M(T, V) with a 
suitable cut-off function, we consider 

—v - A(T)V = M(T, V) , (8) 
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where M is globally Lipschitz continuous with small Lipschitz constant. We 
augment (8) with the initial condition P(TQ) V(TQ) = £o • Then, the solution 
operator from Lemma 3 shows that every weakly exponentially growing solution 
v: R —> D(A) has to satisfy the integral equation 

S(тQ,ţo,v):=KTo(ţ0,ЛҐ(-,v(-))) 

Because of the small Lipschitz constant of Af the mapping ,S(TO,£O> •) is a con
traction on the Banach space of functions v with e~a^v(x) E Lp(R, D(A)) . 
Thus, we find a unique solution v = V(ro, £O) • Using the fiber bundle contraction 
method it can be shown that V depends, in fact, r-times differentiable on r© 
and £o. The center manifold is now defined to be the graph of the function h 
defined via /&(TO,£O) = (I - P(TO)) V(TO,£O)(TO). AS in [Mi88] it follows that h 
has the desired properties, viz. it defines a locally invariant manifold containing 
all small bounded solutions. This completes the sketch of proof for Theorem 1. 
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