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REGULARITY FOR DOUBLY 
NONLINEAR PARABOLIC EQUATIONS 

ALEXANDER V. IVANOV 

ABSTRACT. Holder estimates and existence of regular solutions of Cauchy-
Dirichlet problem for doubly nonlinear parabolic equations are established. Sim
ilar equations arise in the study of turbulent filtration of a gas or a fluid through 
porous media. 

Let Q is a bounded open set in Rn, n > 1, QT = ft x (0,T], ST = 
dQ x (0,T], r T = ST x (Q x {t = 0}) ( r T is a parabolic boundary of QT). 
Consider in QT equation of the type 

du/dt — div a(x, t,̂ x, V̂ x) + a0(x, t,iz, V̂ x) = 0, (I-!) 

where a = ( a 1 , . . . , a n ) , Vu = (-—,. . . , - — ) . Assume that al(x,t,u,p), 
\OXi oxnJ 

a0(x,t,u,p) satisfy the Caratheodory condition and let for a.e. (x,t) G QT and 
any u G -R\{0}, p G W1 inequalities 

(1.2) 
a(x,t,u,p) p> u0\u\l\p\m -$0(x,t,u), v0 > 0; 

\a(x,t,u,p)\ < vM1 b r - 1 + $iOM,u), 

hold with some m > 1, / > 1 — m and $j(x, t, u) > 0. 
The prototypes of equations of the type (1.1), (1.2) are 

du/dt-div {\u\l\Vu\m~2Vu} = 0 , m > 1, Z > l - m (1.3) 

and 
n rf 

0u/0f - J T — {\u\l \du/dxi\m-2du/dxi} = 0, m > 1, I > 1 - m. (1.3') 
ѓ=l 

CZÆІ 

Equations (1.3), (1.3') and close equations arise in the study of turbulent 
filtration of a gas or a liquid through porous media and non-Newtonian fluids. 

AMS Subject C l a s s i f i c a t i o n (1991): 35K55, 35K65. 
Key words: regularity, turbulent flow, porus media. 
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For example in the case m > 1, / > 0 equation (1.3) is called in the survey 
[1] as the equation of non-Newtonian polythropic filtration. We shall use this 
title for (1.3) further only in the case m > 2, / > 0. 

On the other hand in the case n = 1, m G [3/2,2) , / > m — 1 equation (1.3) 
arises in the study of turbulent flow of a gas in one-dimensional porous media. 
This phenomenon was described at first by L e i b e n s o n in [2]. Further we 
shall call (1.3) as the Leibenson equation for any n > 1, m E (1,2), / > 0, 
m + / > 2. 

At last in the study of flow through three-dimensional porous media in tur
bulent regimes (i.e., in the case when in view of large velocities the classical 
Darcy's law fails to be true) several authors (see [3]) consider equation of the 
type 

du/dt - div {\u\l \Vu - c0\u\kZ \m 2(Vu - cQ\u\kZ)} = 0 (1.4) 

with m e (1,2), / = (s - l ) (m - 1), k = r - s + 1, Z = (0,0,1) , from the 
physical point of view it is natural to assume that 1 < s < r. Thus we have in 
(1.4) / > 0, k > 1. Furthermore we shall call on equation (1.4) briefly as the 
equation of turbulent filtration. 

In the case of equation (1.3) we have 

a* = M1 | p | m - 2 Pi , ^ titj > min ( l ,m - 1)|«|' \p\m~2\C\2. (1-5) 

In view of (1.5) it is natural to use the following classification for equations (1.1), 
(1.2): 

m > 2, / > 0 1 < m < 2, / > 0 m > 2, / < 0 1 < m < 2, / < 0 
doubly degene- singular-degene- degenerate- doubly singular 
rate par. eq. rate par. eq. singular par. eq. par. eq. 

On the other hand rewrite (1.3') as 

du/dt - D(u, Vu)Au + £(u, Vu) = 0, 

where D(u,p) = (m - l)\u\l £ |P i |m~2 , £(U,P) = l \u\l~2 u £ N m . It is evi-
i=l i=l 

dent that 

{ 0 , if m + / > 2 , 

D(u,p), if m + / = 2 , (1-6) 
+oo , if m + / > 2 . 

In view of (1.6) we shall use also the following classification for general equa
tions (1.1), (1.2): 

m + / > 2 m + / = 2 m + / < 2 
equations of the type equations of the type equations of the type 

of slow diffusion of normal diffusion of fast diffusion 
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So the equation of non-Newtonian polythropic filtration is a doubly degen
erate parabolic equation and at the same time is an equation of the type of slow 
diffusion, while the Leibenson equation is a singular-degenerate parabolic equa
tion and an equation of the type of slow or normal diffusion. On the other hand 
the equation of turbulent filtration is a singular-degenerate parabolic equation 
and an equation of the type of fast diffusion if s < ^ - j , of normal diffusion if 

and of slow diffusion if s > ra—1 ra—1 

Remark now that equations (1.1), (1.2) can be rewritten as equations of the 
type 

--4^- - div A(x, t, v, Vv) + A0(x, t, v, Vv) == 0 (1.7) 
at 

where 
v = \u\°u, <r=-^— b(v) = \vf~\ ^J— = - ^ l -

ro — 1 (7 + l l + ro — 1 

and coefficients Al(x,t,v,q) satisfy the following inequalities 

A(x,t,v,q) - q > i>0Mm - $o(x,t,v), v0 > 0; 

| if(x,t , t7,9) | < A i k l m " " 1 + * i ( * , * , « ) , 

with m > 1, /3 > 0, $i(x,t,v) > 0. It is evident that equations of the type 
(1.7), (1.8) are only another form of equations of the type (1.1), (1.2). 

Equations (1.7), (1.8) (and hence (1.1), (1.2)) are known as doubly nonlinear 
parabolic equations. Existence results for equations of this type were obtained 
in the pioneering papers [4, 5] by R a v i a r t and J.-L. L i o n s and then in 
[6-13, 3] etc. The purpose of this talk is to discuss the regularity problem for 
equations (1.1), (1.2). Up to recent time there were no regularity results for 
weak solutions of doubly nonlinear parabolic equations. Under regular solution 
we mean in this paper Holder continuous weak solution. The simple modifica
tion of B a r e n b l a t t explicit self-similar solution (see [14]) lets to show that 
holderness is the best possible smoothness of weak solutions (1.1), (1.2) in the 
case ro > 1, / > 1. 

More precisely this paper devotes mainly to discussion of two problems for 
equations (1.1), (1.2): 

1. regularity (Holder continuity) of every bounded weak solution; 
2. existence of regular solution of Cauchy-Dirichlet problem. 
For discussion of the first of these problems it is necessary to specify the 

growth conditions (1.2) for equation (1.1). Suppose that for a.e. (x,t) and any 
u e R, p e Rn 

a(x,t,u,p)-p> vo\u\l \p\m - <p0 , v0>0; 

\S(x,t,u,p)\ < fjiM1 ^r-1 + ipM^, a = l/m; (1.9) 

\a0(x,t,u,p)\ < /Z2MZm, |p|m + ¥>2, 1/m + 1/W = 1, 
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where ra>l, / > 1 — ra, ipi = cpi(x,t) >0, cpo = <Pi = 0 if / < 0; cpo, ip™, 
<P2 £ Z/OJ<70((5T) with appropriate exponents q, q$. For the sake of simplicity we 
shall assume however that y>Q,<pi and cpi are some given constants. 

Recall that the pioneering results and methods of establishing of Holder esti
mates for weak solutions of linear and quasilinear uniformly elliptic and parabolic 
equations in divergence form appeared in the classical papers by D e G i o r g i, 
N a s h , M o s e r and L a d y z h e n s k a y a - U r a l t s e v a . 

Holder continuity of weak solutions of quasilinear uniformly parabolic equa
tions of the type (1.1), (1.9) (i.e., in the case ra = 2, / = 0) were estab
lished with the aid of different methods in sixtieth by L a d y z h e n s k a y a -
U r a l t s e v a , A r o n s o n - S e r r i n , author and others (see in particular 
[15-19]). 

Continuity or Holder continuity of weak solutions of different subclasses of 
(1.1), (1.9) in the case ra — 2, 1^0 were proved only in eightieth in [20-29]. 

In 1986 the important advancement was made by D i B e n e d e t t o who 
was able to establish Holder estimates for (1.1), (1.9) in the case ra > 2, / = 0 
([30]). In particular an interesting development of approaches by D e G i o r g i 
and L a d y z h e n s k a y a - U r a l t s e v a of establishing of Holder estimates 
is given in [30]. Later in [31] Holder estimates in the singular case 1 < ra < 2, 
/ = 0 were obtained under additional assumptions concerning the structure of 
equation and properties of weak solution. 

Holder estimates for multidimensional ( n > 1) weak solutions of quasilinear 
doubly degenerate parabolic equations (i.e., for (1.1), (1.9) in the case ra > 2, 
/ > 0) were obtained in 1989 by myself with the aid of appropriate development 
of D i B e n e d e t t o approaches (see [32-34, 37, 38]). These estimates were 
used in [35, 36] for proving of existence of nonnegative Holder continuous weak 
solutions of Cauchy-Dirichlet problem for (1.1), (1.9) in the case ra > 2, / > 0. 
In all my papers I considered only nonnegative weak solutions namely because 
they have physical sense. More precisely I established Holder estimates for the 
following (natural) class of weak solutions. 

DEFINITION 1.1. Any nonnegative bounded in QT function u is a weak so
lution [supersolution, subsolution] if 

a) u e C([0,T];L1(n)), du^/dxi e Lm(QT), a = ^ , i = 1 , . . . , n ; 

b) for any $ € CX(QT) and any tut2 € [0,T] 

t2 

u$dx\t
2 + / / {— u$t + a(x,t,u,ux) • V$ + a0(x,t,u,ux)$}dxdt = 0 

[>0, <0] 
ti n 

(1.10) 
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where ux = (uXl,..., uXn) and uXi are defined by 

f (1 + a^u-'du/dxi in {QT : u > 0} 

L 0 in { Q T - u = 0) 

Remark that Definition 1.1 is available in the general case m > 1, / > 1 — m . 
It should be to mention that in the case n = 1, m > l , I > 2 — m Holder 
continuity in K1 x [e, T] for any e > 0 with the best possible Holder exponent 
was proved by E s t e b a n - V a z q u e z for weak solutions of Cauchy problem 
(see [39]). 

Recently some new investigations of regularity for doubly nonlinear parabolic 
equations appeared. In preprint [40] in the case m > 2, I > 0 Holder estimates 
for weak solution belonging to W^°(QT) are obtained without assumption that 
weak solution is nonnegative. On the other hand using approaches of paper [31] 
V e s p r i in [42] established Holder estimates in the singular case 1 < m < 2, 
/ i=- 0 under (roughly speaking) the following additional assumptions: 

(i) a = a(x, u, p), [a(x, u, p) - a(x, u, q)] • (p - q) > 0; 
(j) functions u —• a*(x, u,p) are Lipschitz (i = 1 , . . . , n ) ; 

(k)ueW^(QT); 
(l) du/dteL2(QT). 
It should be to say that Holder estimates established in [31, 42] are inde

pendent of Lipshitz constants in (j) and norms ||Vu||x,m(QT), \\du/dt\\L2(QTy 
Moreover authors of [31, 42] suppose that weak solution under consideration 
is a weak W^°(QT) —limit of solutions u£ of some regularized equations for 
which conditions (1.9) and (i)-(l) are fulfilled. But in any case condition (1) is 
non-pleasant with the point of view of proving of existence of regular solution of 
Cauchy-Dirichlet problem (because it is difficult to find a regularized problems 
for which all conditions (1.2) and (i)~(l) would be fulfilled). As far as we know 
up to present nobody has proved the existence of a Holder continuous weak 
solution of the Cauchy-Dirichlet problem in the singular case 1 < m < 2. 

Recently I established some new results concerning Holderness and existence 
of regular solutions for doubly nonlinear parabolic equations of the type (1.1), 
(1.2) which I consider here either in the case 

(SN) m > l , Z > 0 , m + / > 2 

or in the case 
(F) m > l , K m + / < 2 . 

So in the case (SN) I deal with equations of the type of slow or normal diffusion 
under additional assumption / > 0, while in the case (F) I consider the full class 
of equations of the type of fast diffusion. 
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At first I establish Holder estimates. If in the former case the establishment 

of these estimates requires only the structure conditions (1.9), in the latter case 

I have to assume beside (1.9) additional conditions (i), (j), (k) (but not (1)). 

Thus in particular as against of V e s p r i result [41] I eliminate in the singular 

case 1 < m < 2 all additional conditions if ra + 1 > 2, I > 0 and condition (1) 

if ra + / < 2. These results will be published in [43-45]. 

We applied these Holder estimates for proving of existence of Holder contin

uous solutions of Cauchy-Dirichlet problem for equations of the type (1.1), (1.2) 

with parameters satisfying conditions 

ra > max(2n/(n + 2 ) , l ) , I > 0. 

Moreover we proved that regular solution of Cauchy-Dirichlet problem is unique. 

In particular existence and uniqueness of regular solution of Cauchy-Dirichlet 

problem is established for nonhomogeneous equations with the principal parts 

like in (1.3) and (1.4) (see [43], [46]). 
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