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SEMI-IMPLICIT DISCRETIZATION OF 
ABSTRACT EVOLUTION EQUATIONS 

RENATO SPIGLER — M A R C O VIANELLO 

ABSTRACT. Abstract evolution equations in an arbitrary Banach space X, like 
u — f(t,u,u), t G ( 0 , T ] , subject to the initial value u(0) — UQ , are discretized 
by a semi-implicit version of the Euler method . The basic assumptions being that 
/ (£ , •, v) is one-sided Lipschitz, 1Z(l—hf(t, •, v)) — X for h > 0 sufficiently small, 
and f(t,u, •) is Lipschitz continuous, we show that the iterative scheme un+i — 
un -f hf((n -f l ) A t , t z n + i , i i n ) , n = 0 , 1 , . . . , N - 1 , At = T/N, is stable and 
consistent, and hence convergent. Applications to systems of evolutionary PDEs 
are presented and the computational advantages of the semi-implicit method are 
pointed out. 

1. Introduction 

Discretizing first in time evolutionary problems (Rothe method, see [3, 7, 8], 
e.g.), presents the advantage of retaining a great flexibility in the choice of the 
subsequent space discretization algorithms. One of the most popular methods 
of this type is the implicit Euler method. In this paper, we propose and analyze 
a semi-implicit version of such a scheme, for a broad class of nonlinear abstract 
evolution problems in an arbitrary Banach space. Stability, consistency, and 
convergence are studied and precise error estimates obtained. 

Applications are given to semilinear parabolic (integro-) differential systems, 
in both reflexive and non-reflexive spaces, for the purpose of illustration. The 
main computational advantages in these cases are: (a) linearization at each time 
step; (b) decoupling of systems into independent stationary subsystems, thus 
allowing for parallel implementation] (c) handling local instead of global (e.g. 
integral) space operators. 

In order to contain the length of the paper, below we give only the main 
results, leaving all details to a future publication [11]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 65J15; Secondary 35K50. 
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2. Convergence analysis 

Consider the abstract evolution problem 

u = f(t,u,u), te ( 0 , T ] ; u(0) = uo, (1) 

where f(t, •, v): (Dt C X) —> X, X being a real or complex Banach space, 
t G (0, T ], v G D, with [J Dt C D C X, satisfies the one-sided Lipschitz 
condition te(o,T] 

\\u1-u2-h(f(t,u1,v)-f(t,u2,v))\\ >{l-hK1)\\u1"U2\\, (2) 

VMI , U2 G Dt, with hKx < 1, Kx G R, and f(t,u,-): (D C X) -> X sat
isfies a classical Lipschitz condition, | | /(t , ifc^i) — / ( £ , ^ ^ 2 ) | | < -K^H î — v2\\, 
uniformly in t,u. Moreover, suppose that , for every h > 0 sufficiently small, 
7£(l - hf(t, • , ^;)) = X, that is the equation u = hf(t,u,v) + b has a (unique) 
solution u in Dt, for each fixed t G ( 0 , T ] , v G D, and b G X. Recall that, 
when / is (strongly) dissipative in u, i.e., K1 < 0, then the solvability of the 
previous equation for h = 1 suffices (cf. [14]). 

We assume that problem (1) has a (unique) "strict" solution, that is that 
u(t) G Dt for every t G ( 0 , T ] , u G C1([0,T]; .X), and ^x(t) solves (1). Our 
algorithm will approximate such a solution in the C°-norm. For n = 0 , 1 , . . . , N, 
we set tn=nh, h = At = T/N, and then consider the (ideal) iterative scheme 

un+1 =un + hf(tn+1,un+1,un) . (3) 

In order to take into account all relevant (and unavoidable) errors, we analyze 
the perturbed scheme, for n = 0 , 1 , . . . , N — 1, 

vn+1 = un + hf(tn+1,vn+1,un) + 6n+1 , 
(4) 

un+1 = vn+1 + an+1, un+1 G D . 

The scheme in (4) (and hence that in (3)) is well-defined since the first equation 
has a unique solution in Dtn+1, in view of the assumptions made on the operator 
f(t, •, v) for t > 0 and v G D. In (4), u0 = u0 + S0 G D, 60 denoting the error 
on the inital data, an+1 represents the overall error made in solving numerically 
the first equation, and Sn+1 takes into account, basically, the local truncation 
error. Note that when f(t, •, v) is discontinuous, the term an+1 cannot be 
embodied in 8n+1. This is the case of evolutionary partial differential equations, 
in contrast to that of ordinary differential equations. 

Comparing (3) and (4), one can find the stability estimate (cf. [11] 

N N 

maxv||«n-«n||<maX{l,piv}(||60|| + (l-/ iK1)-1£| |6 f e | | + ̂ | k f e | | ) , (5) 
~ ~ fc=l k=l 

where hKx < 1, and 

p J V : = ( l - K i T / N ) ~ e xP{(*~i + * 2 ) T } , N-oo(/w0). (6) 
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Observe t ha t the solution u(i) to problem (1) solves an equation like 

u(tn+i) = u{tn) + hffa + x , H(/„ + 1 ),«/(/„)) i .v„. , • • / / ) . (7) 

for a sui table choice of cO?1 + i(/?), t ha t is H(/„) solves scheme (4) with c(f ~- 0, 
<5n+i = o ; n + i ( / i ) , and a n + i = 0, for n — 0,1 N - 1 . The stability es t imate 

N 

in (5) requires es t imat ing V] L;n+i(/j,)|L Using the regularity assumption u C 

( ^ ( [ O / F ^ X ) , one obtains: 
1v 

y ^ ||o;n_j_i(/i)|| < rF[osc(H;//.) -f- A~2 ose(H; /!,)] , (8) 

where osc(w;h) := sup{ | | i e ( / i ) — w(t<2)\\: /.,/.> G [0/F] , |/j •- / 2 | < //•} , and hence 

osc(u;h) = o ( l ) and osc(u; h) — O(h). Therefore max ||H..„ - //•(/„) II ~> 0, as 
0<n<N 

h —> 0, which shows what is usually termed convergence of the algori thm . When 
u is Lipschitz continuous, the method turns out to be of the first order. 

More generally, we are interested in est imating the convergence of the al
gor i thm when per turba t ion terms are introduced implementing it in practice. 
Therefore, we consider the scheme in (4) with 6^ = 0, k — l , 2 , . . . , J V , and, 
resort ing again to (5), we get 

/v 
m a x \\un - u(tn)\\ < max { ! , / / ' }{ | | 6 0 | | + Y " ||crfc|| 

0<n<NU n l L-J (9) 

+ T ( l - hK{y\osc{u\ h) + K2 osc(H; h)]} . 
Such an es t imate has been obtained by triangle inequality, using the stability and 
consistency es t imates in (5) and (8), according to a Lax-type equivalence theorem 
(cf. [1], [11]). We stress again t ha t 6Q represents the error affecting the initial 
da t a , and a^ t he overall error made in solving the k-th equation of the scheme. 
Note t h a t , when for instance equat ion (1) represents an evolutionary part ial 
(integro-) differential equat ion, a^ embodies the space-discretization errors as 
wrell as t he errors (if any) on the boundary da ta . 

3e Examples 

In th is Section, we conclude with some examples, for the purpose of illustrat
ing the me thod outl ined in §2. 
(A) Systems of ordinary differential equations. 

W h e n X = R m , equat ion (1) represents an m-dimensional system of ODEs. 
Assuming t h a t / satisfies all the relevant hypotheses in §2, the semi-implicit 
m e t h o d includes the so-called "decoupled implicit Euler method" recently stud
ied in [9]. In this case, one writes a given m-dimensional system u = F( t , u), 
ii(0) = tin a s u — f{t, M, u), u(fy = " 0 , where 

f (1, II, V) = ( F i ( t , Hi , V2, - . . , V r ) , • • • , F r ( ^ * 1 , • • • . V r - 1 , Ur)) , (10) 
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r 
Ffc, u/c, Vk being raj. -dimensional vectors, ^ ra& = ra. This approach leads 

fc=i 
to handling, at each time-step, r independent nonlinear algebraic systems, which 

can be solved by parallel implementation. 

In the next two examples, the right-hand side of (1) is of the form 

f(t,u,v) = Au + B(t,v), (11) 
that is equation (1) is semilinear, and hence the stationary equations in (4) will 
be linear. 

(B) (Integro-) differential reaction-diffusion systems inL2 . 
Consider the system 

- ^ = MiAwi+gi(t,x,w)+ / Ki(t,x,£;w(Z,t))dt, x G SI C Rd, 0 < t < T, 

n 
(12) 

w(x,0) = w0(x) , x G fi ; Wi(x,t) = (f>i(x,t) on dQ if Mi > 0 , v } 

for the ra-dimensional vector w = (w\,..., w m ) , M = d i a g ( M i , . . . , M m ) with 
Mi > 0. Systems like that in (12) arise, e.g., from problems in epidemics and 
combustion theory. They include, as special cases, the classical reaction-diffusion 
systems (K = 0 ) , purely nonlocal reactions (g = 0 ) , as well as certain de
generate problems [some diagonal entries of M are zero], namely PDEs-ODEs 
couplings, cf. [4]. 

Assume that g(t, x, •) is Lipschitz continuous from lRm into Rm , uniformly in 
(t, x), with constant C9, and gi(t, •, 0) G L2(Q) for i = 1 ,2 , . . . , ra. Moreover, 
let K(t,x,£; •) be Lipschitz continuous from Rm into Rm , uniformly in t, with 
a Lipschitz constant C(x,£) G L2(Q x Q). Then, problem (12) can be recast 
into the abstract form (1), (11), with X = (L 2 ( f i ) )m , A = MA, Dt = {u G 
(L 2( f i ) )m : Ui G H2(Q), Ui(x) = (j>i(x,t) on dfi if Mj > 0} ; A is monotone 
and maximal (for suitable boundary data) for each fixed t > 0, B(t,-) is the 
sum of the substitution [or Nemickii] operator associated to g and the Uryshon 
operator associated to K, cf., e.g., [13]. It turns out that D = X, B(t, •) maps 
(L2(fi)) into (l/2(fi)) , and is Lipschitz continuous uniformly in t, with 
constant C9 + \\C(-, ')\\L2(QXQ\ • Therefore, when the abstract problem has a 
solution u G C f l([0,T];X), the method described in §2 converges to it, the 
estimate (9) holding. The required regularity is guaranteed, e.g., when <j>i(x, t) = 
0 on d£l and w0 G Dt = D(A) = {u G (L2(Q))m: u{ G H2(tt) n F r } ^ ) if 
Mi > 0 } , without further regularity assumptions on g, since X is reflexive, 
cf. [12]. 

(C) An example in a non-reflexive space. 
Consider the following initial-boundary value problem for the system 

- ^ = Li(x)wi - Ci(x)wi + gi(t, x,w), x e O, C Rd, 0 < t < T , 

w(x,0) = Wo(x) , i 6 ( l ; Wi(x,t) = 0 on 9 f l if L j ^ O . (13) 
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In (13), w e Mm , and Lt(x) = a(£<)~iXk + b)l)<)Sl denotes, for each i = 
1,2, . . . , r a , a linear strictly, elliptic operator, a+. b)1, . c, t ("n(0), ct > 0. 
Equations in (13) are parabolic unless the operator L} is replaced by 0 for 
some j ; in such a casev the corresponding equation reducers to an ODE and no 
boundary data are imposed on w-f . Moreover, assume that g is Lipschitz con
tinuous with respect to w1 uniformly in (x , / ) , g £ C'"1([0, F] x 0 x R,n) , and 
that gi(t,x,0) = 0 for x G 0 0 . Problems like that in (13), namely involving 
systems of parabolic-ordinary differential equations, arc? encountered in several 
applications (see [4, Ch. 8], for instance). 

Again, problem (13) can be recast into the abstract form (1), (11). in the 
non-reflexive space X = ( ( 7 Q ( 0 ) ) , with A -= diag(Lj — c l ? . . . , Ltn — cin). 
D(A) = {u e (W2*(n))m Vp < oc: LiUi € C°(0) . u, = 0, on Ml for Lt ^ ()} . 
£?(£, •) is the substitution operator associated to g , and I) -- X . It follows that 
5 ( t , •) maps X into X , and is Lipschitz continuous uniformly in /. The oper
ator A turns out to be maximal dissipative on X , indeed strongly dissipative 
when Ci(x) > c > 0 for all i 's. However, X being non-reflexive, the regular
ity result used in Example (B) cannot be invoked to ensure the existence of a 
Cl ([0,T]; X)-solution. Nevertheless, the Cl regularity assumed for g implies 
that of £(• , • ) (cf. [13], e.g.), and hence, a C+ ([0, T] ; X) -solution to (1), (11) 
does exist by a classical result in semigroup theory (cf. [5, Theorem 1.5, p. 187]). 
Therefore, the semi-implicit Euler method introduced in §2 converges and the 
estimate (9) holds. 

The algorithm (3) becomes, for the problem in Example (B), 

uiiU+1(x) = Ui,n(x) + hMiAuijn+1(x) + hgl(tn+1,x)u1/n(x)J. . . ,um , n(x)) 

+ h i T z ( t n + i , X , c ; ; U l , n ( 0 ) - - - ^ m , n ( 0 ) ^ ) X ^ ^ > / ^ 

n 

for i = 1, 2 , . . . , m and n = 0 , 1 , . . ., N — 1, with the boundary conditions 
Ui(x) = </>i(x,tn+1), x E <90, if Mi > 0. Note that (14) represents, at each time-
step, a system of (linear) inhomogeneous independent Helmholtz equations. If 
Mj = 0 for some j , the j -th equation in (14) yields explicitly uhn+1(x). Clearly, 
from the computational standpoint, all advantages mentioned in §1 have been 
obtained, namely linearization, decoupling, and removal of the nonlocal operator 
from the implicit part. 

In numerically solving each linear Helmholtz equation in (14), one could 
adopt, for instance, a probabilistic method, particularly convenient (if not the 
only feasible, in practice), when the space dimension is high. The direct applica
tion of a probabilistic method to the original semilinear system would be much 
more difficult (cf. [10], e.g.). 

Similar advantages are obtained in problem (C), the main difference being 
that the solution's components in this case is approximated (on the nodes tn) 
in the sup-norm, instead of in the L2 -norm. 
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We confined ourselves to reaction-diffusion systems for the purpose of illus
tration. The semi-implicit Euler method however could be applied to many other 
instances, such as systems of semilinear hyperbolic equations (cf. [2, 6], e.g., for 
the implicit Euler method in the abstract hyperbolic case). 
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