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PARTIAL REGULARITY OF MINIMIZERS 
M. GIAQUINTA 
Institute di Matematica Applicata, Universita di Firenze 
Via S. Marta, Firenze, Italy 

After the examples shown by E. De Giorgi, E. Giusti-M. Miranda, 

V.G. Mazja, J. Nefias, J. Soucek, it is well known that the minimizers 

of variational integrals 

(1 ) 5[ujft] = /F(x,u(x), Du(x))dx 
9. 

in the vector valued case, even in simple situations, are in general 

non continuous. There is only hope to show partial n.eQulan.ity of mini­

mizers, i.e. regularity except on a closed set hopefully small. 

The study of the partial regularity of minimizers and of solutions 

of non linear elliptic systems starts with the works by Morrey and 

Giusti-Miranda in 1968, and it is the aim of this lecture to refer 

about some of the results obtained. I shall restrict myself to some 

results concerning the partial regularity of minimizers referring to 

[ 7] for a general account. 

Let me start by stating the most general and recent result. 

THEOREM 1. Let ft be a bounded open bet in R and let 

F(x,u,p) : ft X R X Rn - R be a function such that 

i) \p\m < V[x,u,p) < cQIpf
m, m > 2 

ii) F is o£ class C2 with n.espect to p and 

lFpp(x,u,p) I < c1(l + lp|
2) 2 

m 

Hi) ( l + | p | ) 2 F(x,u ,p) is Holder-continuous in (x,u) uni&on.mly 

with n.espect to p 

iv) F is ktn.iz.tly quasi-convex I.e.ion. all ^n,u. ,p and all 
oo N 0 0 0 

cp e c 0 ( n , R ) 

Let u € H ' (ft,R ) be a minimizes ion. 

3[u;ft] = fT[x,u,Vu)dx 
ft 

i.e. 5 [ u ; s u p p <p] < $[ u + cp; supp cp] . Then then.e exists an open set ft 

such that u e C 1 , y ( f t 0 , R ) , moKeoven. m e a s (^ ~^^ = °-

Theorem 1, proved in [ 12] , i s the r e s u l t of a s e r i e s of s teps due 



to different authors. 

Under the strongervcondition of ellipticity 

m-2 

F . .£a£3 > v(l + Ipl2) 2 |£|2 v.? e RnN
? v > 0 

i 1 i 1 
pape 

theorem 1 was proved for m > 2 by C.Morrey and E.Giusti, for 1 < m < 2 

by L.Pepe in 1968 in the case F = F(p); in the case m = 2, F =F(x,u,p) 

by Giaquinta - Giusti and Ivert in 1983, in the case m > 2, F=F(x,u,p) 

by Giaquinta - Ivert in 1984. Fro these results I refer to [7l [9l 

[ 111 . Under the weaker assumption of quasi-convexity in (2) it was 

proved by L. Evans [5l in the case F = F(p), m > 2. 

The case 1 < m < 2 is open, and essentially open are all the 

questions concerning the singular set; for instance 

1. what about the structure of the singular set? what about the 

Hausdorff dimension of the singular set? 

2. are there resonable structures under which minimizers are regular? 

(see the interesting paper [22]) 

3. what about the stability or instability properties of the singular 

set? or what about topological properties of the set of smooth 

minimizers? 

We have results improving theorem 1 roughly only in case of 

quadratic functionals if we exclude the case in which F does not 

depend explicitly on u. So let us consider a quadratic functional 

(3) A(u) = /Aa,(x,u)D u \ u j d x 

a 8 
where the coefficients A.. are smooth (for example Holder-continuous) 

-U 
and satisfy the ellipticity condition 

(4) A^(x,u)e^5 > Ui 2 »c e RnN 

Notice that the functional A is not differentiable. Concerning the 

strong condition of ellipticity (4), we remark that there is not much 

hope to weaken it. In fact in [ 14] it is shown that for weak solutions 

of the simple quasilinear system 

/ A a . ( x , u ) D uXD <pDdx = 0 vcp G H ( i l , R ) 
ft 1 1 a & U 

with coefficients satisfying the strict Legendre-Hadamard condition 

A^(x,u)^a^n.nj > Ul
2lnl 2 tfS G Rn

 vn G R
N 

Caccioppoli's inequality may not be true; and Caccioppoli's inequality 

is indeed the starting point for the regularity theory. 
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THEOREM 2 . [Giaquinta - Giuhti [ S] ) - Let u be a minimize*, ^on. 

A[u).Then the. Hau6do*i£ dimension o£ the. bingutan. bet ft - ftQ ib 

6th.ictty te&4> than n-2. In pahticutah. minimizes an.e smooth in 

dimension n = 2. 

Now the first natural question is whether the singularities are at 

most isolated in dimension n = 3, where first we can have singularities. 

The question is open in that generality, but it has a positive answer 

under the extra assumption that the coefficients split as 

(5) A^(x,u) = G ^ U Э g . (u) 

THEOREM 3. ( G i a q u i n t a - GiuAti [10]) - Let u be. a bounded mini­

mized. o£ 

/ G a 6 ( x ) a . Au)V u^VQujdx 

wheie G and g ah.e smooth *>ymme.th.ic definite positive, matn.ice.is. Then in 

dimension n = 3 the bingu tan.it ieb o£ u axe at mobt ibotated and in 

genen.at the bingutan. bet o£ u hat> Haubdon.^ dimension no tan.gen. than 

n - 3 . 

THEOREM 4 . [Jo*t - Weien. [ 1 S] ) - Unden. the atAumption o£ theorem 3 

i£ u i6 a bounded minimize*, with smooth boundary datum, then bingutani-

tiei> may occun. onty £an. £n.om the boundary. 

We recall that solutions of quasilinear elliptic systems may 

instead have singularities at the boundary [6l . 

The functional (3) (4) (5) that can be rewritten as 

(6) &(u) = /Ga3(x)g. .(u)D U 1 D 0 U V G dx 
ft ^ <* 3 

where 

G(x) = det(G Ax)) (G Q(x)) = (Ga6(x))"1 

aft a$ 

represents in local coordinates the energy of a map between two 

Riemannian manifolds u : Mn -* M with metric tensors respectively 

G g. g-_i. Smooth stationary points are called harmonic map*. We refer 

to [2][3][17] for more information. 
From the general point of view of differential geometry, theorems 

1) Actually, under some more restrictive assumptions, in the general 

situation of theorem 1 minimizers are also smooth in dimension 2, 

see [ 7] . 
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2 and 3 are limited. 

In fact, while we can always localize in M , this is in general 

not possible in the target manifold M , except that we assume that it 

is covered by one chart (or, worse still, that u is continuous). In the 
n N 

general setting of a map from M into M , theorems 2 and 3 have been 

proved independently by Schoen - Uhlenbeck [ 19] [ 20] . 

At this point we may resonably ask whether the (bounded) mini-

mizers of (6) may be really singular. In that respect the classical 

result by Eells - Sampson [4] can be read: ih tke *ectional cuKvatuKQ. 

o| M i* non-po*itive tken tko. minimizeK* [a* ui2.ll a* tko. *tationaKy 

point*) ofi [6) aKe *mootk. Hildebrandt - Kaul - Widman [15] in the 

case of target manifold with positive sectional curvature proved: 
n 

i& a(M ) i* contained in a geodetic ball 8 (q) wkick i* disjoint &Kom 

tko. cut locu* oh it* centeK and ka* Kadiu* 

(7) R < -J--
2\/k 

wko-Kc k i* an uppeK bound &OK tke sectional cuKvatuKe, tken tko. mini­

mizes [and even tke *tationaKy point*) aKe *mootk. 

In case of a map from the unit ball B.(0) of R into the standard 

sphere S of R condition (7) means that u(B1(0)) is strictly contain­

ed in a hemisphere. Hildebrandt - Kaul - Widman showed that the equatoK 

map u* defined by u*(x) = (-j—r,0) is a stationary point for &( u) . 
I x I 

Then Jager-Kaul [ 16] proved that u* i* a minimizeK &0K n > 6, 

uikile i t i* even unstable &oK n < 7; more recently Baldes [ l] showed 

that u* is *table even for n = 3 if considered as a mapping from 

B x(0) into a suitable ellipsoid. 

In general we have 

THEOREM 5. (Sckoen-Uklenbeck [21], Giaquinta-Soucek [IS]) - EveKy 

eneKgy minimizing map u ^Kom a domain in *ome n-dimen*ional Riemannian 

manifold into tke kemi*pkeKe S+ i* KegulaK pKovided n < 6, and in 

geneKal it* *ingulaK *et ka* Hau*doKhh dimension no laKgeK tkan n - 7. 
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