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SINGULARITIES IN TWO- AND 
THREE-DIMENSIONAL ELLIPTIC 
PROBLEMS AND FINITE ELEMENT 
METHODS FOR THEIR TREATMENT 
J. R. WHITEMAN 
Hrttnel University 
U.rbridge, Engl a n d 

1. INTRODUCTION 

The effective use of finite element methods for treating elliptic 

boundary value problems involving singularities is well recognised. 

As a result considerable effort has been expended by mathematicians 

and engineers in developing special finite element techniques which 

can produce accurate approximations to the solutions of problems 

involving singularities. 

The work of mathematicians has been mainly in the context of two-

dimensional Poisson problems. It has exploited and relied on known 

theoretical results concerning the regularity of solutions of weak 

forms of problems of this type, and has produced significant finite 

element error estimates for this limited class of problems. Comparable 

progress has not been made in the finite element treatment of three-

dimensional problems involving singularities, mainly on account of the 

lack of theoretical results for the three-dimensional case. This is 

particularly relevant to the case of three-dimensional re-entrant 

vertices. 

In this paper we present a survey of the finite element treatment 

of singularities. This is first done in the context of a model two-

dimensional Poisson problem and estimates for various norms of the er

ror are given. Some finite element techniques for singularities are 

then described, taking into account their effects on convergence rates 

and accuracy. In problems with singularities the approximation of sec

ondary quantities by retrieval from approximations to the solutions 

(primary quantities) is of great importance,and so this is also treated 

here.Finally Poisson problems with singularities in three dimensions 

are presented and the state-of-the-art for this case is contrasted with 

that for two dimensions. 

2. POISSON PROBLEMS INVOLVING SINGULARITIES 

2.1. Two Dimensional Poisson Problems. 
2 

Let ft C R be a simply connected polygonal domain with boundary 

3ft. We consider first the much studied model problem in which the 

scalar function u(x) satisfies 

- A[ u ( x ) l = f (x), x e- ft, 

u(x) = 0 , x £ 9ft, 



where f *~- L (2 ) . A weak form of (2.1) is defined in the usual Sobolev 
i 2 i 

space H'(.. ), and for this u C ft""(2 ) satisfies 
a ( u , v ) :- F ( v ) , -r v G ft (u ), (2.2) 

where 

a(u,v) = / VuVv dx, u, v C H (£2 ), (2.3) 

and 

F(v) - / fv dx, v C ft1'U), (2.4) 
2 

Problem (2.1) is treated by considering the weak form (2.2), where the 

bilinear form has the important properties that it is continuous, 

symmetric and elliptic on ft (2, ) , see Ciarlet [ l] . 

For the finite element solution of (2.1) the region 2 is 

partitioned quasi uniformly into triangular elements 2 in the usual 

manner and the Galerkin method is applied to (2.2). Conforming trial 

and test functions are employed and the solution u £ ft (2) is 

approximated by u G S , where S C ft (2) is a finite dimensional 

space of piecwise polynomial functions of degree p, (p > 1), and u 

satisfies 

a (u, , v, ) = F (v- ) -0- v, G S . (2.5) 

The well known best approximation property of the Galerkin solution 

gives the inequality 

II u - u u II n < II u - w u II 0 v w u G S h, (2 . b ) 
h 1,2 h 1 ,2 h 

where Hvll is the energy norm II Vv II /.x. Since (2.6) holds for all 
h 2 h 

w, ^ S , we may take the interpolant u h ^ S to u for w, in (2.6) 
and, using approximation theory, it follows that 

llu - uh"i,si - c h P | u l k + i , n • ( 2 - 7 ) 

where M - min(p,k), whilst C is a constant. Throughout the paper all 

constants in the estimates are denoted by C. 

The actual value of u is thus dependent both on the choice of p 

and on the regularity of the solution u of (2.2). Under the condition 

that f € L (2) the regularity of u is determined by the shape of 32. 

If 2 is a convex polygon, then u G ft (2) n H (2), so that k = 1 in 

(2.7) and 

llu " "h1!,.. " C h|u|2,£2 . ( 2 ' 8 ) 

In this case, see Schatz [2l , 

"U " V L ^ ) " C h 2 | u l 2 , n '
 (2-9) 

so that there is an 0(h) convergence gain through changing from the 

1-norm to the L9-norm. The above two estimates are opt-lmal in that 

they are the best that can be obtained by approximating from S a 



function with the regularity of u. It has also been shown, see 

Nitsche [ 3] .and Ciarlet [l], that for this case the L^-nnrm of the 
2 

error has 0(h ) convergence. 

As has been stated in Section ], problems with boundaries having 

re-entrant corners, and thus containing boundary singularities, are 

of main interest here. We thus consider again problem (2.1), but now 

in the situation where ft is a non-convex polygonal domain with 

interior angles a., 1 < j < M, where 

0 < a± < a2 <...< n < u m <...< a M < 

In this case the solution u of (2.2) is such that u £ ft u O - H (ft), 

and it has been shown by Grisvard [ 4) that over ft u can be written as 
M 

u = £a.x.(r.)u.(r.,e.)-fw, (2.10) 
j = m 3 3 3 3 3 3 

where (r.,8.) are local polar coordinates centred on the j corner of 
3 3 2 

3ft, the X-; a^e smooth cut-off functions for the corners, w fc H (ft) and 
J , n/a . nO . 

u.(r.,8.) = r. -1 sin •-• 
D 3 I 3 «j 

The regularity of u is clearly determined by the term in the summation 

in (2.10) associated with the M t h corner. In fact u e H 1 + 7l/aM~ - ( ft ) for 

every e > 0, see also Schatz and Wahlbin [ 5] . 
Since aK/I > n and u e H 1 + Tl/aM~ c ( ft ), it follows from (2.7) that 

M 
( n/a -c) 

II u - u, II , n < C h l u L , , ( 2 . 1 1 ) 
h l , f t 1 + ix/ uM~c f 

and, see Schatz [ 2 ] , tha t 
2 U / c . - E ) 

llu - u. Il_ . r o x < C h M I U I 1 A , . . ( 2 . 1 2 ) 

Whereas the convergence gain in the changing from the 1-norm to the 

L^-norm is 0(h) for the case where ft is a convex polygon, (2.8),(2.9), 

the gain is less for the re-entrant case. 

Estimates of the type (2.11) and (2.12), being global, reflect 

the worst behaviour of the solution over ft. The situation may not be so 

bad locally, in particular away from the corners where from (2.10) 

u G H . Thus we now consider L^-estimates. Suppose that at the j 

vertex z. of 9ft the intersection of ft with a disc centred at z. and 

containing no other corner is ft. and that ft = ft\( U ft.). It has been 
: 

shown by Schatz and Wahlbin [5] that 
j = l 

Щ1п(р+1,"2т1/
а
 ) -

е 

и, II
т г п

 ч < С Ь (2.13) 
п Ь ^ Ы п ) 
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l l / a M ~ c 

II U - U. L (() , < C h ( 2 . 1 4 ) 
h I ^ , ( « M ) 

Similar estimates were discussed by Oden and O'Leary [ 6] . It should 

be emphasised that all the above estimates are based on quasi-uniform 

meshes and piecewise p order polynomials. 

Specific examples of estimates (2.11) - ( 2 . 1 4 ) are those where 

the region il contains a slit, a - 2 v., for which 
M 

u e H 3 / - - e ( a ) , llu - u h l l l i n - Q < h - ' - - , . Ilu - u h l l L 2 ( J i ) = O ( h ^ ) 

»u " V L ^ ) = 0 ( h l _ t > ' »u " V ' L ^ ) =0Ch 1 / 2"E ) 

a n d w h e r e t h e r e g i o n i s L - s h a p e d , a = 3 T I / 2 , f o r w h i c h 

u e H 5 / 3 - e ( S i ) , llu - u h l 1 > a = 0 ( h 2 / 3 - E ) , llu - u h H L 2 ( n ) , 0 ( h ' * ' 3 - £ ) 

l l u - U h » L (B) = 0 C h * ' 3 - e ) . llu - u h » , = 0 ( h 2 / 3 - £ ) 

oo °° M 

2.2 Techniques for Singularities. 

The error estimates of Section 2.1 indicate the deterioration frcm 

the optimal state caused by the presence of the singularity. On 

account of the practical importance of singularities, much effort has 

been expended in producing special finite element techniques fro 

treating singularities, and a considerable literature now exists. The 

approaches fall mainly into three classes; augmentation of the trial 

ans test spaces with functions having the form of the dominant part of 

the singularity, use of singular elements, use of local mesh refinement. 

These techniques and their effects are now reviewed briefly. 

Since for problems of type (2.2) with re-entrant corners the form 

of the singularity is known, use of this can be made by augmenting the 

space S with functions having the form of the singularity. The 

solution u of (2.3) is in this case approximated by u, £ AugS . The 

technique, proposed by Fix [ 7] and used by Barnhill and Whiteman [ 8l 

and Stephan and Whiteman [ 9l , enables estimates as for problems with 

smooth solutions to be obtained. It does, however, have the disadvan

tage of producing a system of linear equations in which the coefficient 

matrix has a more complicated structure than normal. 

The technique of employing 6 4.ngu.lcUL elements involves in elements 

near the singularity the use of local functions which approximate 

realistically the singular behaviour. Elements of this type have been 



341> 

proposed by Akin [ 10] , Blackburn [ 11] and Stern and Becker [ 12] , and 

t h e i r use can lead to significant increase in accuracy of u,. O'Leary 

[ 13] , specifically for the Stern-Becker element, has proved that use 

of the element produces no improvement in the rate of convergence in 

the error estimate. The increase in accuracy must therefore be pro

duced by reduction in size of the constant in the estimate. 

Local mesh refinement near a singularity was originally performed 

on an ad-hoc basis without theoretical backing. In recent years error 

analysis has been produced which indicates the grading which a mesh 

should have near a corner in order that the effect of a singularity 

may be nullified. Examples of such local mesh refinement are given by 

Schatz and Wahlbin [5] and Babuska and Osborn [ 14] . Another approach 

is to use adaptive, mesh refinement involving a-posteriori error 

estimation. 

With adaptive mesh refinement the region ft is partitioned 

initially and the local error in each element is estimated. If, for a 

particular element, this is greater than a prescribed tolerance, the 

element is subdivided thus causing the local refinement, see Babuska 

and Rheinboldt [ 15] , [ 16] . Hierarchical finite elements have recently 

been incorporated into the technique, Craig, Zu und Zienkiewicz [17], 

as have multigrid methods Bank and Sherman [ 18] and Rivara [ 19] . 

2.3 Retrieved Quantities. 

As has been stated in Section 1, for problems involving boundary 

singularities the approximation of secondary (retrieved) quantities is 

most important. Specifically the coefficients a. in (2.10) of singular 

terms are of practical significance, so that ways must be found of 

approximating these accurately. Apart from the obvious approach of 

using collocation or least squares methods to fit terms to calculated 

results, it is often possible to exploit the mathematics of the original 

problem. An important case is that of a problem containing a slit, 

a - 2TT, and here use can be made of the "J-integral" concept to pro

duce an integral expression for the a , see Destuynder et al.,[20]. 

This integral can be approximated using the calculated solution u, . For 

piecewise linear test and trial functions on a mesh with local refine

ment, 0(h) estimates are given in [20] for the absolute value in the 

error in the approximation to the singularity coefficient a . 
M 

Fro problem (2.2), when a singularity is present, the integrand of 

the "J-integral" involves derivatives of the solution u. Thus the 

accuracy of the approximation to the integral, and hence to the singu

larity coefficient, depends on the errors in the gradients of u, . 
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A possibility exists here of exploiting superconvergence properties 

in the estimation of errors in gradients of u, , provided local esti

mates can be obtained. To date the error estimates have depended on 

the global regularity of the solution u, see Levine [2l] . 

2.4 Three Dimension Poisson Problems. 

We consider again problems of the type (2.1), except that now 

il C R is a polyhedral domain. The weak forms and the finite element 

method for the three-dimensional case can be described similarly, 

again with ft C R . Singularities can in this case occur on account of 

re-entrant edges and vertices. The decomposition of the three dimen

sional weak solution corresponding to (2.10) has been shown, e.g. by 

Stephan [ 22] to have the form 

M N 
u = Z a Xiu + Z f = v + w (2.15) 

j = l J J 3 k=l k k k 

(vertices) (edges) 

2 — 
where w C H (U), x.(r.) and = (p ) are cut-off functions respectively 

D D k k 
for the vertices and edges, whilst the u. and v, are functions 

associated also respectively with vertices and edges. For an edge the 

v, have the two dimensional form for any plane orthogonal to the edge 

associated with the appropriate two dimensional problem, whilst the 
b, are functions of z, . 
k k 

The singular function u. for each vertex is found by solving a 

Laplace-Beltrami eigenvalue problem on that part of the surface of the 

unit ball centred on the vertex cut off by the faces of the vertex. 

When the vertex is such that the eigenvalue problem is separable (has 

a single coordinisation), there are special cases when the problem can 

be solved exactly, see Walden and Kellogg [ 2 3] . When this is not so, 

for example for a vertex made up from three mutually orthogonal 

planes, Beagles and Whiteman [24], a numerical approximation to the 

eigenvalue must be obtained with the result that the singular function 

will not be known exactly. 

Clearly this lack of knowledge of the exact singular functions is 

very important from the finite element point of view, and in 

particular means that the error analysis of Section 2.1 cannot in 

general be transferred directly to the three-dimensional singular 

case. All the singularity methods described in Section 2.1 are affect

ed, although all are used in the three-dimensional context. The 

augmentation technique is obviously adversely affected, although 

Beagles and Whiteman [25] have devised the technique of non-txact 

augmentation, whereby the trial and test function spaces in the 
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G a l e r k i n p r o c e d u r e a r e augmented wi th the non- e x a c t s i n g u l a r 

f u n c t i o n s . As f a r a s we a r e aware no method of t h e " J - i n t e g r a . l " 

type e x i s t s fo r t h r e e - d i m e n s i o n a l Po i s son p r o b l e m s . 

The above i n d i c a t e s t h a t the s t a t e - o f - t h e - a r t f ro t r e a t i n g 

t h r e e - d i m e n s i o n a l s i n g u l a r i t i e s w i th f i n i t e e lement methods i s f a r 

l e s s advanced than t h a t fo r t h e t w o - d i m e n s i o n a l c a s e . Th i s a r i s e s more 

from l i m i t a t i o n s in t h e t h e o r y of t h r e e - d i m e n s i o n a l P o i s s o n problem 

than from t h e f i n i t e e l emen t methods t h e m s e l v e s . 
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