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SUPERCONVERGENCE RESULTS FOR 
LINEAR TRIANGULAR ELEMENTS 
M. KRIZEK 
Mathematical Institute, Czechoslovak Academy of Sciences 
115 67 Prague 1, Czechoslovakia 

The aim of the paper is to present several superconvergence pheno

mena which have been observed and analyzed when employing the standard 

linear elements to second order elliptic problems. We shall illustrate 

them in their simplest form solving the model problem: 
2 

- Au = f in fi C R /, ) 

u = 0 on dQ , 

where 0, is a convex polygonal domain and u is supposed to be smooth 

enough. 

Let j T, } be a regular family of triangulations of n , i.e., Zla"-

mal's condition on the minimal angle of triangles is fulfilled. The dis

crete analogue of (1) will consist in finding u, £ V, such that 

< ' V ' V o . a =
 ( f'Vo. a V v h £ Vh . (2) 

where 

Vh = { v h £ H > ) | v h | T € P l ( T ) V T £ Th] . 

I t i s known [15,39J t h a t the e r ro r est imates 

C p h 2 | | u | l 2 . P , « l f P £ P.") • 
N " - % i l o . p . ^ < c h 2 | l n h | | | u | | 2 ^ a l f p _ „ , > 

H v u - ' uhMo.p, n i
c hH ull2.p.n i f P 6 [-.-J . <*> 

are optimal. Nevertheless, we can improve the order convergence (in some 

norm |J| • III which is close to ll*ll0 Q ) bY a suitable post-proces

sing ^ , and this we call the superconvergence. The post-processing ^ 

should be easily computable and the norm ||| • III m aY b e e.g. a discrete 

analogue of I I" I I 0 f P > n . ° * H I ' HI = I I ' I I 0 , p , n
 f o r fi

0 C C n (i.e. 

^n C n ) > o r III • III = I I * I I n Q » etc* W e introduce several examples 

where ^ is a restriction operator to some subset of 11 , an averaging 

and an integral smoothing operator. Let us emphasize that many supercon

vergence phenomena are very sensitive to the mesh geometry (therefore, 

uniform, quasiuniform or piecewise uniform triangulations are mostly 
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form, i.e., any two adjacent triangles of T, form a parallelogram. 

Let N, be the set of nodal points of T, . Then the use of the 

expansion theorem for linear elements by Q32J yields (cf. (3)) 

4 i ,. I i 
max 
x Є N

u 

u(x) < CrГ 
CЧ (fì) 

(5) 

provided T, consists of equilateral triangles. We mention that the 

(stiffness) matrix arising from (2), when taking the standard Courant 

basis functions, is the same as for the well-known 7-point finite diffe

rence scheme (see e.g. [35j , p. 91) 

2 ICL 

з
 < 6 u

o 
J
4 , V 

u
2
 4 

h f
Q
 + h Af

Q
/16 

with the rate of convergence 0(h' 

Remark 1. Using (1), (2), (5), and the affine one-to-one mapping F 

between any uniform triangulation T and a triangulation T consis

ting of equilateral triangles, one easily obtains an analogue of (5) for 
-1 

T, = F (T, ) , indeed, but for other equation. For instance, the trian-
h h ^ 

gulation sketched in Fig. 1 guarantees the nodal superconvergence for 
2~ 

the equation - Au + a u/3x3y = f . 

УA / 7: 
/ /, / , Л Л À Л 

Fig. 1 Fig. 2 

Remark 2. A convenient combination of linear and bilinear elements may 
4 

give the 0(h )-superconvergence at nodes for the problem (1) on trian-

gulations consisting of right-angled triangles. Let {u } and {v } be 

the Courant piecewise linear basis functions over the triangulation of 

Fig. 1 and 2, respectively, and let {t } be the standard basis functi

ons for bilinear rectangular elements. Put 

w
1
 = t

1
/2 + u

1
/4 + v

X
/4 

i 
and denote by W, the linear hull of (dim W, = dim V, ) . Now, the 

h n 

by W. is the samé as for matrix arising from (2), if we replace V, 

the 9-point difference scheme over square meshes [35j , p. 90; and it is 

thus easy to derive the rate 0 ( h ) at nodes employing the basis {w1} 

The next table shows the values of the maximum error over all nodes for 

various choices of basis functions when u(x,y) = y (y - 1) sin TTX is 

the exact solution of (1) on the unit square fi = (0,1) x (0,1) . 
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h " 1 i 
V (vЧuЪ/2 t 1 (tЧv /2 i 

w 

4 1 2 0 6 9 E-2 1 . 2 0 6 9 E-2 1 . 2 9 6 2 E-2 6 . 0 7 0 3 E-4 1 . 6 8 3 2 E-4 

8 3 . 1027 E - 3 3 . 1 0 2 7 E - 3 3 . 1589 E - 3 1 . 3 1 5 6 E-4 1 . 0 3 0 7 E - 5 

16 7 . 8 1 2 6 E-4 7 . 8 1 2 6 E-4 7 . 8 4 7 8 E-4 3 . 5 2 5 0 E - 5 6 . 4 0 9 2 E-7 

32 1 . 9 5 6 7 Ľ-4 1 . 9 5 6 7 E-4 1 . 9 5 8 9 E-4 8 . 7 6 4 0 E-6 4 . 0 0 0 6 E-8 

Further we present superconvergence results for the gradient of 

u, £ V"h . According to £1,26_], the tangential component of Vu, is a 

superconvergent approximation to the tangential component of Vu at 

midpoints of sides. Denoting by M,_ the set of these midpoints, we may 

then define a recovery operator for both the components of the gradient 

by the relation (see £_4 , 8 , 9 , 1 1 , 26 , 28 , 30, 31 , 33 , 40] ) 

Vuh(x) = 2 ^
Һ
|

T h T„ 
x e

 м

h
 П

 fi 
(6) 

where 

which 

T
2
 Є Г

h 

1 '2 

are those adjacent triangles for 

x £ T П T
2 

(note that Vui is constant) 

As shown in £1 1 , 30] , 

I Vu(x) Vuh(x) <. Ch ln h 13,«,o 

(4)) 

Fig. 

For a three-di-or even 0(h ) for the discrete L -norm £26j (cf. 

mensional analogue of (6), see £5_] . 

Note that the sampling at centroids of the bilinear elements leads 

to the superconvergence of the gradient £2 4_] . This is not true for the 

linear elements. However, a weighted averaging scheme between four ele

ments , 

™ h ( x ) = |(3vu h | T + 2 v« h| T ) • x e c h n n 

yields £2 6j _ 

h( E | |vu(x) - vuh(x) | |
2} 2 < Ch 2| |u 

o 

3,fì* 

Here 

"0 

is the set of centroids of all T ç T, 

Fig. 

^0 C C.Пi and т
v
т_, 

T e T
h
 are the triangles adjacent to that triangle T £ T, for which 

x Q T . Using (6), one can define a discontinuous piecewise linear field 

which recovers the gradient of even at any point of fi C C ft 

(see £36J ) . By the following averaging at nodes x e N, we may determine 

a continuous piecewise linear field 

T П íx}^0 Чi т 

vii
h
(x) = ^ o , 

1 

І^/^ҺІT.-^ҺІT 
1=1 1 ' 
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where Y is the set of vertices of n , T. and T_ form a parallelo-
1 3 ^ 

gram for every i = 0,1,2 , and T O T2 D T = {x} when x £ N, D (dft-Y) 

- see Fig.5. In this case the global superconvergence estimate reads [2 3]: 
N™ " ' \ l l 0 . p , » i c h 2 l l n h l 1 " 2 / P N u N 3 , P ) u • P e {2.»> . (8) 

For the generalization of the scheme (7) to elliptic systems with non-

homogeneous boundary conditions of several types, we refer to [20]. If 
3/2 dtt is smooth then a local 0(h ' )-superconvergence in Q C C ft can be 

2 
achieved [20,21] in the L -norm ( T, are not uniform near the boundary 

dtt ) . 

Consider now triangulations as marked in Fig. 1 or 2 and the smooth

ing post-processing operator 

uh(x) = £h
 uh ( x + y) d¥ » 

D h 

where D, = (-h,h) x (-h,h) .If n_ C C Q and dQ is again smooth then 

(see [37,38]) 

H u - \lli.n0 i
c h 3 / 2NuM 3 > f i • 

which is, in fact, a superconvergent estimate for the gradient. 

Another type of an integral smoothing operator which yields a super-

convergent approximation for Vu as well as for u even on irregular 

meshes is presented in [3] . In [19] a least squares smoothing of Vu, 

is proposed to obtain a better approximation to Vu . Related papers with 

superconvergence of linear elements further include [2,6,7,12,13,17,18, 

25,29,34], see also the survey papers [10,22,27]. 

Let us now turn to superconvergent approximations to the boundary 

flux q = -r— L^ ( n is the outward unit normal to dft ) . Setting 
^ 9n'dQ 

where Vu, is given by (7), we immediately get from (8) that 

M * - * h N o . » . a ^ c h 2 llnhl U»U3,~,a • 
i.e., the continuous piecewise linear function q, approximates q 

better than the piecewise constant function q, = n-Vu, L Q . 

Another continuous piecewise linear approximation q, to the boun-

can be defined with the help of Green's formula dary flux q can be 

JЧ 
ÒQ 

where 

vh ds 
= 

(Vu 

u h = {vh
Є н

1 

(П) 

V u
h - ' V o .

a
 -

 ( f' vh )o. ň Vv h e u h 

v h | T £ P1(T) V T GT h} . 

This technique suggested by [16], p.398, is based on some ideas of [14] 

Numerical tests of the presented superconvergent schemes can be 

found in [3,6,11,19,21,23,24,26,36], 
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