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DELAY MAKES PROBLEMS 
IN POPULATION MODELLING 
K. SMÍTALOVÁ 
Department of Applied Mathematics, Comcnius I'nirersily 
Mlýnská dolina, 842 15 Bratislava, Czechoslovakia 

The basic population model x' = ax, although it is very simple, 

plays an important role in the history of modelling. Contrary to mathe

matical models in physics, it is not designed to determine quantities. 

Here the mathemtics only exhibits a tendency. The purpose of such a 

model is not prediction, but insight [ 2] . 

The same is true for most population models. Important are the qua

litative properties, such as stability of equilibrium states, existence 

of periodic solutions, etc. 

Intuitively it is clear that the history of development of a model

led biological system is very important for his state in the future. 

Hence the use of delayed differential equations seems to be appropriate. 

Moreover, using the delay one can describe age and also the spatial 

structure of the population [3l . Generally speaking, a model involving 

the delay allows more complex types of behavior than models without 

delay. 

By modelling usually the following assumptions are made: 

1) Different histories determine different solutions. 

2) Suitable choice of the history allows the solution to attain 

any prescribed value at a given time. 

The first problem is a problem of injectivity of the shift opera

tor (or solution map) [ll . Take e.g. the equation 

x'(t) = -ax(t - 1)[1 - x ( t ) l 

which arises in a natural way from a model 

y'(t) = a(y - y2) 

of self-limited population. Then for every initial function <p satis

fying the condition <P(0) = 1 we have x( t) = 1 for t > 0. 
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Let C(-1,0) be the space of continuous mappings from [-1,0] to 

the set R of real numbers. For the equation 

x'(t) = f(x(t - 1 )) (1 ) 

define an operator T : C ( - 1 , 0 ) -+ C(-1,0) by 

T(<p)(t) = x (t + 1 ) , t G [ -1,0] 

where x denotes the solution of (1) determined by the initial function 

cp £ C(-1,0). Such an operator T is called shift operator or solution 

map for the equation (1 ). The above quoted example exhibits an equation 

for which the shift operator is not injective. The following result sta

tes that this is actually the typical case for equation (1). 

Theorem 1. Let C be the metric space of continuous mappings from R 

to R, equipped with the metric p(f,g) = min{l, suplf(x) - g(x)|}. Let 

- x 

H C c be the set of those mappings f C C, for which there are initial 

functions cp * <\> with cp(0) = (JJ(0), generating the same solution x (t) = 

= x,(t) of (1) for t > 0. Then C \ H is nowhere dense in C. 

In other words, the shift operator for the solution (1) is generi-

cally not injective. 

Proof. The set M of those f C C, which attain strong local maxima 

at certain points, is clearly open and dense in C. Hence it suffices to 

show that M C H. 

Choose, for anv given f C M, points a < c < b with f(a) = f(b) < 

< f(c) = max{f(t)j t C [a,b]}. For any d > 0 choose a set M(d) of 

points 

a = an < a1 <...< a. = c = b <...< b, < bn = b 0 1 k k 1 0 

(k is suitable integer) such that f(a.) = f(b.) for any i, and 

|f(t) - f(s)l < d whenever t, s G [a.,a. ] or t, s C tb.+1,b.] 

for some j. Let <p(d), 4>(d) € C(-1,0) be such that <p(d)(i/k - 1) = a. , 

4>(d)(i/k - 1) = b., and cp(d), <l>(d) be linear on every of the intervals 

[i/k - 1,(i + 1)/k - 1 ] , i = 0,...,k . 

We follow the above construction for every d = 1/n, n = 1,2,... . 

Without loss of generality we may assume that M(l/n) C M(l/(n + 1)) 
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lim <j>(l/n) = <p and lim ^(I /n) = <v 
n-*°° n-*°° 

uniformly. Moreover, <p(0) = <K0) and f(<p(t)) = f(<l»(t)) for every 

t € 1-1,0], i.e. <p and 4> are the desired initial functions, q.e.d. 

Modifying the above argument for equation with continuously differ-

entiable right side, we obtain the next 

Theorem 2. Let C be the set of continuously differentiable functi

ons from R to R, with the usual C -netric. Let H be the set of those f 

from C , for which there are initial functions <p * <\> with <p(0) = <|>(0), 

generating the same solution of (1 ) . Then both 

Int H 1 * 4> and Int ( C ^ H 1 ) * 4> 

Remark. Theorem 2 can be generalized to the equation 

x'(t) = f(x(t),x(t - 1)) (2) 

where f is continuously differenatiable. We conjecture that also Theorem 

1 can be generalized to this case, although we are not able to give any 

proof. 

Next consider the second problem. Given some CE,x) £ R , where 

t > 0, does there exist an initial function <p £ C(-1,0) such that 

x (E) = x, where x is the solution of the equation (1 )? THis is the 
<p , q> 

problem of pointwise completeness of (1), In 1 41 we recently gave a 

sufficient condition for pointwise completeness, which for (1 ) can be 

formulated as follows: 

Theorem 3. Let t,x € R be given. If f G C satisfies the Lipschitz 

condition 

|f(x) - f(y)l < Llx - y| for any x,y € R 

and 

L . E < 1 (3) 

then there is a function 9 G c(-l,0) such that x (t) = x. 

Note that theorem is true also for x G R . 
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The following example shows that the condition ( 2) in general 

cannot be omitted. 

Example. Let f(x) = 0 for x < 1, and f(x) =1 - x for x > 1 . 

Let q> £ C(-1,0) be an initial function. Let x be the corresponding 

solution of (1). Then x (t) is non-increasing in [0,°°), hence we ha

ve x (t) > x (1), for t e [0,1], Since x (t) < 1 for t > 1, where 

c|/(t) = x (1 ) = const for t € [-1,0], we have x (2) < 1. This is true 
<p <p 

for arbitrary cp. 

The above quoted properties of delayed differential equations does 

not seem to be good for modelling. Theorem 1 e.g. indicates a structural 

non-stability for models involving the equation (1 ). But also the well-

known Volterra's - Lotka's predator-prey differenatial model is structu

rally unstable though its role among the known models is of great impor

tance. 
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