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ON UNIQUENESS AND STABILITY 
OF STEADY-STATE CARRIER 
DISTRIBUTIONS IN SEMICONDUCTORS 
H. GAJEWSKI 
Karl-Weierstraß-Institutfür Mathematik der Akademie der Wissenschaften der DDK 
1086 Berlin, Mohrenstraße 39, DDR 

In this paper we establish a simple smallness condition guaran­

teeing the basic equations for carrier distributions in semiconductors 

to possess a unique steady-state solution. Under this condition arbi­

trary perturbations of the steady state decay exponentially in time. 

1. Introduction 

Let G be a bounded Lipschitzian domain in R , d < 3. Let the 

boundary S of G be the union of two disjoint parts S and S2, 

S closed in S, mes S- > 0. A familiar model of carrier transport in 

a semiconductor device occupying G is given by the system [10,131 

-Au = (cr/e)(f + p - n), (1.1) 

qnt = V.J - qR, J = qy (kVn - nVu), (1.2) 
t n --' p ^ n 

cm = -V.J - qR, J = -qy (kVD + pVu) , (1.3) 
t P * D p ~ 

u = U , n = N , p = P on R+X S . v. Vu-v. Vn = v. Vp = 0 on ,A , N s s s 1 '• * (1,4) 

R X S2 

n(0,x) = nQ(x), p(0,x) = pQ(x), x e G . (1.5) 

Here 
u is the electrostatistic potential, 
n and D are the mobile electron and hole densities, 
J and J are the current densities, n p 

f is the net densitv of ionized impurities, 

q is the electron charge, 

R 

is the dielectric Dermitivity of the semiconductor material, 
2 

(np - ni)/(T(n+p+2ni)) is the recombination rate, 

n. is the intrinsic semiconductor carrier density, 
T is the electron and hole lifetime, 

v» and y are the (constant) electron and hole mobilities, 
n p ' 

U , N and P are given boundary values, 
s s s 
v is the outward unit normal at any Doint of S2. 
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In the expressions for the current densities the Einstein relation 

Dn ~ = kvi _ between diffusion coefficients and mobilities is used. 
n. y n,p 

(k = k T/g, k = Boltzmann constant. T = absolute t e m p e r a t u r e . ) 

The carrier transport equations ( 1 . 1 ) - ( 1 . 3 ) were derived by Van 

Roosbroeck [ i l l in 1950 and are now generally accepted. The first sig­

nificant report on using numerical techniques to solve these equations 

for carriers in an operating semiconductor device structure has been 

published by Gummel [6l in 1964. Since then, the numerical modelling 

of semiconductor devices proved to be a powerful tool for device de­

signers ( see [ 13] ) . 

In spite of their physical, and technological relevance, the devi­

ce equations received relatively little attention from the side of 

mathematical analysis. To our knowledge, the first matematical paper 

devoted to these equations appeared in 1972. In this paper Mock [7] 

proved the solvability of the steady-state equations associated to 

( 1 . 1 ) - ( 1 . 5 ) supposing that y = p and R = 0. More recently, Seidman 

[12], the author [3] and Groger [5] have published more general exi­

stence theorems for steady states. All these results are based on ma­

ximum principle and compactness arguments. 

As to the instationary problem ( 1 . 1 ) - ( 1 . 5 ) , again Mock [8] was 

the first to prove a global existence and uniqueness result in a spe­

cial situation. Recently, the author [2] and Gajewski&Groger [4] could 

show the existence and uniqueness of qlobal solutions under rather 

qeneral assumptions. Of course, the crucial step in these papers con­

sists in findinq appropriate a-priori estimates. Such estimates are 

obtained by means of a physically motivated Liapunov function and an 

iteration technique due to Moser and Alikakos. 

One of the essential open questions arising from the Van Roosbroeck 

equations is that of the uniqueness and stability of steady states. 

General answers to this question are not to be expect by physical 

reasons I 1,10]. A special result in this direction [7] concerns the 

case of small perturbations of the thermal equilibrium which results 

from the assumption 

U - k log(N /n ) = U + k log(P / n . ) = c = const, on S 

and is qiven by 

N = n. exp((U - c ) / k ) , P = n± exp((c - U) /k) , 

where U is the ( u n i q u e ) solution of the nonlinear boundary value 

problem 

-AU = ( q / c ) ( f - 2n± sinh((U - c ) / k ) ) ) in G, 
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BU = U , where Bv = (v on S , v.Vv on S-J and U = 0 on S2. 

The thermal equilibrium has been shown to be qloballv ^svmptotically 

stable (COIIVD. I 9] for the special case S = S-, and [2,41 for more ge­

neral situations). In fact, it was proved in [ 4l that for reasonable 

initial values the solution (u(t),n(t)-p(t)) of (1.1)-(1.5) conver-

cres to the corresnondina thermal equilibrium (U,N,P) exponentially 

in time. The proof of this result heavily upon the observation 

that the function 

L(t)= /(kq(n(log(n/N)-l)+N+p(log(p/P)-l)+P)+(e/2)|V(U-u)I2)dx 
G 

is monotonouslv decreasing. 

The main purpose of the present paper is to state another kind of 

smallness condition implying uniqueness as well as global asymptotic 

stability of stationary solutions. Our smallness condition involves 

the essential physical parameters and can be easily checked. 

2. Results 

Let L2, L^. H be the usual space of functions defined on G. 

We use the followina notations 

|v|2= /v2dx, Ivl^ = vrai max v, Ivl2 = /IVvl2 = dx , 
G °° G 

v = {v G H V V = O o n S . } , W = (v G (H^ H L j 3/ v_,v. > 0 in G} . 
2 1 2 0° z 3 

We assume that f G L^ and that the boundary values can be represen­

ted by functions (U ,N ,P ) G w. Let A be the smallest eigenvalue 

of the problem 

-Av = Av in G, Bv = 0 on S , 

such that we have 

A Ivl2 < llvll2, v G v . (2.1 ) 

Now we can state our results." 

Theorem 1. Let (U,N,P) G w be a stationary solution of (1.1)-(1.-+) 

such that 

r(Q) = J L - < S ( P + Q ) + ^ i - a + 1 a_) , < ! 

where 

F = If 1^ Q = 4( INI^ + IPIJ , y = min(un,up) . 

Then (U,N,P) is unique in W. 

Remark. As to existence results for steady states (U,N,P) G w we re­

fer to [ 31 . In this paper also explicit bounds for INI^ and IPI-o can 

be found which involve only f and the boundary values. 



212 

Theorem 2. Suppose 0 < nQ, pQ
 G LM. Let (u,n,p) be the solution 

of (1.1)-(1.5) and let (U,N,P) be a stationary solution satisfying 

the h y p o t h e s e s of Theorem l. Then for t > 0 the following estimates 

are valid with a = 2kXy(l - r(Q)) 

u In(t)-N|2+ nnlp(t)-P|
2< e~at(u lnQ-N|

2+ y J p ^ P I 2 ) , 

VXIu(t)-Ul < llu(t)-Ull < (q/(e>/x))(|n(t)-Nl + lp(t)-P|) . 

Remark. The existence and uniqueness of the time-dependent solu­

tion (u,n,p) is guaranteed by [4], Theorem 1. 

3. Proofs 

We denote by (.,.) the L2-scalar product as well as the pai­

ring between the Hilbert space V and its dual V* C L ?. We intro­

duce the set 

M = {[N,Pl e ( H 2
 n Loo)2, N,P > 0 on G, N=Ng, P=Pg on S1) . 

Finally, we define an operator A e (M -• (V") ) by 

(A[N,Pl ,[h1,h2l ) = y ((yn(kVN-NVU) ,Vhj[) + (R,h1)) + 

+ y ((n (kVP+PVU),Vh0) + (R,hJ) vh , ,h- ^ V , 
n p z 2 1 2 

where R = R(N,P) and U = U(N,P) is the solution of the boundary va­

lue problem 

-AU = (q/e )(f + P - N), BU = U on S . 
s 

The main tool for proving our results is the following monotonicity 

property of the operator A. 
Lemma. Let [ N.,P.l € M, j=l-2, N,<. N, P9< P in G, N,P=cons. Set 

— — J J -- -* 
Q=4(N+P). Then it holds with m=yn y k(l-r(Q)), N=N1-N2, P=P1-P2 , 

(A[N1,P11 - A[N2,P21 , [ N , P ] ) >m(llNll2+ Hpll2) . 

Proof. Setting U ^ u(N1,P1)# U2= U(N2,P2)-, U=U1~U2 and using (2.1) 

we get 

||UII2= (q/e)(P - N,U) $ (q/e)|P - NllUl < (q/(eX))«P - N H IIUII 

and consequently 

II US = (q/(e\A))IP - Nl < (q/(eX))IP - Nil, |U| < (q/( eX ) ) IP-NI (3.1) 

Thus we find 
(kVN-N1VU1+ N2VU2,VN) + (kVP + P-VU^ P2VU2,VP) = 

= JC(INII
2+ Hpll2) - (NVU + N VU,VN) + (PVU + P VU,VP) = 

= k(»Nll
2+ »Pll2) + (q/(2e))(P2-N2,f + P ^ ^ )+(P VP-N VN,VU) = 

= k(llNB
2+ Hpll2) + (q/(2£))(((N-P)

2,N1+P1) - (N
2,f + 2P2) + 

+ (P2,f - 2N2) + 2(NP,N2+ P2)) + (P2VP - N2VN,VU) > 
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> k (HNll 2 + IIP"2) - ( q / ( 2 e X ) ) ( ( F + N+ 3 P ) « N l l 2 + (F + 3N+P) IIPII2 + 

+ 2 (Nil Nil + PlIpH) HP - Nil) > 

> k ( l - ( q / ( 2 e A ) ) ( F + Q ) ) ( I I N I I 2 + Hpll2) . 

On the other hand, setting a.= T(N. + P. + 2n.), we get 
3 3 3 i 

( R 1 - R 2 , N ) = ( ( l / a 1 ) ( N P 1 + N 2 P - ( ( N 2 P 2 - n ? ) / a 2 ) T ( N + P ) ) , N ) > 

> - ( l / X ) ( ( N / ( 2 a 1 ) ) ( l l N l l 2 + llpll2) + ( Q / ( 1 6 a 1 ) ) ( "Nil + I P « ) I N I + 

+ ( 1 / ( 8 T ) ) ( HNII2 + l lp l l 2 ) ) > 

> - ( l / ( 4 X T ) ( ( N / n i ) ( l l N l l 2 + l lpll2) + ( Q / ( 1 6 n i ) (3l lNll 2 + Hpll2) = 
+ ( i / 2 ) ( IINII2 + l lp l l 2 ) ) . 

Evidently, an analogous estimate holds for (R1~ R 2,P). Now the lem­

ma is an immediate consequence from these estimates. 

Proof of Theorem 1. Using the operator A we can rewrite the 

stationary problem as follows. 

A[N,P] = 0, [N,P] G M , ( 3.2) 

From this it becomes clear that the theorem follows easily from the 

lemma. 

Proof of Theorem 2. We can write (1.1)-(1.5) in the compact form 

U nt,ynpt] + A[n,p] = 0, [n(t),p(t)] € M, n( 0) = nQ, p( 0) = pQ. 

Hence, using (3.2) and the lemma, we get 

0 > i(u In - N|2+ v. Ip - PI2) + kXy(l - r)(y In - N|2+y I p- P12) . 
2 p n t p n 

Applying a well-known differential- inequality and ( 3.1 ) we obtain the 

theorem. 

Remark. Our lemma can also be used in order to find relaxation 

parameters £> such that the iteration sequence ([N.,P•]) defined by 

-A[h1,h2l = b A[N.,P.], h i rh 2 G V, j = 0,1,... 

N
j + 1 = N j + h l ' Pj+1= P j + h 2 ' [ N 0 ' P 0 ] e M 

converges to a stationary so lu t ion . 
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