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NUMERICAL AND THEORETICAL 
TREATING OF EVOLUTION PROBLEMS 
BY THE METHOD OF DISCRETIZATION 
IN TIME 
K. REKTORYS 
Technical University Prague 
Thdkurova 7, 166 29 Prague 6, Czechoslovakia 

More than fifty years ago, E. Rothe suggested an approximate method of 

solution of parabolic problems. He divided the i n t e r v a l I = [O,T] for 

the variable t into p subintervals I. of the length h = T/p and 

at each point t . = jh , j = 1,...,p , he approximated the function 

u(x,t.) by the function z.(x) and the derivative 0u/3t by the dif­

ference quotient [z .(x) - z._.(x)J/h . Starting with z given by 

z0(x) = u(x,0) = un(x) , he found, successively for j = 1,...,p , the 

approximations z.(x) as solutions of the so arisen ordinary boundary 

value problems. The problem, solved originally by E. Rothe, was a very 

simple one. However, his method turned out to be a very useful tool for 

solution of substantially more complicated evolution problems (at first 

linear and quasilinear parabolic problems of the second order in n di­

mensions, later parabolic problems of arbitrary order, nonlinear prob­

lems t hyperbolic problems, the Stephan problem, integrodifferential prob­

lems, mixed parabolic-hyperbolic problems, etc.). The development of the 

Rothe method, called also the method of discretization in time, or the 

horizontal method of lines, is connected with such names as 0. A. Lady-

zenskaja, T. D. Ventcel, A. M. Iljin, A. S. Kalasnikov, 0. A. Olejnik, 

J. I. Ibragimov, P. S. Mosolov, 0. A. Liskovec, R. D. Richtmayer> N. N. 

Janenko, M. Zlamal, J. Necas, J. Kacur, A. G. Kartsatos, M. E. Parrot, 

W. Ziegler, J. W. Jerome, E. Martensen and his school, U. v. Welck, J. 

Naumann, C. Corduneanu, etc Theoretical as well as numerical questions 

have been examined (existence and convergence theorems, regularity ques­

tions, numerical aspects, e t c ) . Many of the obtained results were obtai­

ned as well by other methods - method of compactness, theory of semi­

groups, method of monotone operators, Fourier transform, etc. (A. Fried­

man, M. Krasnoselskij, P. E. Sobolevskij, F. E. Browder, J. L. Lions, 

E. Magenes, H. Bre"zis, V. Barbu, D. Pascali, M. G. Crandal, W. v. Wahl, 

e t c ) . As concerns numerical methods, related to the Rothe method, the 

methods of space - or time-space discretization were applied (V. N. 

Fadejeva, J. Douglas, T. Dupont, M. Zlamal, R. Glowinski, J. L. Lions, 
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R. Tremoliere, P. A. Raviart, W. Walter, K. Groger, etc.). Each of the 

mentioned methods, including the Rothe method, has its preferences and 

its drawbacks. However, the Rothe method has its significance both as 

a numerical method and theoretical tool. Existence theorems are proved 

in a constructive way. Thus no other methods are needed to give preli­

minary information on existence, or regularity of the solution as re­

quired in many other numerical methods when questions on convergence, or 

order of convergence, etc. are to be answered. The Rothe method is a 

stable method. To the solution of elliptic problems generated by this 

method, current methods, especially the variational ones, can be applied. 

As concerns theoretical results, they are obtained in a relatively sim­

ple way, as usual. Moreover, the Rothe method, being a very natural one, 

makes it possible to get a particularly good insight into the structure 

of the solutions. Often a brief inspection of the corresponding elliptic 

problems gives an information what can be expected as concerns proper­

ties of the solution. This is why I prefer it. 

In 1971, a slightly different technics than that applied currently in 

this method appeared in my work [2], making it possible to treat corres­

ponding elliptic problems in a particularly simple way. This technics 

was followed by other authors (in our country J. Necas, J. Kacur) and 

became a base for work of my seminar at the Technical University in 

Prague. Results obtained in this seminar were summarized in my monograph 

[ij in 1982. I would like to present some of them here, pointing out 

the very simple way in which they have been obtained. 

1. Existence and convergence theorem. Let us start with a relatively 

simple parabolic problem 

|£ + Au = f in G x (0,T) , (1) 

u(x,0) = 0 , (2) 

B.u = 0 on r x (0,T) , i = 1,...,y , (3) 

C.u = 0 on r x (0,T) , i = 1,...,k-y . (4) 

Here, G is a bounded region in E with a Lipschitz boundary r , 

A = £ (-I)'1' Di(a.,(x)Dj) 

|i|.|l|<k 3 

(5) 

with a. . bounded and measurable in G , f e 1M (G) ; (3), or (4) are 

(linear) boundary conditions, stable (thus containing derivatives of 

orders <. k - 1 ), or unstable with respect to the operator A , respec­

tively. Denote 



V = {v; v e W^ (G), B.v = 0 on r in the sense of traces, 
1 (6) 

i = 1,...,,} , 

let ((.,.)) be the bilinear form, corresponding to the operator A and 

to the boundary conditions (3), (4), familiar from the theory of varia-

tiinal methods. (Roughly speaking, ((v,u)) is obtained of (v,Au) , ap­

plying to every integral / v D1(a. . D-̂ u) dx i-times the Green theorem 
G 1J 

in the usual way, see e.g. [1] , or [3] . For example, if A = - A and 

u = 0 on r is prescribed, then 

V = W^ U(G) and ((v,u)) = L \ ~~ -^- dx . ) 
i=1 J

G
 ( i ' i 

Let the form ((.,.)) be bounded in V x V and V-elliptic, i.e. let two 

positive constants K and a (independent of v and u ) exist such 

that the inequalities 

|((v,u))| < K||v||v||u||v , (7) 

((v,v)) > a||v|\l (8) 

hold for all v, u 6 V . Let to the .solution of the problem (1) - (4) 

the Rothe method be applied. Denote 

z. (x) - z (x) 
Z±(x) = -i ^ - ^ , i = 1,...,p . (9) 

(Thus Z.(x) "corresponds" to the derivative 8u/9t for t = t. .) In 

the weak formulation, we have to find successively for j = 1,...,p , 

the functions z. e V , satisfying, 

((v,z )) + (v,Z..) = (v,f) V v e V , (10) 

with z
n(

x) = u(x,0) = 0 . Under the assumptions (7), (8), each of these 

problems has exactly one solution z. g V . Apriori estimates: Put v = 

Z = (z1 - z )h = z^h into (10) written for j = 1 .We obtain 

h((z1,Z1)) + (Z1,Z1) = (Zlff) . (11) 

Because of (8) and |(Z ,f)| < ||Z || ||f|| , (11) yields 

II^M 2 < MZ^I ||f|| = > MZ^I < ||f|| . (12) 

Subtracting (10), written for j - 1 , from (10) gives 

h((v,Zj)) + (v, Zj - Z ^ ) = 0 . 

Putting v = Z. , we obtain, in a similar way as before, 

ll-jll £-. i I zj_11 | , j = 2....,p , 
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what gives, together with (12) 

ll-jll £, ||f|| = c, . (13) 

Let us refine our division, considering the divisions d with the 
n-1 n 

steps h = h . . /2 , n = 1,2,... , h = h . Denote the corresponding 

functions 

n n 
z . - z . . 

2» , zn - J J-1 . 
3 3 h_ 

The estimate (13) having been obtained independently of the lengh of the 

step h , it remains valid as well for the division d , 
r- , n 

ll-jll i c, . (14) 

Because zn = (zn - zn_.) + ... + (zn - zn) , it follows 

ll-jll i ^(ll-jll + ••• + ll-.ll) iTc. = c2 . (15) 

Putting then v = z. into (10) written for the functions zn and Zn 

3 3 3 
and using (8), we get 

ll-jllv i C 3 • ( 1 6> 

(14), (15) and (16) are the basic needed a priori estimates. They have 

actually been obtained in a very, very simple way. What follows, is a 

standard procedure, now. Let 

(17) 

/, x n , , n n x j-1 u (t) = z. - + (z . - z. .) _—-J  

n _j-1 _j 3-1 h 

x: j_n , . n . A 0n-1 
f o r t j _ 1 < t < t. , j = 1,...,p-2 

(n = 1,2,... ) (the so-called Rothe functions), or 

Zn for t = 0 , 
U (t) = < , (18) nx ' \ _n _. __n ,n . nn-1

 v 7 

^ Z . for t. 1 < t 4 t. , 3 = 1,...,p-2 

(n = 1,2,... ) be abstract funcions, considered as functions from I = 

£o,T] into V , or L?(G) , respectively. In consequence of their form 

and of (16) and (14), they are uniformly bounded (with respect to n X 

in L2(I,V) , or L2(I,L2(G)) , respectively (even in C(I,V) , or 

Lo_(I,L2(G))). The space L2(I,V) , and L2(I,L2(G)) being Hilbert spa­

ces, a subsequence {u } , or {U } can be found such that 
nk k 

u —-> u in L0(I,V) , U -^ U in L9(I,L (G)) . (19) 
nk Z nk z z 

Now> (17)^ (iiBO imply 
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U ( x ) d x = u ( t ) tfn , 
n n 

0 

y i e l d i n g e a s i l y 
t 

j U ( x ) d x = u ( t ) , 

0 

and thus (J = u' in L^ (I,L2(G)). Consequently, u G AC(I,L2(G)) and u(0)= 

= 0 in C(I,L2(G)). So the function u satisfies 

u G L2I,V) n AC(I,L2(G)), v (20) 

u' = U e L2(I,L2(G)), (21) 

u(0) = 0 in C(I,L2(G)). (22) 

Moreover, on case of integral identities (10) and of (19), one comes 

to the integral identities 

T T T 

((v,u)) dt + J (v,u') dt = f(v,f) dt. (23) 

0 0 0 

A function with the properties (20) - (23) is called the weak solution 

of the problem (1) - (4). 

Uniqueness; Let u , u be two functions satisfying (20) - (23). Then 

their difference u = u2 - ut has the properties (20) - (22) and satis­

fies 

T T 

((v,u)) dt + I (v,u') dt = 0 v v G L2(I,V). 

0 

Let a G I be arbitrary. Choose 

^u(t) for 0 £ t _< a, v(t) =<T 
^ 0 for a < t ̂  T. 

We have 

T a 

[ (v,u') dt = / (u,u') dt = i I |u(a) | |2 - 11 |u(0)| |2 = i||u(a) 
; / 2 2 2 

|2 

0 0 

In consequence of (8) we thus obtain ||u(a) || = 0 ; the point a having 

been chosen arbitrarily, u = 0 in I. 

Uniqueness implies in the familiar way that u -*- u (not only u -w u) 
n nk 

in L.(I,V). Moreover, for every t G I the sequence {u (x)} is bounded 
-- n 

in V and thus compact in L2(G). The functions un(t) being uniformly 
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bounded in I, in the metric of the space L^(G), and equicontinuous on 

Dase of (13), the Ascoli theorem can be applied, implying (strong) 

uniform convergence, in I, of {u } to u. 

Summarising, we thus have: 

Theorem 1. Let (7), (8) be satisfied, let f G L (G). Then there exists 

exactly one weak solution of the proolem (l) - (i+) and 

u ^ u in L
2
(I,V) , u => u in C(I,L

2
(G)) . (24) 

Remark 1. Uy a more detailed treatment it can be proved that even u 

=> u in C(I,V), u' G L (I,L
0
(G)). We shall not go into details here. 

' ' oo 2. 
See [ 1] . 

2. Error Estimates. As can be excepted, to get an efficient error es­

timate, some supplementary assumptions are needed: Let the assumptions 

of Theorem 1 be fulfilled. Let, moreover, 

f G V, Af G L (G), ((v,f)) = (v,Af) v v G V. (25) 

Then 2 

llu(x,t.) - z.(x)ll < ̂ p - , j = l,...,p, (26) 

where M - | |Af | ]. If, moreover, the coefficient C of positive defini-

teness can be easily found, for which thus 

((v,v)) > C
2
 | |v | |

2
 v v G V 

holds, then the following (slightly better) estimate can be used: 

2 . 
| |u(x,t.) - z.(x) | | <

 [
^ \ (1 - e

 C j h
) , j = l,... ,p. (27) 

J J 2C^ 

Proof of (26) (the proof of (27) is similar): Let us investigate the 

division d, (for the notation see the text following (13)) and denote 

z
2 ±
 - z. = q*, i = 0,1,...,p 

(with z . = z . ) . The functions z.? . satisfy the integral identities 

( ( v
'

z
2

2
i

) } +
 H72

 ( V
'

Z
2i -

 Z
2i-1> =

 ( V
'

f ) V V G V
-

Subtracting the integral identity (10), with i written for j, we oDtain 

((v,
Z

2
. -

 Z
.)) +i(v,(z

2
. - z.) - C z ^ - z ^ ) ) = 

1 / 2 , 2 2 , _ ,. 
- h ( V ' Z 2i * 2 z 2i-l + z2i-2 } w V Є V ' 

or, denoting 
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2 n 2 2 n ^ n n 
-> z . - 2z . ^ + z. „ z. - 2z . + z. . 

s 2 = _A i Z l i Z 2 ( s n = - 4 ^ 1 1 - i , i n g e n e r a l ) , 
1 ( h / 2 ) 2 x h2 

n 

((v,qj)) + ^ v , q j - q ^ ) = - J ^ s * . ) v v €= V, 

with q = zn - zQ = 0. Putting v = q for i = 1 and taking (8) into 

account, we get 

i i 1 i i h 2 , , 2 . , h 2 M 

because under the assumptions (25) 

I |s. I I <_ M for all n and i. 

Similarly, for i = 2 we obtain 

,, I,, , , 1 , , ̂  h2M 2h2M 

and, finally, 

1 1 . ih2M 
0,1,...,p. 

U 4T n n + 1 n 

In general, we have, for q. = z~. - z. , 
~ ' ^1 2i 1 ' 
1 1 n 1 1 i(h/2n"1)2M . n-1 

I |q ± I I < — L — 4 , 1 = 0,1,...,2 P. 
Now, 

||u (x,t.) - z.(x) II = ||zn - z1 II < 
1 ' n j 3 ' ' ' 2

n - 1 • J 

1 i n _ 1 . n~*- , , 2 . 1 I I ^ 

£ llq.n-2, + %n-3. + -" + «*2j + q j I I --
*- J *- J 

. h2M ( . , 2j , , 2n"1j . . lh2M 
< — ^ + jt +-'-+ (2n-l}2) < V - • 

Coming to the limit for n - °° (what is allowed because of Theorem l), 

we obtain (26). 

The estimate (26) is very sharp (and the more is the estimate (27)), as 

can oe seen from the following simple example: 

2 
f~ - — ^ = sin x in (0,0 x (0,1), (28) 
3 t 9x2 

u(x,0) = 0, (29) 

u(0,t) = 0, u(u,t) = 0. (30) 

The assumptions (25) are easily established. Further, we have 
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M = | |Af | | = ||- (sin x ) " | | = | | sin x| | = 7(TT/2) . 

Choosing, for, example, h = 0.01 and j = 20, or j = 40, the Rothe 

method yields 

Z20 = ° * 1 8 0 5 s i n x » 
z = 0.3284 sin x , 

respectively. The exact solution is known (this was the reason why such 

a simple example has been chosen): u = (1 - e ) sin x . Thus 

u(x, 0.20) = 0.1813 sin x , 

u(x, 0.40 = 0.3297 sin x . 

The actual errors then are 

•- 0.0008| |sin x| | = 0.00101 , 

= 0.0013||sin x|| = 0.00163 , 

: 2°-0-°l2 Jl = 0.00125 , 

||u(x, 0.20) -" Z20 

||u(x, 0.40) -" Z40 

while (26) gives 

||u(x, 0.20) -" "Z20 

||u(x, 0.40) -" Z40 

(31) 

4°-°-° l 2 Ji = 0.00251 . 

(32) 

Finding C = 1 (see [1], p. 90) and using (27) , we get the estimates 

).Q1 ,« Q - 0 . 2 . ,7T ~2— (1 - e )vl2 |u(x, 0.20) - z,n| | 4 %-íJ- (1 - e ~ 0 , 2 ) J ^ = 0.00113 

|u(x, 0.40) - z4Q| | < -^-1 (1 - e ° * 4 ) J | = 0.00206 
(33) 

which are still better then the estimates (32). The example demonstrates 

very well the sharpness of the estimates (26), (27) and the fact that 

they cannot be substantially improved. 

3. Nonhomogeneous initial and boundary conditions. Let us first in­

vestigate the problem (1) - (4) with homogeneous equation and nonhomo­

geneous initial condition u(x,0) = u0 £
 Lo^ G^ » i*e* t n e problem 

|-£ + Au = 0 in G x (0,T) , (34) 

u(x,0) = uQ(x) (35) 

B±u = 0 on r x (0,T) , i = 1,...,y , (36) 

G±u = 0 on r x (0,T) , i = 1,...,k-y . (37) 

The corresponding integral identities are 

((v,Zj)) + (v.Zj) = 0 V v € V , j = 1,...,p , (38) 
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with Z = (Zj - z^^/h , zQ = uQ . (39) 

Similarly as in the case of the problem (1) - (4), we come to the inequa­

lity 

IIZ-jll 4 M ^ - J I • 
However, if only u £ L„(G) is assumed, it is not possible to put v = 

= Z. into the first of the integral identities (38) to obtain a simple 

estimate for | | Z-. | | as in (11), (12), because we have not Z.. £ V here, 

in general. Thus an existence theorem is derived, first for "suffici­

ently smooth" u = s E V, more precisely for u from the set M of such 

functions s E V for which a unique g E L„(G) exists satisfying 

((v,s)) = (v,g) s/vEV. 

Putting then 

z . = r + s 
3 J 

into the integral identities 

( (v,z , ) ) + rkv,z . - z . ) = 0 v v E V, 
3 h D D-l 

with z = s, we come to the identities 

((v,r )) + ̂ (v,r - r^_1> = ~(v,g) v v E V, 

with r = 0, corresponding to the problem (l) - (4) in which u is 

replaced by r and f by -g. Having obtained its weak solution r(t), the 

weak solution of (34) - (37) with u = s E M is defined by u(t) = r(t)+ 

+ s. Moreover, if we put z. for v into the original integral identities, 

we obtain, subsequently, 

! l-l I I < lis II, I 1-2 H i I K H i I Is I I, etc. 

The function u(t) being the limit, in C(I,L (G)), of the corresponding 

Rothe sequence, it follows 

| ju(t) | | < | |s | | for all t E I. 

Now, the form ((v,u)), being V-elliptic, the set M is dense in V, thus 

as well in L2(G). Let u E L2(G) and let s± E M, i = 1,2,..., be (an 

arbitrary) sequence converging to uQ in L2(G). Then the sequence of 

corresponding weak solutions u (t) is a Cauchy sequence in 

C(I,L (G)), because 

|u(^(t) - u(k)(t) | | < I |s± - s^ || v t Є I. 
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Its limit is then called the very weak solution of the problem (34) -

(37). Ooviously, this very weak solution is uniquely determined by 

the initial function u G L (G). 

ADout convergence, in C(I,L, (G)), of the corresponding Rothe sequence 

to this very weak solution as well about nonhomogeneous Doundary con­

ditions see f l l . 

4. The Ritz-Rothe method. Let us investigate the problem (34) - (37) 

with f G L~(G) on the right-hand side of (34) instead of zero. The so­

lution u(t) of this problem is the sum of solutions of the problems 

(1) - (4) and (34) - (37). (The problems are linear.) The corresponding 

integral identities when applying the Rothe method are: 

((v,Zj)) + I (v, Z j - Z j - 1) = (v,f) \/ v 6 V , j = 1,...,p , (40) 

with z = u . Let us solve each of these problems approximately - to 

be concrete, by the Ritz method (or by a method with similar properties). 

So let v..,..., v be the first n terms of a base in V and let z„ 
I n * ' 

be the Ritz approximation of the function z1 . Put z1 instead of z1 
into the second of the identities (40), 

((v,z2)) + i (v, z2 - z*) = (v,f) (41) 

and let z„ be the Ritz approximation of the function z9 , etc. We 

thus can construct the function 
* * 

* * z • ~ z _ i 

V t } = z j - i + J h J ( t - V^ f o r t j - i - t - tj , ( 4 2 ) 

j = 1,... ,p 

which is an analogue of the Rothe function U.. (t) . (41) announces that 

using the Ritz method, the errors become cumulated with increasing j . 

Fortunately, according to a very simple law: Subtract (41) from the se­

cond of the identities (40). We obtain 

((v, z2 - z2)) + I (v, (z2 - z2) - (z1 - z*)) = 0 V v G V . 

Putting v = z „ - z 9 , we get 

||z2 - S2|| < l l - . " -*ll • 
Etc. Using this result, convergence of this "Ritz-Rothe" method is 

easily proved: Let e > 0 be given. According to Theorem 1, such a 

(fine) division of the interval I into p subintervals can be found -

let us preserve the notation h for the length of these subintervals -

that 



I |u(t) - ux(t) I I < I v t e i 

(where u (t) is the corresponding Rothe function). Denote n = t./2p. 

Let the number of terms in the Ritz approximation be sufficiently 

large so that 

\\z1 - z* | | < n 

oe fulfilled. Then - as just shown -

| |z2 - z2 I I < n. 

Let the Ritz approximation z* of z be such that 

| |z2 - z\ | | < n 

again. Thus 

I |z2 "
 z2 I I < 2n' 

In a similar way we come to the estimates 

| IZJ - z* | | < jn = f , j = 3,...,p. 
Because of the form of the Rothe functions u (t) and u*(t) (they are 

piecewise linear in t), we have 

| |u(t) - u*(t) | | < e v t e I. 

5. Regularity of the solution. a) Regularity with respect to t , 

smoothing effect. In [ij, Chap. 12 and 13, regularity properties of the 

weak, or very weak solutions with respect to t are examined. We shall 

not go into details and show the very simple idea of these investiga­

tions on the example of the problem (34) - (37). Let the form ((.,.)) 

satisfy (7) and (8) (boundedness and V-ellipticity) and let it be, more­

over, symmetric in V , i.e. let 

((v,u)) = ((u,v)) V v, u e V (43) 

be fulfilled. Thus ((.,.)) has the properties of a scalar product. Let 

h be sufficiently small (in order that the points t , 2t , etc., in­

vestigated below, lie in the interval [0,T] ) and choose an arbitrary 

t e (0,T) such that t = jh ( j being a positive integer). Take 

the first of the integral identities (38) and put v = z.. .We obtain 

h((z1,z1)) + (z.., z1 - uQ) = 0 . 

Writing (z^9 z^ - uQ) in the form \ CI I =zs -f I I + MZ1 " u
0 1 i " 

" I I u
0 1 I ) > we 9 e t 

h((z1,z1)) + 1 ||Zl||
2 < 1 ||u0||

2 . 
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Similarly, 

h((22.Z2)) + I ||Z2||
2 <.I ||Zl||

2 , 

h((Zj>Z.)) + 1 ||Z.||
2 < 1 l h j _ . l l 2 . 

Making the sum, we obtain 

h I ((zi.zi)) < I ||u0||
2 . (44) 

Putting, in the second of the identities (38), v = z9 - z , we get, 

similarly, 

((z2 - z.., z2)) + --• (z2 - z.., z2 - z..) = 0 , 

i [((z2,z2)) + ((z2 - z r z2 - z..)) - ((z1>Zl))l < 0 , 

((z2,z2)) < ((z1>Zl)) . 

Going on in this way, we obtain 

((z_.,z..)) < ((zi_1,zj_1)) < ... < ((z2,z2)) 4 ((zl,z1)) . (45) 

Thus replacing in (44) all the summands by ((z.,z.)) and taking into 
0 H 3 

account that jh = t , we have 

( < 2 j > Z j > ) < ̂ o l l u o N 2 > <46> 

and, because of the V-ellipticity of the form ((.,.)) (see (8)), 

l I ' j l l v i T T T - O T ll»oM • ( 4 7> 
J 7 (2at ) 

In consequence of (45), this result holds for all larger indices, too, 

and also for all divisions d with n ^ 1 , 

I I ' S l ' v * 77^757 I K M V t J > t ° . (48) 
\l (2at ) 

Using this result, interchanging the role of z. and Z. and assuming 

2t° £ (0,T) , we get, similarly, 

NZill i ^ I K M Vt_ > 2t° . (49) 

A simple consideration leads then to the conclusion that for the re­

strictions u(t) and 2 . ' ( t ) of the functions u(t) and u'(t) on the inter­

val [ 2 t ° , T l , (48), (49) imply 

3 € L2([2t°,T],V) , a' 6 L2(L2t°,T],L2(G)) . 

lg on in the same way, we prove similarly (assi 

3' 6 L2([4t°,T],V) , S " g L2([4t°,T],L2(G)) , 

Going on in the same way, we prove similarly (assuming 4t £ (0,T) ) 
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etc. Let n £ (0,T) be arbitrary, q > 0 an arbitrary integer. Chosing 

t 4 n/(2q + 4 ) , we come, in this way, to the result that 

S ( l + 1 )
e L2([n,T|,V) , 3 ( i + 2 )

e L2([n,T],L2(G)) , i = 0 q , 

what implies, among others, 

u ( i ) € AC([n,T],V) , £ ( i + 1 )
 G AC([n,T],L2(G)) , i = 0,...,q. 

The numbers n and q having been chosen arbitrarily, we have come, 

in this very simple way, to the following 

Theorem 2. Let (7), (8), (43) Iqe fulfilled, uQ e L2 (G) . Then the very 

weak solution u(t) of the problem (34) - (37), considered as an abs­

tract function [o,T] -> V , has on the interval (0,T] continuous de­

rivatives of all orders. 

Let us remark that applying the just shown idea in a properly modified 

way, J, Kacur obtained rather strong regularity results for the equation 

du/at + A(t)u = f (t) . See [4] . 

b) Regularity with respect to x . While the basic method how to exa­

mine regularity with, respect to t has been shown in [l] , the idea how 

to obtain regularity results with respect to x belongs to J. Kacur. 

Regularity results known for elliptic problems are utilized. For details 

see [4] . 

6. Other parabolic problems. Using the same technics as above, linear 

parabolic equations of the form 3u/8t + A(t)u = f (t) , nonlinear equa­

tions, integrodifferential equations as well as some nontraditional prob­

lems (problem with an integral condition, for example) can be examined. 

For details see [1]. 

7. Hyperbolic problems. Also hyperbolic problems can be treated in the 

same way. Under the assumption of boundedness in V x V , V-ellipticity 

and V-symmetry of the form ((.,.)) , an existence and convergence theo­

rem has been derived, in [1], and convergence of the "Ritz-Rothe method" 

proved. Moreover, for f e V , the following error estimate has been 

found, in a similar way as in the case (26): 

| |u(x,t..) - z (x) | | < Mh3 j(j + 1) with M = J(| ((f,f))). (50) 

For some regularity results see [5] . For generalization to the case of 

quasilinear hyperbolic equations see [4] . 

R e f e r e n c e s 

p] REKTORYS, K.: The Method of Discretization in Time and Partial Dif­
ferential Equations. Dordrecht-Boston-London, D. Reidel 1982. 



84 

[2J REKTORYS, K.: On Application of Direct Variational Methods to the 
Solution of Parabolic Boundary Value Problems of Arbitrary Order. 
Czech. Math. J. 21 (1971), 318-339. 

[p] REKTORYS, K.: Variational Methods in Mathematics, Science and Engi­
neering, 2nd Ed. Dordrecht-Boston-London, D. Reidel 1979. 

[4 J KACUR, J.: Method of Rothe in Evolution Equations . Leipzig, Teub-
ner. To appear. 

[5j PULTAR, M.: Solution of Abstract Hyperbolic Equations by Rothe Me­
thod. Aplikace matematiky 29, (1984) , 23-39. 


		webmaster@dml.cz
	2012-09-13T00:54:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




