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STABILITY AND BIFURCATION PROBLEMS 
FOR REACTION-DIFFUSION SYSTEMS 
WITH UNILATERAL CONDITIONS 
M.KUCERA 
Mathematical Institute, Czechoslovak Academy of Sciences 
115 67 Prague 1, Czechoslovakia 

Let us consider a reaction-diffusion system of the type 

u = dAu + f(u,v) 
on <0,«>) x ft (RD) 

v = AV + g(u y) 
2 

where f , g are real smooth functions on R , d is a nonnegative 

parameter (diffusion coefficient), ft is a bounded domain in R . Sup­

pose that u, v > 0 is an isolated solution of f(u,v) = g(u,v) = 0 . 

Thus, u , v is a stationary spatially homogeneous solution of (RD) 

with Neumann boundary conditions and also with the boundary conditions 
u = u on (0,00) x rD , |£ = 0 on (0,«>) x TN , (BC.) 

v = v on (0,oo) x r^ , ~- = 0 on (0,«>) x r\, , (BC) 
u a n N z 

where i\ (J r~N = dQ (the boundary of ft ), Set b = —(u,v) , b 1 2 = 

^ ( U , V ) • b21 = 8^ ( U , V ) • b22 = 9^(U,V) • B = ( b 2 1,b 2 2 j
 a n d s^PP° s e 

b > 0, b 2 1 > 0, b 1 2 < 0, b 2 2 < 0, b.... + b 2 2 < 0, det B > 0. (B) 

Then there exists the greatest bifurcation point dQ of (RD), (BC) at 

which spatially nonhomogeneous stationary solutions bifurcate from the 

branch of trivial solutions {[d,u,v]; d e. R} ; the solution u , v is 

stable for any d > dn and unstable for any 0 < d < d0 . (All eigen­

values of the corresponding linearized problem have negative real parts 

for d > d„ and there exists a positive eigenvalue for d < dn .) For 

the case of Neumann conditions and n = 1 (i.e. ft = (0,1) ) see e.g. 

[8] , for the general case see [2] . Notice that (B) is fulfilled in mo­

dels connected with population dynamics, chemistry, morphogenesis etc. 

In these cases u represents a prey or an activator, v represents a 

predator or an inhibitor. The existence of stationary spatially nonhomo­

geneous solutions explains the occurence of the so called striking pat­

terns . 



v = v on ( 0 , 0°) X Г 
) x 1 D , 

v >. v . . ш > ° 
ôn = / ~\ ðv 

ðn = 0 o n (0,oo ) X Г Q , 1? = ° 
ðn 
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The aim of this lecture is to present some results obtained by the 

author together with P. Dr^bek, M. Mikova" and J. Neustupa, showing how 

this situation can change by introducing unilateral conditions given by 

a cone in a suitable Hilbert space. One of the simplest examples are uni­

lateral boundary conditions 

v > v , ^ > 0 , 

(D 
(0,00) X ( r N - r Q ) 

where r is a given subset of r . Roughly speaking, the spatially 

homogeneous solution u , v becomes unstable even for some d > d and 

the greatest bifurcation point shifts to the right of d if classical 

conditions are replaced by unilateral ones for v ; the greatest bifurca­

tion point shifts to the left if unilateral conditions are introduced 

for u . 

In what follows, we shall suppose u = v = 0 without loss of gene­

rality. 

1. Abstract formulation. 

Let K be an arbitrary closed convex cone in the space V = 

{u G. W 9 ( Q ) ; u = 0 on rn} with its vertex at the origin. Consider the 

problem 

[u (t ,x)(j)(x) + d v u ( t , x ) V<}> (x) - f ( u ( t , x ) , v ( t , x ) ) <j> (x)] = 0 , 
(' 

v ( t , . ) e K 

(2 ) [ { v ( t , x ) [if,(x) - v ( t , x ) ] + W ( t , x ) v [ ^ ( x ) - v ( t , x ) ] -

- g ( u ( t , x ) , v ( t , x ) ) [^(x) - v ( t , x ) J } dx _ 0 

f o r a l l <j> e V , \p e K , a . a . t ^ 0 , 

n 
where vu-v<f> = H u <j) . By a solution we can understand a couple 

i=1 i i 
u, v e L2(0,T;V) such that ufc, vfc €. L2(0,T;V) . 

Notice that the choice K = {v e V; v ^ 0 on r } corresponds to 

the problem (RD) , (BC. ) , (D. ((2) is obtained by multiplying the equa­

tions in (RD) by test functions, integrating by parts and using (BC.), 

(D.) 
In general, we can define a solution of (RD) with the boundary con­

ditions (BC1) and unilateral conditions for v given by K as a couple 

u , v satisfying (2). The corresponding linearization reads 
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(3) 

[ u t ( t , x ) < f > ( x ) + d V u ( t , x ) VcJ> (x) - ( b n u ( t , x ) + b.. 2 v ( t , x ) ) <J> (x) ] d x 

ft 
= 0 , v ( t , . ) e K , 

[ v t ( t , x ) ( ip(x) - v ( t , x ) ) + V v ( t , x ) -V[ ip(x) - v ( t , x ) ] 

- ( b 2 1 u ( t , x ) + b 2 2 v ( t , x ) ) ( ^ ( x ) - v ( t , x ) ) } d x > 0 

f o r a l l cj) e V , \p £ K , a . a . t .> 0 . 

Analogously, we can consider (RD) with (BC2) and unilateral conditions 

for u , i.e. 

u £ K , 

I [ut((j) - u) + dVu-V((j) - u) - f (u,v) ((J> - u)] dx > 0 

ft (4) 
for all (J> £ K , a.a. t _> 0 , 

[v I/J + V V V I | J - g ( u , v ) i | > ] d x = 0 f o r a l l \p e V , a . a . t >̂ 0 . 

ft 

2. Destabilization. 

EXAMPLE 1. Consider ?D = 0 (i.e. V = W 2 ) , K = {v £ V; v > 0 

on ft} . Then (2) corresponds to a free-boundary problem 

u. = dAu + f(u,v) on <0,°°) x ft , 

v = Av + g(u,v) on Q + , 

v = 0, - g(u,0) ^ 0 on <0,°°) x ft - Q + , 

u , v are continuous, — = — = 0 on (0,°°) x 9ft , 
i i 

where the domain Q = {[t,x] &, <0,OQ) X ft; v(t,x) > o} is unknown. The 

couple u(t,x) = exp(b 1 1t)-^ , v(t,x) = o satisfies the linearization 

of (5) (i.e. also (3)) classically for any £ < 0 . It follows that the 

trivial solution of (3) is unstable for any d , even for d > d , and 

even with respect to spatially homogeneous perturbations. Notice that 

spatially homogeneous solutions of (3) (in our special case) are solu­

tions of the inequality 

U(t) £ K c (6) 

< U (t) - BU(t), ¥ - U(t) > > 0 for all V £ K c , a.a. t > 0 , 

where U = [ u , v ] , K ={[$,$] G, R ; ty > o) , <.,.> is the scalar 
2 C 

product in R . It is not difficult to describe all trajectories of (6) 

and characterize also some spatially homogeneous solution of (2) under 

the assumption (B) . As a consequence it is possible to prove also the 
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instability for (2) for any d > 0 (see [7]). 

Notice that the eigenvalue problem determining the stability of the 

trivial solution of (RD), (BC) can be written in the vector form 

D(d)AU + BU = AU (7) 

(with the boundary conditions (BC) ) , where U = [u,v] , D(d) = [n\) » 

AU = [Au,Av] . The eigenvalue problem with unilateral conditions corres­

ponding to (3) reads 

[dVu-v> - (b^u + b12v - Au)(f)] dx = 0 for all $ & V , 

SI 

v £ K , (8) 

[VW(ip - v) - (b21u + b22v - Av) (ip - v) ] dx > 0 for all ij) t K. 

Denote by E(d,A) the set of all solution of (7), (BC) (for given d , 

A G R ). Notice that E(d ,0) ^ {o} because d is a bifurcation point 

of (RD), (BC). Further, we shall suppose that 

there exists a completely continuous operator 3 : V -> V 

(a penalty operator) satisfying < 3u - 3v, u - v > ̂  0 , 

3(tu) = t3u for all u, v £ V , t > 0 , 3 u = 0 for all (P) 

u £ K , < 3v,v > > 0 for all v g K , < 3v,u > < 0 for 

all v ^ K , u 6 K° , 

where <.,.> is the inner product in V , K° and 9K is the interior 

and the boundary of K . This assumption is fulfilled in examples. For 

the cone K mentioned in Section 1 we can consider the penalty opera­

tor defined by 

Í--<3v, ip> = - v if> d x f o r a l l v , \p £ V , 

ro 
where v denotes the negative part of v . 

THEOREM 1. Let (P) , (B) hold and E(d0,0)O V x K° f 0 . Then for 

any d e (d ,d..) (with some d1 > d ) there exists a solution of (3) 

of the type U(t) = exp (^t)*^ with A^ > 0 , uj G 3K . 

THEOREM 2. Let (B) hold and E(d ,0) Pi V x K° f 0 , dim E(dQ,0) = 1, 

meas V > 0 . Then there exists a bifurcation point d > dfi of (2) at 

which spatially nonhomogeneous stationary solutions bifurcate from 

{ [d,0,0] ; d G R} . 

' P r o o f of Theorem 1 is based on a modification of the method deve­

loped in [5]. We shall explain main ideas only (more precisely see [3] 
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cf. also [2]). It is sufficient to show that for any d £ (dQ,d1) the­

re exists a positive eigenvalue A* of (8) with the corresponding ei­

genvector Ud = [ud,vd] e V x 9K . Suppose that dim E(dQ,0)=1. (The ge­

neral case can be reduced to this situation - see [3].) Choose a fixed 

d > d and consider the system with the penalty 

(9) 

[dVu-V(J> - ( b ^ u + b 1 2 v - Au)<J>] d x = 0 f o r a l l <J> £ V , 

ft 

I [VVVIJJ - (b21u + b22v - Av)^] dx + e<Sv,^> = 0 for all i|> £, V . 

SI 

It is equivalent to (7), (BC) for e = 0 and its eigenvalues and ei­

genvectors approximate those of (8) for e -*• + °° . (The last assertion 

can be proved by standard penalty method technique.) We shall consider 

only solutions of (9) satisfying the norm condition 

l|U||2 < = ||u||2 + ||v||2 ) = J-^J . (10) 

Set Cd = {[A,U,eJe R X V X V X R ; | |U| | 7^0 ,(9), (10) is fulfilled} 

(the closure in R x V x V x R ) • The main idea is to show that the 

greatest eigenvalue X- of (7), (BC) can be joined with an eigenvalue 
I + 
A, of (8) by a connected (in R x V x V x R ) subset C, of C, and 

I + 

to prove A, > 0 on the basis of the properties of this branch C^ 

(for any d 6 (d ,d.) with some d- > d ). The existence of a global 

continuum C, C C, of solution of (9), (10) starting at [A, 0,0] in 

the direction Ud = [ud,vd] e E(d,Ad) Pi V x (-K°) follows from a slight 

generalization of a Dancer's bifurcation result [1]. (Setting x = 

[u,e] , (9), (10) can be written- as the usual bifurcation equation 

x - L(u)x + N(u,x) = 0 in the space X = V x V x R with compact linear 

operators L(u) depending continuously on u £ R and a small compact 

perturbation N • "starting in the direction U, " means that for any 

6 > 0 there is [A,U,e] e Cd with | | U/1 |u| | - Ud | | < <S in any neigh­

bourhood of [Ad,0,0] .) An elementary investigation of solutions of 

(9), (10) yields that in a small neighbourhood of [A.,0,0] can be only 

solutions [A,U,G] of (9), (10) satisfying A > Ad and that for all 

solutions of (9), (10) different from [Ad,0,o] the following implica­

tions hold: A > Ad => v # 9K ; v ^ K =̂ > A j- \^ . This together with 
+ 

the fact that C, starts in the direction U, 0 V x K and with the 

connectedness of Cd implies A > Ad , v 0 K for any [A,U,e] €. Cd , 

U = [u,v] . It follows that C, cannot intersect an analogous branch 

C~ of solution of (9), (10) starting in the direction - U, £ V x K° . 

Dancer's result (see [1], Theorem 2) states that in this case C, is 
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unbounded. It follows that there exists a sequence { [X ,U ,e ]} Q C, 

with e ->• + «>. The penalty method technique gives X —> X, , U -*- U,, 

where X_ and U, is an eigenvalue and the corresponding eigenvector 

of (8), uj e V x 3K . If Ad > ° WaS not true for a11 d £ (>d0>d-]) 

with some d. > d^ then we would obtain X, -> 0 for some d -»• d^+ 1 0 d n 0 
I n I 

because X , -*• 0- , X , ̂  X , . We could suppose U, -> U £ 9K and this 
n n 

would contradict the assumptions dim E(dn,0) = 1 , E(d ,0) O V x K i-
0 . (Any solution U of (8) with d = d , X = 0 lies in E(d ,0) 

under the last assumption.) 

P r o o f of Theorem 2 is based on the same method as that of Theorem 

1. The greatest bifurcation point dn of the stationary problem corres­

ponding to (RD), (BC) can be joined (raughly speaking) with a bifurca­

tion point d > dn of (2) by a branch of solutions of the correspon­

ding penalty equation (with the variable d instead of X ). See [4]. 

REMARK 1. If meas r = 0 in Theorem 2 (the case of Neumann conditi­

ons) then the bifurcation point d can coincide with infinity in a 

certain sense (see [4] ) . 

REMARK 2. If K = {v £ V; v > 0 on rQ} then E(dn,0)O V x K° + 0 

holds if there exists U = [u,v] £ E(d ,0) with v ^ 6 on r ( 6 > 

0 ). 

Stabilization. 

EXAMPLE 2. Consider, the cone K = (u 6 V; u > 0 on Q] with V = W2 

again. Then spatially constant solutions of the linearization of (4) 

are solutions of (6) with K = {ty = [<J>,i|;] £ R ; (j> >: 0} . If B has 

a pair of complex eigenvalues and b 1 ?, b ^ < 0 then any solution of 

(6) (coinciding with the solution of U, = BU as long as it is in 

K x V ) touches the line { [0,v]; v ^ 0} after some time t and 

then coincides with the solution of the type, u(t) = 0 , v(t) = 

exp (b?9(t - t ))•£ . It follows that the trivial solution of the line­

arization of (4) is stable with respect to spatially homogeneous per­

turbations even if the trivial solution of U. = BU is unstable (more 

precisely see [7]). Of course, in this way we cannot obtain any infor­

mation about the stability with respect to nonhonogeneous perturbations. 

THEOREM 3. Let (B) hold and let E(d ,0)0 K x V = {0}, meas YD > 0. 
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Then there is no bifurcation point of (4) at which stationary spatially 

nonhomogeneous solutions bifurcate from {[d,0,o]; d G. R} in 

(d - 6, +«>) {with sbme 6 > 0 ). 

P r o o f . Introduce the inner product <.,.> and the operator A 

in V by 

<u,<|>> = JVuV<f) d x , <Au,4>> = u <$> d x f o r a l l u , (J> £ V . 

ft ft 

The linearization of the stationary problem corresponding to (4) can be 

written as 

u e K , 

<du - b^Au - b12Av, <J> - u> > 0 for all 4> G K , (11) 

v - b21Au - b22Av = 0 . 

Calculating v from the second equation in (11) and substituting to 

the first inequality we obtain the inequality of the type 

u e K , 

<du - Tu, (J) - u> > 0 for all <J> G K ( 1 2 ) 

with a compact linear symmetric operator T in V . It follows that 

any bifurcation point d of our unilateral stationary problem is si­

multaneously an eigenvalue of the inequality (12) and therefore d /< 

max 
I |u| |=1, uGK 
(RD)9 (BC) is simultaneously the greatest eigenvalue of T , i.e. dQ = 

max <Tu,u> and any u G V realizing this maximum is an ei-
||u||-1, uev 
genvector of T corresponding to d . This together with the assump­

tion E(d ) O K x V ={o} implies max <Tu,u> < d . For the 
0 , ., I|u||=1, U £ K ° 

details see [6J where a more general case is considered. 

REMARK 3. Let K = {u e V; u > 0 on V } . Then E(d 0) O K x V = 

{0} is fulfilled if there exists U = [u,v]G E(d ,0) such that u 

changes its sign on T . 

Final remarks. 

It is possible to consider also more general inequalities 
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u (ф - u) + dVu-V(ф - u) - f ( u , v ) ( ф - u) d x 

ӣ 

+ Ф.. (ф) - Ф.. (u) ^ 0 , 
( 1 3 ) 

v ii> - v) + VV-V(I | J - v) - g ( u , v ) {\\> - v ) d x 

Q 

+ $2{\IJ) - $ 2 ( v ) .> 0 f o r a l l <f>, \p e v > a - a - t ^ 0 , 

where $ , $
2
 are convex proper functionals on V . More general uni­

lateral conditions are included in this formulation. An analogy of Theo­

rem 3 for (13) with $2 = 0 is contained in [fT\ , a destabilizing, effect 

of such unilateral conditions (for <£> = 0 ) will be the subject of a 

forthcomming paper. 

R e f e r e n c e s 

[1] DANCER, E. N.: On the structure of solutions of non-linear eigen-
value problems. Ind. Univ. Math. J. 23 (1974), 1069-1076. 

[2] DRÁBEK, P. and KUČERA,M.: Eigenvalues of inequalities of reaction 
-diffusion type and destaЪilizing effect of unilateral conditions. 
36(11 1 ), 1986 .Czechoslovak Math. J. 36 ( Щ ) , 1986, 116-130. 

[3] DRÁBEK, P. and KUČĽRA,M.: Reaction-diffusion systems: DestaЪilizing 
cffect of unilateral conditions. To appear. 

[4] DRÁBĽK, P., KUČERA, M. and MIKOVÁ, M.: Bifurcation points of reac-
tion-diffusion systems with unilateral conditions. 
Czechoslovak Math. J. 35 (110), 1985, 639-660. 

[5J KUČERA, M.: Bifurcation points of variational inequalities. Czecho-
slovak Math. J. 32 (107), 1982, 208-226. 

[6] KUČĽRA, M.: Bifurcation points of inequalities of reaction-diffu-
sion type. To appear. 

[7] KUČĽRA, M. and NEUSTUPA, J.: DestaЪilizing effect of unilateral 
conditions in reaction-diffusion systems. To appear in Comment. 
Math. Univ. Carol. 27 (1986), 171-187. 

[8] MIMURA, M. and NISHIURA, Y.: Spatial patterns for an гnteraction-
-diffusion equations in morphogenesis. J. Math. Biology 7 243-263, 
(1979). 


		webmaster@dml.cz
	2012-09-13T01:53:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




