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MATHEMATICAL SOLUTION OF DIRECT 
AND INVERSE PROBLEM 
FOR TRANSONIC CASCADE FLOWS 
P. BOLEK, J. FORT, K. KOZEL, J. POLASEK 
National Research Institute for Machine Design 
11000 Prague 9 - Bechovice, Czechoslovakia 

The work deals with numerical solution of direct and inverse 

problem of transonic cascade flows based on potential model. Gover

ning equation of a direct problem is full potential equation, gover

ning equation of an inverse problem is equation for Mach number in 

hodograph plane (<£,4>), ^-velocity potential, ch-stream function. 

Both' equations are partial differential equations of second order, mi

xed elliptic-hyperbolic type. In the solution of direct problem one 

can consider discontinuity of the first derivatives along some cur

ves called shock waves, in the inverse problem one must find classi

cal solution. 

Numerical solution of both problems is based on using finite dif

ference method and Jameson's rotated difference scheme. The system of 

difference equations is solved iteratively using succesive line rela

xation method. 

The work presents results of numerical solution of transonic 

flows in cascade of compressor and turbine type and one example of 

numerical solution of inverse problem. 

I: Direct problem 

A steady irrational isoentropic flow is fully described by the 

quasilinear partial differential equation of mixed elliptic-hyperbo

lic type for a velocity potential: 

(a2- $2)$ - 2$ $ $ + (a2- $2)$ = 0 , (1) 
x xx x y xy y yy 

2 2 where $ is velocity potential and a = a(<J> + $ ). 
x y 

We assume the existence of weak shock waves as curves of discontinui
ty of the first derivatives $ ,<*> . The weak solution is assumed in a 

x' y 

class K(fi), where ft is a domain of solution (see [ ll ) . 

The mathematical formulation of transonic cascade flows is some 

combination of Dirichlet's, Neuman's and periodic boundary value pro

blem. On the inlet boundary we prescribe a Dirichlet's condition 

(w = w ^ , on profile contour a Neuman's condition of non-permeability 

(3$\an = 0) and on the outlet boundary also a Neuman's condition 

(w = W2), where w2 is a constant determined uniquely by the value of 
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circulation of velocity around the one profile of the cascade y P o~ 

tential $ still satisfies a Kutta-Youkovski condition on the trai

ling edge of t h e profile. The value of y, unknown in advance, is de

termined during iteration process of the numerical solution. 

Equation (1) is possible to locally transform to the form 

(1 " M 2 ) * S S + *nn = ° ( 2 ) 

2 
that is similar to equation (1), M-Mach number, M = M($ ), M-given 

function, s - streamline direction, n - normal. 

Consider (x,y) coordinate system and regular orthogonal grid. 

Jameson's concept of stable difference scheme is based on central 

difference approximation of second order for <*> using 
.2 ss xx xy, yy 

in elliptic point (1 - M* < 0) and backward approximation of first 

order for <i>ss in hyperbolic point (l - M
2< 0). Central approximation 

of second order in both cases is used for * (details see [l]). 
nn 

The system of difference equations is solved by a SLOR method. 

It is solved in one step of iteration for grid uoints lying on line 

x. = const., succesive in the direction of flow. The relaxation para

meter is chosen 1.7 for all mesh points in line xi = const., if all 

this points does not lie on profile contour and if their local Mach 

number in computed iteration is less than 1; and equal to 1 in other 

cases. 

II; Inverse problem 

Solving inverse problem of transonic flow over an airfoil or 

through a cascade the following governing equation in hodograph plane 

has been used 

AM + BM + CM2 + DM2 = 0, (3) 

A = M(l - M2)P~1- , P = 1 + -tli- M2 , 

B = M 

c = -(l + 3^V + ^ M 4 ) P ^ . 

M-Mach number, $ - velocity potential, t|> - stream function. 

Smooth solution is considered in this case due to regularity of trans

formation (x,y) -"•(<!>, i\> ). Boundary value problem is based on eq. 

( 3) and Dirichlet's conditions for an airfoil or combination of Diri-

chlet's, Neuman's and periodicity conditions for a cascade. 

The details are described in [2]. Numerical solution of the pro

blem is a similar to the solution of eq. (1). Knowing M( *, c|>) we find 

angle d (oriented angle of the flow in (x,y) system) 
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d " / P K _ 1 M M-1dT 

and then streamline coordinates ("zero" streamlines) 

đт, y(»,ф) = У
0
( % , Ф Ь Г |feidт. 

0 

2 2 

q = (u + v ) = F^(M), F
1
 - given function. 

Ill: Numerical results 

Fig. 1 shows the iso-Mach lines of transonic flows calculation 

for compressor cascade with upstream Mach number M^ = 0.83. We can 

see the typical choked fows with so called closed sonic line (M = 1 ). 

It means that first end of the sonic line is situated on lower profi

le surface and the other end is situated on the upper profile surface. 

Fig. 2 shows the iso-Mach lines of transonic flows calculation 

for turbine cascade with upstream Mach number M ^ 0.337 and downstream 

Mach number M = 0.803. Small supersonic region (M>1) is situated near 

lower profile surface. This cascade is more cambered and there

fore the problem of numerical solution of transonic flows through 

this cascade is very complicated. The comparisons of our numerical 

results and experimental data is published in [ 4] . 

Fig. 3 shows results of inverse problem for given Mach number 

along upper (M,) and lower (M ) profile surface (fig. 3a); fig. 3b 

showes geometry of found cascade corresponding given distribution 

of Mach number along profile surface and other parameters. 
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Fig. 1 : Compressor cascade. Iso-Mach lines of computed flow 

field, increment AM = 0.05, M^ = 0.83 

Fig. 2 : Turbine cascade. Iso-Mach lines of computed flow field, 

increment AM = 0.05, M^ = 0,337, M2 = 0.809 
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Fig. 3a: Inverse problem. Distribution of Mach number along 

upper and lower side of profile (M,
 f
M ). 

L = 0.5" ъ 

л= зo° 

«/ 

M<-0.в-łØ Дft- 0.CГ8 

Fig. 3b: Inverse problem. Cascade geometry for given distri

bution of Mach number along profile. 
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