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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE 

MATHEMATICA XVII - 1967 

ON THE CONVERGENCE OF DIFFERENCE SCHEMES FOR 
CLASSICAL AND WEAK SOLUTIONS OF THE DIRICHLET 

PROBLEM1) 

J. H. BRAMBLE, Itlaca, New York 

I. In t roduc t ion 

In the past much work has been done on convergence of sequences of 
solutions of difference analogs of the Dirichlet problem* for second order 
uniformly elliptic equations and in particular Laplace's equation and Poisson's 
equation (c.f. FORSYTHE and WASOW [4], HUBBARD [5] and literature cited 
therein). Usually some rather restrictive conditions concerning smoothness 
of the solution of the continuous problem have been imposed in order to 
obtain the results. There have been, however, several studies of convergence 
properties under less stringent assumptions. Interesting results along these 
lines have been obtained for rectangular domains by WASOW [10], WALSH 

and YOUNG [9], and NITSCHE and NITSCHE [7] and for piecewise analytic 
boundaries with corners by LAASONEN [6]. Other important work has been 
done by CEA [3] who studied self-adjoint equations with bounded and 
measurable coefficients and obtained theorems on convergence of difference 
approximations to weak solutions in L2. 

In this paper some recent results of the author, the author and HUBBARD, 

and the author, HUBBARD and ZLAMAL will be presented. Only indications 
of the proofs will be given since all of this work will be published elsewhere 
in complete detail. All the results share the common property that the 
smoothness conditions are much weaker than those classically assumed. 

Although many of the results have been extended to equations with variable 

x> This research was supported in part by the National Science Foundation under 
Grant NSF GP-3666. Some of this research was completed and the manuscript prepared 
while the author was an NSF Senior Postdoctoral Fellow, visiting the Chalmers Institute 
of Technology, Goteborg, Sweden. 
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coefficients and various difference approximations, in order to minimiz3 
detail, I will consider only the Laplace operator and one of its simplest differen
ce analogs. 

II. Cont inuous and discrete problems. 

Let R be a bounded region in i\r-dimensional Euclidean space with boundary 
dR. We shall, in the usual manner, consider the space as having been covered 
by hypercubes of side h and call the corners mesh points. Those mesh points 
in R shall be called Rh and the intersection of 6R with the edges of the cubes 

jvill bs called dRh. 
We shall denote the Laplace operator by A and the difference analog by 

A^ The operator Ah will be defined for functions on Rh = Rh U dRh as 
follows. When a point x e Rh has its 2N nearest neighbors also in Rh then 
A/i is the usual 2N -f 1 point approximation to A. We consider, a t the remaining 
points of Rh, Ah to be defined as a locally 0(1) operator (bounded independent 
of h for smooth functions) and such that the matrix arrising from A^ operating 
on functions vanishing on dRh is symmetric and of positive type. This is 
just one of the standard formulations which is globally second order for 
problems with smooth solutions. 

We shall concern ourselves with approximating solutions to two problems. 
First, the solution u of the classical Dirichlet problem, which satisfies 

(2.1) Au = 0 in R 
u = f on 6R 

where / i s a given continuous function on 6R. That is, u is to be continuous 
on the closure, satisfy Aw = 0 in R and its restriction to 6R should be equal 
to / . Conditions on 6R in order for this problem to be solvable are, of course, 
well known. 

The other problem to be discussed is a weak formulation of the problem 
for the inhomogeneous equation with homogeneous boundary values. More 
precisely we define the class 

T = {<p\<p e C2+*(R) n G°(7?): tp(x) = 0, x e 6R; Ay e C%(R)', for some a } . 

In words, each member must have Holder continuous second partial derivatives 
in /?, be continuous on 7? (the closure of /?), vanish on dR and its Laplacian 
must have compact support in /?. Note that T contains the standard "test 
functions". We then want to consider the solution u. belonging to the real 

N 
Banach space Lp. 1 < p < -r„ —, of the equation 
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(2.2) J u Ay dx = f cpF dx, <p e T, 
it u 

for a given F e Lv (If F and 6R are sufficiently regular then the "weak 
solution" u will be the classical one, having zero boundary values.) 

We shall consider the following approximating problems as analogs of (2.1) 
and (2.2) respectively: 

(2.1h) Длttлí-r) = 0, x eRh 

uh(x) = /(.r). x e òRh 

and 

(2.2Һ) ДлЗД(-г-) = Fh(x)ђ 
x e Rh 

uh(x) = 0, x e òRh 

Tn (2.2Һ) Fh is defined as 

ғьW=ìҡ f ғІУ)dУ 
Xh(jr) 

where Sh(x) is the (normally oriented) hypercube of side h and center a% and 
F is extended to be zero outside R. 

We shall in the sequel use the notation V(x) to mean the extension of 

a function V(x) defined on Rh, as constant over Sh(x) O R and zero outside 

R n [ u Sh(x)l 
xellh 

III . S o m e r e s u l t s on c o n v e r g e n c e . 

We call a domain R which has no "unstable" boundary points a regular 
domain (c.f. B R E L O T [1]). [This condition admits quite general domains and 
in particular problem (2.1) is always solvable for such regions.] 

Theorem 1. Let R be a regular domain and u the solution of (2.1). Then if 
Uh is the solution of (2.1h), Uh -> u uniformly on R as h -> 0. 

Although there are several theorems on convergence of difference approxi
mations in the literature, it is not clear what the most general known result 
is for the classical Dirichlet problem. I n any case this theorem gives a quite 
general result. The proof is quite simple and relies on an approximation 
theorem of the type studied by WALSH [8]. The appropriate theorem is given 
in B R E L O T [1]. To extend this theorem to more general second order operators 
an approximation theorem of B R O W D E R [2] is used. More restrictions must 
be placed on the domain in this case (he calls the resulting domains "firmly 
regular") but the result is still quite general. 

The following existence and uniqueness theorem is easily proved. 
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Theorem 2. Let R be a regular domain and let F e Lv Then there exists 
N 

a unique u e Lp, 1 < p < -^ , such that (2.2) holds. 

Such a theorem can also be proved for operators with variable coefficients 
for "firmly regular" domains provided the coefficients and those of the formal 
adjoint satisfy some smoothness conditions. 

From our point of view here, an interesting method of proof makes use 
of the difference approximations. We obtain the following convergence 
theorem as a byproduct. 

N 
Theorem 3. Let R be a regular domain and u e Lp, 1 < p < -==, —, be the 

solution of (2.2). / / Uh is the solution of (2.2h) then uh -> u, strongly in Lp, 

— p < N — 2 ' aS "* 
The proof involves showing that the functions uh are uniformly bounded 

N 
in Lp for all 1 < p < -^ -- . By the weak compactness of bounded sets in 

LP, 1 < p < oo, we obtain a weak limit point which is then shown to satisfy 
(2.2). The uniqueness tells us that uh -> u, weakly in Lp as h -> 0. An ad
ditional argument can then be employed to show the strong convergence. 
The extension of this theorem to operators with variable coefficients, though 
true, is not a triviality. 

It is interesting to note here that even in two dimensions there are problems 
of the form (2.2) whose solutions are not continuous. This is true only for 
F e Ll9 and F $ Lp, p > 1. If F e Lp, p > 1 and N = 2 then u will be 
continuous. 

IV. Some resul ts on ra tes of convergence. 

In this section we shall consider regions R whose boundaries are no worse 
than of class C2 (or piecewise C2). We have the following: 

Theorem 4. Let 6R e C2 and suppose that the solution u of (2.1) is of class 
Cm+X(B), m = 0, 1, . . . , 0 ^ X <> 1. Then if uh is the solution of (2.1h) it 
follows that 

hm+l-e + ^ 2 - f . m = Q9 i9 2 

(4.1) max \uh(x) — u(x)\ < K(e) . 
xeRh [A2; m > 3 

where e is an arbitrary positive number and K(e) depends on e and u but not on h. 
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The proof of this theorem is based on some delicate estimates of the behavior 
of the discrete Green's function. 

It should be pointed out here that an order h2 estimate is essentially achieved 
when ueC2+0(R). Previous results required that ueC*+0(Tt) in order to 
obtain a second order error estimate. The present theorem yields a great 
deal more information than other theorems on this subject. The author has 
subsequently become awrare of a paper of Bahualov (Vestnik Moskov. Univ. 
Meh. Astronom. Fiz. Chem. (1959) pp. 171—-195) which essentially contains 
this result. 

In the important case N = 2 the results are better, in that piecewise C2 

boundaries are treated. We have 

Theorem 5. Let N = 2 and 6R e C2 piecewise with no reentrant cusps, i.e, 
R is composed of a finite number of C2 arcs meeting at (interior) angles TZ/OLU 

i = 1, . . . , k, 0Lt> 1/2. Then (4.1) holds. 
We now consider the case of problem (2.2). It is possible to obtain rate of 

convergence estimates even assuming no more than that F e Lv In this 
case we obtain only interior Lp estimates. 

Theorem 6. Let 6R e C2 and u and un be solutions of (2.2) and (2.2h) for 
a given F e Lx. Then if W eC^(R) the following estimate holds for N = 2. 

h; \<p< 

(4.2) IKflA-tOlPH^Si K(p, V) \\F\\L A|lnA|; p 

N - 1 

N 
N - 1 

[ hv; 2 < p < oo 

where K(p, W) is a constant depending on p and W but not on h. The notation 
II • Ik, is just ihe usual Lp-norm, I <p <ao. 

This result is obtained from a careful estimation of the difference between 
the discrete and continuous Green's functions. Theorem 4 is used in the 
derivation of this estimate. Since the analysis is based on the knowledge of 
the discrete and continuous fundamental solutions, the result only has been 
obtained for the Laplace operator. A similar result should be true in the 
more general case. 

Other results of this type have been obtained. For example, when F is 
Holder continuous with exponent a the estimates go up to &!+* on compact 
subsets. Also if JP is smooth on an open subset Q of R, local maximum norm 
estimates can be obtained on compact subsets of Q. This type of result shows 
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tha t the local properties of elliptic operators are carried over to local conver
gence properties of corresponding difference approximations. 

Finally, we consider the case where more precise knowledge of F is given. 
In particular we suppose that F is smooth, except at the origin O, (an arbitrary 
point of II) and for simplicity that 6R is smooth. For convenience we suppose 
that 0 lies at the center of a mesh hypercube for every h. We also prefer 
here to state the hypotheses on the solution u itself, rather than as conditions 
on F. 

Theorem 7. Let u be the solution of (2.2) and F be such that 

ieeC4+°(/? — 0) 

(4.3) \D*n(x)\ < K \ 
1; k < m 

\x\m+x-k^ m + 1 < fr < 4, 

k — 0, 1, . . . , 4, where \x\ is the distance from xtoO and Dk stands for an arbitrary 
partial derivative of order k. In (4.3) m is an integer (not necessarily positive) 
less than or equal to 3, 0 < X < 1 and m + X > 2 —• N. Then if u^ is the 
solution of (2.2h) we have the estimates, for x e Iih. 

hm+x +iV_2-f jj-jf+2-.v 9 - N < m + X < 4 - N 

h*\x\™+'-2, 4 - N < m + X < 2 
h2, 2 < m + / 

(4.4) \uh{x) - u(x)\ < K(e) 

where e is an arbitrary positive number and K(e) depends on e but not on h. 
If N > 3 then the last inequality is valid for 2 < m + X. 

The proof of this result is again based on the Green's function method. 
It, involves the construction of certain majorants and the development of 
some new discrete inequalities suggested by known continuous ones. 

Again it should be pointed out tha t this type of result displays the local 
effect of singularities on the convergence rate of difference analogs of elliptic 
problems. Note tha t we still get convergence away from the origin for any 
function whose singularity is not as bad as that of the fundamental solution 
and quadratic convergence even allowing bad behavior a t the origin. 
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