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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE 

MATHEMATICA XVII - 1967 

NONLINEAR FUNCTIONAL ANALYSIS AND NONLINEAR PARTIAL 
DIFFERENTIAL EQUATIONS.1) 

E. BROWDER, Chicago 

I n t r o d u c t i o n : The two basic approaches to fundamentally nonlinear 
problems in partial differential equations are on the one hand, variational 
methods (the direct method of the calculus of variations, the MORSE theory, 
and the LUSTERNIK—SCHNIRELMAN theory) and on the other hand, the 
theory of nonlinear operators in Banach spaces (the SCHAUDER fixed point 
theorem, the L E RAY -—SCHAUDER theory of the degree for compact dis
placements). In the past few years, we have seen a merging of these two lines 
of ideas in their applications to partial differential equations through the theory 
of monotone operators from a Banach space X to its conjugate space X*, 
i.e. operators T such that for all u and v in the domain of T, we have 

(Tu — Tv, u-v)x 0, 
(where (w, v) denotes the pairing between the functional w and the element v). 
On the one hand, every operator T which is the derivative (or subderivative) 
of a convex functional on X is monotone, and on the other hand, the con
sideration of monotone (or quasi-monotone, or semi-monotone) operator 
equations falls within the framework of nonlinear functional analysis, i.e. the 
study of nonlinear operators and nonlinear operator equations in Banach 
spaces. 

It is our object in the present paper to give a survey of some recent work 
by the writer on this type of functional analysis and its applications to various 
types of abstract differential equations in Hilbert and Banach spaces. We 
refer the reader to an earlier survey ([6]) for a development of the basic ideas 
in the application of monotone operators to such topics as: 

(1) The existence of solutions for variational boundary problems for non
linear elliptic differential operators of the form 

*> The preparation of this paper was partially supported by a Guggenheim Fellowship 
and by N. S. F. Grant GP-5862. 
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A{u) =- ^ D*(Aa(x, », . .-,DwHO). 

(2) The corresponding existence theorems for parabolic operators of the 
form: 

™ + At(u) = 0. 

(3) Nonlinear equations of evolution in Hilbert and Banach spaces arising 
from initial-boundary value problems of various types. 

Section 1 below presents the results of [14] on nonlinear equations of 
evolution in Hilbert space and the generalized method of steepest descent 
for monotone operators in Hilbert space. Section 2 develops the results of 
the extension of this theory as carried through in [16] to Banach spaces, both 
for monotone operators T from a Banach space J to its dual space X* and 
for J-monotone operators T from a Banach space X to X. Section 3 discusses 
the general method developed in [15] for proving the existence of periodic 
solutions for classes of nonlinear equations of evolution in infinite dimensional 
spaces comparable to the classes of differential equations treated in Sections 
1 and 2. 

We remark that the method of steepest descent and its generalizations 
have close links with the ideas of the calculus of variations, and the results 
presented below are connected with extensions of the results given in BROWDER 

[7] on the application of the Lusternik—-Schnirelman principle to the proof 
of the existence of infinitely many eigenfunctions for nonlinear elliptic eigen
value problems. 

S e c t i o n 1 : Let H be a real Hilbert space, T an operator (generally non
linear) with domain and range in H. We consider three inter-related problems 
concerning such operators T: 

(I) The existence for a given iv in / / of solutions u of the equation Tu = w. 
(II) The existence for a given u0 of solutions of the nonlinear equation of 

evolution 

d~ = -T{u), t^O, 

with u(0) = uQ. 
(III) For a suitably chosen perturbation term R(t, u) which converges to 

zero as t -> +oo, the convergence as t -> +oo of solutions of the equation 

^L=-T(u) + X{t,u) 

to solutions vQ of the stationary equation TvQ = 0. 
We denote this last problem as that of the generalized method of steepest 

descent for the operator T. 
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We recall that an operator T is said to be hemicontinuous if it is continuous 
from each line segment in D(T) to the weak topology of H. 

Theorem 1.1: Let T be a monotone operator in the Hilbert space II such that 
either: (i) D(T) = H, and T maps H hemicontmuo^tsly into H; or (ii) T = 
= L + T0 ^vhere L is a maximal accretive closed linear operator in II and T0 

is a hemicontimwis monotone mapping of II into II irhich maps bounded s^lbsets 
into bo^lnded subsets. 

S^tppose that there exists R > 0 such that for u in D(T) with \\u\\ = R> 
(Tu, u) > 0. 

Then the set of solutions ^l of the equation Tu = 0 is a iionempty closed convex 
subset K of H. 

Theorem 1.2: Let T be a hemicontimious locally bounded operator from II 
to H such that for a fixed constant c in R1 and all ^l and v of II, 

(Tu — Tv, u — v)< c\\u — v\\2. 

Then there exists one and only one strongly continuous, veakly once-differentiable 
function u from R+ = {t\te Rl, t > 0} to H such that ^l is -a sohition of the 
differential eq^lation t 

% = T«, ( > 0 , 

with the initial condition ^l(0) = u0, for a given u0 in II. 
In addition, if T is continuous, then ^l is strongly Cl. 

Theorem 1.3: Let H be a Hilbert space, f a mapping of R+ x II into II s^lch 
that the following three conditions are satisfied: 

(1) / is locally bounded (i.e. bounded on some neighborhood of each point of 
J?"- X H). For each fixed t in R+, f(t, •) is a hemicontinuous mapping of II 
into II. For each fixed u in II, / ( • , u) is continuous from R+ to the weak topology 
ofH. 

(2) There exists a continuous ftmction c from R+ to It1 such that for all t in 
R+ and all u and v in H: 

(f(t, u) -f(t, v), u-v)< c(t) \\u - v\\*. 

(3) For each u in H, f(t, u) is weakly once differentiable from R+ to II, and 
there exists a continuous function q from R+ X R+ to R+ such that for all u 
and t: 

! ( > • 
U) ^q(t,m\)-

Then for any u0 in H, there exists one and only one function u from B+ to II 
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which is iveakly continuously once-differentiable and which satisfies the differential 
equation 

du 
'dt=f(tiU)9 ' ~ ° ' 

and the initial condition u(0) = u0. 
Theorems (1.2) and (1.3) are sharpenings (under more restrictive hypotheses 

on the dependence of/ on t) of an existence theorem given in BEOWDER [3] 
with the additional assumption that f(t, u) is bounded for t and u ranging 
through a bounded set of R+ ><: / / . The interest of this strengthening lies 
primarily in the fact that it is obtained through a new a priori estimate for 
solutions of these equations of evolution from which one obtains much stronger 
control over the solutions of these equations. This is brought out more clearly 
in the following theorems on nonlinear evolution equations containing an 
unbounded linear operator L. 

Definition: Let H be a Hilbert space, {L(t)\ t e R+} a family of closed, densely 
defined linear operators in H, T0 a mapping ofR+ x H into H. If we set Ti(u) = 
= L(t) u + T0(t, u), then by a sharp solution u on R+ of the equation of evolution 

dw _. , v 

- ^ - Tt(u), t > 0, 
i 

we mean a strongly continuous function u from R+ to H with u weakly once 
continuously differentiable from R+ to H, u(t) in the domain of L(t) for each 
t in R+ and with L(t) u(t) weakly continuous from R+ to H, and such that for 
all t in R+, 

d?y 

-^(t) = L{t)u(t) + T0(t, u(t)). 
Theorem 1.4: Let II be a Hilbert space, L a maximal dissipative linear 

operator in H, T0 a mapping of R+ x H into H which maps bounded sets into 
bounded sets. Suppose that T0 satisfies the following three conditions: 

(1) For each fixed t in R+, f(t, •) is a hemicontinuous mapping of H into H. 
For each fixed u in H, / ( • , u) is continuous from R+ to the weak topology of H. 

(2) There exists a continuous function cfrom R+ to R1 such that for all t in R+ 

and all u and v in H: 

(T0(t, u) - T0(t, v), u-v)< c(t) \\u - v\\*. 

(3) For each fixed u in H, f(t, u) is weakly once-differentiable on R+ in t, 
and there exists a continuous function q from R+ X R+ to R+ such that for all 
t in R+ and all u in H, 

\m (t,u) 
II \ v* / 
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Then for each u0 in D(L), there exists one and only sharp solution u on R+ of 
the equation of evolution 

dit 
— = Lu + T0(t, u), t > 0. 

with w(0) = u0. 
As an illustration of the basic a priori bounds from which these results 

are derived, we have the following: 

Theorem 1.5: Let L and T0 satisfy the conditions of Theorem 1.4 and let u 
be a sharp solution of the differential equation 

^ = Lu + T0(t,«). 

Let C(t) = f c(s) ds. Then: 

(I) For all t in JR+, 

\\u(t)\\ <; exp ((?(«)) ||«(0)|| + / e x p (C(t) - C(s)) \\T0(s, 0)|| ds. 
I) 

(II) If q(t,r) is nondecreasing in r (as we may ahcays assume) and if \\u(s)\\ <; 
< M(s) for all s in R+, then 

t 

< exp (C(t)) \\T0(0, u(0)) + Lu(0)\\ + / exp (C(t) - C(s)) q(s, M(s)) ds. 
o 

Combining these apriori estimates with the corresponding existence theorems, 
we obtain the following general result on the generalized method of steepest 
descent for monotone operators in Hilbert spaces: 

Theorem 1.6: Let H be a Hilbert space, T a monotone operator with domain 
in H and values in H which lies in one of the two following classes: 

(a) T is a locally bounded hemicontinuous mapping of II into II. 
(b) T = L + T0, where L is a maximal accretive linear operator in H, and 

T0 is a hemicontinuous monotone mapping of H into H which carries bo^tnded 
subsets into bounded subsets. 

Suppose that there exists R > 0 such that (Tu, u) ;> 0 for all u in D(T) with 
\\u\\=R. 

Let c be a C1 function from R+ to R+ which is non-increasing and such that 
oo 

c(t) -> 0 as t -> +oo, f c(s) ds = +oo. 
o 

Let v0 be any element of H with \\v0\\ < i?, u0 any element of D(L) with 

||«oll 
Then: 

Equadiff II. £ 9 
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(1) The equation of evolution 

{\iii 

._ = -T(u) - C(t) {U - V0}, t > 0, 

has one and only one sharp sohition u on R+ with u(0) = u0. 
(2) As t -> +co, this solution converges strongly in H [to a solution ^v0 of 

the equation Tw = 0. This limit is characterized as that solution of TV = 0 
in the ball BR = {u\ \\u\\ < R} closest to the given element v0. 

Section 2 : We now turn to the generalizations and extensions of the 
results of Section 1 to more general Banach spaces than Hilbert space, as 
given by the writer in BROWDER [16]. These extensions are of two kinds: 

(1) The consideration of monotone operators T from X to X*. 
(2) The consideration of J-monotone operators T from X to X, for 

a duality mapping J of X into -X*. 
We shall consider case (1) first. 

Definition: Let X be a Banach space, with I c fl c JL* for a Hilbert space 
II, in the sense that ^ve are given continuous linear injections of each space on 
a dense s^ibset of its successor and the pairing between two elements ̂ o and it, of 
II ^vith w in X and ^l in X* coincides ̂ vitk the H inner product. 

Let f be a mapping of R+ x -X" into -X*. 
Then a function u from R+ to X is said to be a sharp sohition on R+ of the 

equation of evolution 

^=f(t,U), t>0 

if u satisfies the following three conditions: 

(1) u is continuous from R+ to the ^vcak topology of X. 
(2) As a function from R+ to H, ^l is continuous to the strong topology of II 

and satisfies a Lipschitz condition in H on each finite interval, u is strongly 

once-differentiable in II a.e. on R+ and \ -=- (t) \\ is essentially bounded on each 

finite interval. 
(3) The differential equation 

~(t)=f(t,u(t)) 

holds a.e. on R+. 
To abbreviate these hypotheses, we use the following notation: If Y is 

a Banach space, C®(R+, Y) and C%.(R+, Y) denote the functions from R+ to 
Y continuous to the strong and weak topologies of Y, respectively; C\(R+, Y) 
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and C*.(l?+, Ir) denote the continuously once-differentiable functions from 
R*- to the strong and weak topologies of Y, respectively; L£C(R+, Y) is the 
family of strongly measurable functions from /?+ to Y whose norm is bounded 

dv 
on each finite interval: -=- denotes the distribution derivative. Then the 

at 
assumptions of the above definition may be rewritten: 

(1) ueCl(R+, X); (2) u e C°(R+, H), and ~ eZjS0(JB+, / / ) . 

• rl?/ 
(3) w=f(t,u(t)), on /?+. 

Theorem 2.1: Let X be a reflexive separable Banach space with X c: / / e X* 
for a given Hilbert space H. Let T be a hemicontinuous monotone mapping of X 
into X* which carries bounded sets of X into bounded sets in X*. Suppose that 
(Tu, u) ->• +oo as \\u\\x ->co-

Then for each u0 in X such that T(u0) lies in H, there exists one and only 
sharp solution of the differential equation 

~=f(t,u), t^O, 

oil i?+ such that u(0) = u0. 
We omit the detailed statement of tli3 corresponding time-dependent 

result, and pass directly to the generalized method of steepest descent: 

Theorem 2.2: Let X be a reflexive separable Banach space with I c f l c X* 
for a given Hilbert space H. Let T be a hemicontinuous monotone mapping of 
X into X* such that T maps bounded subsets of X into bounded subsets of X* 
v:hile (Tu, u) -> +oo as \\u\\x -> +oo. 

Let c be a C1 non-increasing function from R+ to R+ such that c(t) -> 0 as 
oo 

t -» +oo, f c(s) ds = +oo. Let v0 be an arbitrary element of H, u0 any element 
o 

of X such that T(u0) lies in H. 

Then: 
(a) The differential equation 

Au 
~di = -T(u) - c(t) {u - v0}, t > 0, 

has one and only one sharp solution u on i?+ with ti(0) = u0. 
(b) As t -> +oo, u(t) converges weakly in X to a solution w0 of the equation 

Tw = 0. Moreover, u(t) converges strongly in H to ic0. The limit element w0 is 
uniquely characterized as the solution of the equation Tw — 0 closest to v0 in H. 
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The existence theorems, Theorem 2.1 and its time-dependent generalization 
which we have not stated, apply directly to the treatment of initial boundary 
value problems of parabolic type ([3]) and (especially for the time-independent 
case) give a significant strengthening of the parabolic existence theorems under 
hypotheses on T which are essentially weaker than those considered in the 
treatment of variational rather than sharp solutions. The previous hypotheses 
(though they can be put in a much more general-looking and untransparent 
form) have the same force essentially as the following simple assumption: 

There exists an exponent p with 1 < p < +co such that for suitable positive 
constants c and c0, 

mu.<c{\\u\\rx + i}: 
(Tu,u) > c0||^||£ - c . 

In Theorem (2.1), however, we need only assume that T maps bounded sets 
of X into bounded sets in X* and tha t (Tu, u) -> +co as \\u\\x -> +co . 

Similar considerations apply to the existence theorem which we derive for 
the abstract wave equation of the form 

utt = —Au — T(ut) — S{u) 

where T and S are mappings of X into X*, and Ui, ^ltt denote the first and 
second derivatives of u with respect to t. We introduce a class of sharp 
solutions as follows: 

Definition: Let X be a Banach space, II a Hilbert space with X c H c= X*. 
Let A be a non-negative closed self-adjoint operator in H, A* its non-negative 
square root. Let T and S be mappings of X into X*. 

Then a function u from R+ to X is said to be a sharp solution on R+ of the 
differential equation 

utt = —Au — Tfa) — S(u) 

if u satisfies the follovoing five conditions: 

(1) u lies in C}C(R+, X) and in C\(R+, H). 
(2) utt lies in L?OG(R+, H). 
(3) For each t in R+, u(t) and ^lt(t) lie in the domain of A*, and A^u lies in 

Cl(R+, II), Ahit lies in C°W(R+, H). 
(4) For each t in R+, Au(t) lies in X*, i.e. there exists y(t) in X* which ^ve 

denote by Au(t) such that for all w in D(A*) O X, we have 

(AHi(t),A*w) = (y(t),w). 

Furthermore A^t lies in C%(R+, X*). 
(5) For almost all t in R+, 

utt(t) = -Au(t) - T{ut(t)) - S(u(t)). 

52 



Theorem 2.3: Let X be a reflexive separable Banach space, H a Hilbert space 
icith X c: H <z X*. Let A be a non-negative closed self-adjoint linear operator 
in II such that D(A*) n X is dense both in X and D(A$), where the latter is 
given the graph norm. Let T be a hemicontimions mapping of X into X* which 
maps bounded sets into bounded sets, S a Lipschitz mapping of II into II, (where 
both T and S may be nonlinear). Suppose that (Tu, u) -> +00 as \\u\\x -> +00 
and that T is monotone. 

Then for each u0 in D(A$) n X and for each ux in D(A^) n X such that 
T(ux) lies in II, there exists one and only one sharp solution u on 72+ of the 
differential equation 

utt = —Au — T(ut) — S(u) 

which satisfies the initial conditions 

u(0) = u0< ut(0) = uv 

Abstract wave equations of the above form with S linear but with time-
dBpendmt terms were studied by LIONS and STRAUSS [24] who obtained 
variational solutions for similar initial value problems but under growth 
conditions for T like those disccused above in connection with the first order 
case. 

We now turn from operators T mapping X into X* to tho consid:ration 
of J-monotone operators T from X to X. These are defined as follows: 

Definition: Let Xbea Banach space, q a continuous strictly increasing function 
from R+ to R+ such that q(0) = 0 and q(r) -> +00 as r -> -\-co. Then a mapping 
J of X into X* is said to be a duality mapping with gauge function q if the 
following conditions hold for all u in X: 

(Jtt,«) = | |u | | . | |Jt t | | ; | |Jt*||-=s(||«||). 

Definition: Let X be a Banach space, J a duality mapping of X into X*. 
If T is a mapping with domain D(T) in X and with range in X, then T is said 
to be J-monotone if for all u and v in D(T), 

(T(u) - T(v), J(u - v)) 2> 0. 

The definition of J-monotone mapping was first given and applied in 
BROWDER [10] and results on J-monotone mappings have been established 
in BROWDER [15] and B R O W D E R — F I G U E I R E D O [19]. TI13 concept of J-mono-

tonicity is intimately linked to that of non-expansiveness of a mapping from 
X to X, where U is said to be non-expansive if for all u and v of X, 

\\U(u)-U{v)\\<,\\u-v\\. 

For every non-expansive mapping U, T = I — U is J-monotone for any 
duality mapping J of X into X*. On the other hand, if the differential equation 
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S£ = -T(u), t ;> 0, 

has a solution u on R+ with u(0) = u0 for every u0 in -D(T) and if we set 
U(t) u0 = u(t), then the non-expansiveness of all the operators U(t) is equivalent 
to the J-monotonicity of T. In particular, if L is a closed densely defined 
linear operator in X, then L is the generator of a C0 semigroup of nonexpansive 
linear operators U(t), (i.e. 1117(011 < 1, ^ > 0) if and only if L satisfies both 
of the following conditions: 

(1) (—L) is J-monotone for any duality mapping J of X into X*. 
(2) (—L + / ) has all of X as its range. 
We present results on J-monotone operators T of two types. First, with 

mild regularity assumptions on T and very weak assumptions on the space X. 
Second, with weak assumptions on the operator T (comparable to those in 
the Hilbert space case) but with fairly drastic restrictions on the Banach 
space X. 

Definition: A mapping T of X into X is said to be weakly once-differentiable 
at u0 in X if there exists a bounded linear operator B such that for all x in X 
and all y in X*, 

(T(u0 + hx), y) = (T(u0), y) + h(Bx, y) + Rx,y(h) 

where for each fixed y in X*, 

h^Rxtfih) -> 0, as h -> 0, 

uniformly in x on the unit ball of X . 

Theorem 2.4: Let X be a Banach space with a continuous duality mapping 
J of X into X*. Let T be a nonlinear mapping of X into X which is tveakly 
once differentiable and locally Lipschitzian at each point of X. Suppose that 
there exists a constant c in R1 such that for all u and v in X: 

(T(u) - T(v), J(u - v)) < c\\u - v\\ . \\J(u - t 0 | | . 

Then for each u0 in X, there exists one and only one strongly C1 function u 
from R+ to X which satisfies the differential equation 

% = T(u), t ^ 0 , 

with u(0) = u0. 

Theorem 2.5: Let X be a Banach space with a continuous duality mapping 
J of X into X*. Let L be a closed densely defined linear operator in L which 
is the infinitesimal generator of a C0 semigroup of nonexpansive linear operators 
in X. Let T0 be a nonlinear mapping of X into X which is weakly once-different-
iable and locally Lipschitzian in a neighborhood of each point of D(L), and such 
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that T0 maps bounded subsets of X into bounded s^lbsets of X. Suppose also that 
there exists a constant c in R1 such that for all ^^ and v in X, ~ 

(T0(u) - T0(v), J(u - v)) < c\\u - v|| . \\J(u - v)\\. 

Then for each u0 in D(L), there exists one and only one strongly C1 fanction 
ufrom B+ to X ^vith u(t) in D(L)for all tvin B+ siich that ^^ satisfies the different-
ial eq^lation 

- ^ = Lu + T0(u), t ;> 0, 

and the initial condition u(0) = u0. 

Theorem 2.6: Let X be a Banach space ^vith a continuous duality mapping 
J of X into X *. Let L be a closed linear operator in X ^vhich is the infinitesimal 
generator of a C0 semigroup of nonexpansive operators in X. Let T0 be a mapping 
of B+ x X into X which maps bounded subsets of B+ X X into bounded subsets 
of X. Suppose that for each fixed t in B+, T0(t, u) is ^veakly once-differentiable 
and locally Lipschitzian on a neighborhood of each point of D(L). Suppose 
further that both of the following conditions are satisfied: 

(a) There exists a continuous function c from B+ to B1 such that for all ^l and 
v in D(L) and all t in B+, 

(T0(t, u) - T0(t, v), J(u - v)) < c(t) \\u-v\\. \\J(u -v)\\. 

(b) For each fixed u in D(L), T0(t, u) is weakly once differentiable hit on B+. 
There exist two continuous functions k: B+ -> B+ and q: i? + X B+ -> B+ such 
that for all u, in D(L) and all t in B+, 

M (ł,u) :*(í) | | .Ł«| |+ g(í, | |« | 

Then for each u0 in D(L), there exists one and only one strongly C1 function 
u from B+ to X with u(t) lying in D(L) for all t in B+ such that u is a solution 
of the differential equation 

(lU 

— = Lu + T0(t, u), t > 0, 

and the initial condition u(0) = u0 holds. 
For this casa, we obtain the following variant of the method of steepest 

descent: 

Theorem 2.7: Let X be a Banach space with a continuous duality mapping 
J of X into X*. Let T be a mapping with domain and range in X which lies in 
one of the following two classes: 

(1) T is a J-monotone mapping of X into X which is weakly once-differentiable 
and locally Lipschitzian at each point of X. 
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(2) T = —-L + T0, where L is a closed linear operator in X which is the 
infinitesimal generator of a C0 semigroup of nonexpansive operators in X, T0 is 
a nonlinear J-monotone mapping of X into X which carries bounded sets into 
bounded sets and such that T0 is weakly once-differentiable and locally Lipschitzian 
on a neighborhood of each point of D(L). 

Suppose that there exists R > 0 such that for u in D(T) with \\u\\ = R, 
(Tu, Ju) > 0. 

Let c be a nonincreasing C1 function from R+ to R+ with c(t) -> 0 as t -± +oo, 
CO 

f c(s) ds = +oo. Let u0 be any element of D(T) with \\u0\\ < R, and let v0 be 
b 
any element of X with \\v0\\ < R. 

Then: 
(a) The differential equation 

~t = -T(u) - c(t) {u - v0} 

has one and only one solution u on R+ with u(0) = u0. 
(b) For each such solution u on R+, ice have 

\\T(u(t))\\-><) 

as t -> +oo. 

(c) Suppose that in addition to the preceding hypotheses, T satisfies the following 
condition: 

(C) For each M > 0, there exists a compact mapping C of X into X and 
a continuous strictly increasing function p from R+ to R+ with p(0) = 0 such 
that for all u and v of D(T) with \\u\\< M, \\v\\< M, 

\\T(u) - T(v)\\ >p(\\u - v\\) - \\C(u) - C(v)\\. 

Then u(t) converges strongly in X as t -> +oo to a solution v0 of the equation 
Tv0 = 0. 

As a consequence of Theorem 2.7, we have the following existence theorem 
for solution of the equation Tv = w. 

Theorem 2.8: Let X be a Banach space with a continuous duality mapping 
J of X into X*, and let T be a J-monotone mapping which is in one the two 
classes (1) or (2) of Theorem (2.7). Then: 

(1) Let BR be the closed ball of radius R > 0 about the origin in X. SR its 
boundary. If for some R > 0, (Tu, Ju) > 0 for all u in D(T) n SR, then 0 
lies in the strong closure of T(BR n D(T)). In particular, if T(BR n D(T)) is 
closed in X, then the equation Tv = 0 has a solution v0 with \\v0\\ < R. 
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(2) Suppose tlmt T is J-coercive, i.e. 

(Tu, Ju)l\\Ju\\ -> +00- (Utejl -> +00). 

Then the range of T is dense in X. 

(3) / / T is J-coercive and satisfies condition (C) of part (c) of Theorem 2.7, 
then the range of T is the ^vhole of X. 

(4) / / X is reflexive and T is J-coercive as well as demiclosed (i.e. for any 
weakly convergent seq^ience uj -> u with T^^ converging strongly to w, u lies in 
D(T) and T^^ = w), then the range of T is all of X. 

(5) If X is strictly convex and T is J-coercive, the set 

Kw = {v\v e D(T), Tv = w} 

, for a fixed ^o in X, is a closed convex subset of X. 

We now restrict the class of Banach spaces X, and thereby can eliminate 
the regularity conditions imposed upon T in the preceding results. Our basic 
hypothesis upon X is the following: 

Definition: X is said to satisfy the conditions (P) if the following two conditions 
hold: 

(1) There exists a d^lality mapping J of X into X* which is continuous and al
so weakly continuous (i.e. contimtous in the ^veak topology of X and X*). 

(2) There exists an increasing sequence {Fj} of finite dimensional subspaces 
of X whose union is dense in X, and a corresponding sequence {Pj} of projections 
of X such that the range of each Pj is the corresponding Fj and for eachj, \\Pj\\ -==- 1. 

The properties (P) wera applied in B R O W D E R - - F I G U E I R E D O [19] to obtain 
an existanc3 theorem for nonlinear functional equations involving J-monotone 
operators. Aside from Hilbert spaces, the most important class of concrct?ly 
defined Banach spaces which satisfy th3 conditions (P) ara th3 ssquencs 
spaces lp for 1 < p < +oo, as was shown in [10], Th3 restrictive condition in 
the pair of conditions (P) is th3 first which does not hold for any LP space 
withp ^ 2 on the line. Property (2) seems to hold for all examples of separable 
.Banach spaces familiar to the writer. 

Theorem 2.9: Let X be a reflexive Banach space which is strictly convex and 
satisfies the conditions (P). Let J be any duality mapping of X into X*. Let T 
be a mapping of X into X which is hemicontinuous and locally bounded^ and for 
which there exists a constant c in R1 such that for all u and v of X 

(T{u) - T(v), J(u - v)) < c||it - v\\ . \\J(u - t>)||. 

Then for each u0 in X, there exists one and only weakly C1 function u from 
R+ to X ^vhich satisfies the differential equation 
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- d 7 = T(u), t > 0, 

and the initial condition ti(0) = u0. 

Theorem 2.10: Let X be a reflexive strictly convex Banach space which 
satisfies the conditions (P), J a duality mapping of X into Z*. Let L be a closed 
linear operator in X which is the infinitesimal generator of a C0 semigroup of 
nonexpansive operators in X. Let T0 be a mapping of X into X ivhich is hemi-
continuous, maps bounded subsets of X into bounded subsets of X, and for which 
there exists a constant c in Rl such that for all u and v of X, 

(T0(u) - T0(v), J(u - v)) < c||ii - v\\ . \\J(u - t ; ) | | . 

Then for each u0 in D(L), there exists one and only one sharp solution u on R+ 

of the differential equation 

c\.u 

d 7 = Lu + T0(u), t > 0, 

with u(0) = u0. 
By a sharp solution, we mean a function u from R+ to X which lies in 

Cl(R+, X) with u(t) in D(L) for all t in R+ and with Lu in C»W(R+, X). 
A time dependent generalization of Theorem 2.10 is the following: 

Theorem 2.11: Let X be a reflexive strictly convex Banach space which satisfies 
the conditions (P) and let J be a duality mapping of X into X*. Let Lbe a closed 
linear operator in X which is the infinitesimal generator of a C0 semigroup of 
nonexpansive linear operators in X. Let T0 be a mapping of R+ x X into X 
which carries bounded sets into bounded sets and satisfies the following three 
conditions: 

(1) For each fixed t in R+, T0(t, ') is a hemicontinuous mapping of X into X. 
For each fixed u in X, T0(', u) is a continuous mapping from R+ to the weak 
topology of X. 

(2) There exists a continuous function cfrom R+ to R1 such that for all u and v 
in X and all t in R+: 

(T0(t, u) - T0(t, v), J(u - v)) < c(t) \\u - v\\ . \\J(u -v)\\. 

(3) For each fixed u in D(L), T0(t, u) is weakly once differentiable in t from 
H+ to X, and its derivative satisfies the inequality 

1(4'•)*•' qЏ, IMI) 0 

Jor all u in D(L) and a continuous function qfrom E+ X R+ to R+. 
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Then for each u0 in D(L). there exists one and only one sharp solution u on 
R+ of the differential equation 

~ = Lu + T0(t, u), t > 0, 

with u(0) = ti0. 
The variant of the generalized method of steepest descent which holds for 

this case is the following: 

Theorem 2.12: Let X be a reflexive strictly convex Banach space which satisfies 
the conditions (P), and let J be any duality mapping of X into X*. Let L be 
a closed linear operator in X which is the infinitesimal generator of a C0 semigroup 
of nonexpansive operators in X. Let T0 be a mapping of X into X which is 
hemiccntinuous and locally bounded. If L is unbounded, we suppose in addition 
that T0 maps bounded sets of X into bounded sets of X. 

Suppose that T0 is J-monotone, and that there exists R > 0, such that 
(Tu, Ju) > 0 for all u in D(T) with \\u\\ = R. 

Let c be a continuous nonincreasing C1 function from R+ to R+ such that 
oo 

c(t) -+ 0 as t -> +oo, J c(s) ds = +oo. Let u0 be any element of D(L) with 
o 

H ôll -^ R9 an& kt vo be any element of X with \\v0\\ < R. 
Then: 
(a) There exists exactly one sharp solution u on R+ of the differential equation 

du 
— = Lu- T0(u) - c(t) {u - v0}, t > 0, 

with u(0) = u0. 
(b) For each such solution, 

\\-Lu(t) + T0(u(t))\\->0 
as t -> +00. 

(c) For each such solution, u(t) converges strongly in X to a solution v0 of 
the equation Tv0 = 0, as t -> +00. 
A consequence of Theorem (2.12) is the following existence theorem for 
solutions of nonlinear functional equations involving J-monotone operators. 

Theorem 2.13: Let X be a reflexive strictly convex Banach space which satisfies 
the conditions (P), J a duality mapping of X into X*. Let T be a mapping 
with domain and range in X which lies]in one of the following two classes: 

(a) T is a hemicontinuous locally^bounded J-monotone mapping of X into X. 
(b) T =. — L + T0, where L is a closed linear operator in X which is the 

infinitesimal generator of a C0 semigroup of nonexpansive operators in X, and 
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T0 is a hemicontimious J-monotone mapping of X into X which carries bounded 
sets into bounded sets. 

Then: 
(1) If for a given R > 0 and for all u in D(T) ^vith \\u\\ = R9 (Tu9 Ju) > 0, 

then the set 

K= {v\v e D(L)9 Tv = 0, \\v\\ ^R} 

is a nonempty closed convex subset of X. 
(2) If T is J-coercive, then the range of T is all of X. 
The existence of a solution %\t0 of the equation Tu0 = 0 in case (a) was 

previously established in BROWDER—-FIGUEIREDO [19]. 
Let us turn finally to nonlinear equations of evolution involving J-monotono 

operators without a differentiability assumption on th3 d3p8iid?nc3 of / on t. 
First, we have the following tli3or>m which extsnds the similar result in 

Hilbert space proved in BROWDER [4]: 

Theorem 2.14: Let X be a reflexive strictly convex Ba^^ach space ^vhich satisfies 
the conditions (P), and let J be a duality mapping of X into X*. Suppose that 
f is a mapping of R+ X X into X which carries bounded subsets of R+ x X 
into bounded sets in X. Suppose that f satisfies the following two conditions: 

(1) For each fixed t in R+
9 f(t9 •) is a hemicontimious mapping of X into X. 

For each fixed u in X9 / ( • 9u) is a continuous mapping of R+ into the weak 
topology of X. 

(2) There exists a continuous function cfrom R+ to R1 such that for all t in R+ 

and all ^c and v of X9 

(/(*. *) - / ( * , v), J(u - v)) < c(t) \\u-v\\. \\J(u - t;)||. 

Then for each u0 in X9 there exists one and only one solution ^l in Gl,(R+
9 X) 

of the differential equation 

(\u 
~^=f(t9u)9 t>09 

which satisfies the initial condition ^l(0) = u0. 
A corresponding extension of the existence theorems for mild solutions 

of nonlinear equations of evolution in Hilbert space involving unbounded 
linear operators, as proved in BROWDER [4] and KATO [21], is based upon the 
following natural ext2nsion of the definition of mild solution: 

Definition: Let X be a Banach space, {L(t) | t e R+} a family of closed linear 
operators in X9f a mapping of R+ x X into X. Suppose that the time-dependent 
linear problem 
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^(t) = L(t)«(t), t>s, 

u(s) = u0 

has one and only one strongly continuous solution u(t) = U(t, s) ^l0 for tach 
s > 0 and each ^l0 in D(L(s)), ^vhere U(t, s) is a bo^^nded linear operator in X 
for each s and t in i?+ with s <t. 

Then a fanction ^^ from R+ to X is said to be a mild sohition of the nonlinear 
differential equation 

AM 
-df = L(t)u+f(t,u), t>0, ! 

if u is a strongly continuous function from R+ to X ivhich is a sohition of the 
nonlinear integral eq^lation: 

u(t) = U(t, 0) u0 + / U(t, s)f(s, u(s)) ds, t ^ 0. 
u l 

Theorem 2.15: Let X be a reflexive strictly convex Banach space which satisfies 
the conditions (P), J a d^iality mapping of X into X*. Let \L(t) \ t e R+} be 
a family of closed linear operators in X, with each L(t) the infinitesimal generator 
°f a Co semigroup of nonexpansive operators in X. Appose also that for each 
s > 0 and each ̂ l0 in D(L(s)), the time-dependent linear problem 

ClU 

-£• (t) = L(t) u(t), t > s, 
u(s) = u0 

has one and only one solution ^l in CJ.((8, oo); X). 
Let f be a mapping of i?+ X X into X ^vhich maps bounded s^lbsets of R+ X X 

into bounded s^tbsets of X and satisfies the two conditions (1) and (2) of Theorem 
(2.14). 

Then there exists for each ^t0 in X, one and only one mild solution ^l on 7? f 

of the nonlinear eq^^ation of evolution 

^ = L(t)u+f(t,u), t^O, 

with u(0) = ^l0. 

Section 3 : We now turn to the problem of the existence of periodic 
solutions of equations of the form 

(3.1) iH/(''«> 
where f(t, u) is periodic in t of period p, i.e. f(t + p, u) =f(t, ^l) for all t iri *i?+. 
We seek to find periodic solutions of period p. We shall present here some 
of the simpler results given in BROWDER [15], 
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Definition: A function V from the Banach space X to R+ is said to be 
a Lyapo^mov fiinction for the equation (3.1), where f is a mapping of R^ x X 
into X, if the following conditions are valid: 

(1) V is a convex function on X, with V(0) = 0, V(u) > 0 for u -?-= 0, and the 
level sets of V are bounded and uniformly convex, i.e. given R > 0, d > 0 there 
exists Rx < R such that if V(u0) < R, F(%) < R, with \\u0 — ux\\ ^> d, then: 

F(K + ^1)/2)<7?1. 

(2) There exists a continuous mapping S of X into X* which is a s^lbderivative 
of V, i.e. for all ^l and v in X ^ 

V(u) — V(v) > (S(v), u - v). 

(3) For each pair u and v in X and all t in R+, 
(f(t,u)-f(t,v)S(u-v))<0. 

(4) There exists R0 > 0 such that for all t in R+ and all u m X with \\u\\ > R0, 
(f(t, u), S(u)) < 0. 

Theorem 3.1: Let X be a reflexive Banach space, f ct mapping of i?+ x X 
into X such that for all u0 in X, the differential equation 

~ d 7 = / ( M 0 ' t~0> 

has exactly one sohction ivith u(0) = u0. 
Suppose that f(t, u) is periodic in t of period p > 0, and suppose that there 

exists a Lyapounov function for this equation in the sense of the above definition. 
Then the equation (3.1) has a periodic sohition of period p. 
As an application of this result, we have the following: 

Theorem 3.2: Let X be a uniformly convex Banach space, J a duality mapping 
of X into X*. Let fbe a mapping of R+ X X into X s^lch that the equation 

has one and only one solution on R+ with u(0) = u0, for any given u0 in X. 
Suppose ftirther that for each t in R+, 

(f(t,u)-f(t,v),J(u-v))<0, 

and that there exists R > 0 such that for all t in R+ and all u in X with \\u\\ >R, 

(f(t, u), Ju) < 0. 

Then if f(t, u) is periodic in t of period p > 0, there exists a sohition of the 
differential eq^^,ation which is periodic of period p. 

Extensions are given in [ ] to more general nonlinear equations of evolution 
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of the types considered in Sections 1 and 2 above. The proofs are all based 
upon the following simple fixed point theorem: 

Theorem 3.3: Let X be a reflexive Banach space, V a convex continuous 
function from X to R+ such that V(0) = 0, V(u) > 0 for u -^ 0. Suppose that 
the level sets of V are bounded and uniformly convex. Let U be a mapping of 
a closed convex subset G of X into G such that for all u and v of C, 

F ( C / » - U(v))< V(u-v). 

Then U has a fixed point in C. 
The proof of Theorem 3.3 uses an argument of BRODSKI and MILMAN [1], 

which was applied in the case in which V is a function of the norm in an 
uniformly convex space by BROWDER [9] and K I R K [22], Similar fixed point 
theorems with weakened hypotheses can be established in Hilbert spaces and 
Banach spaces having weakly continuous duality mappings J by using the 
fact tha t for every nonexpansive mapping U, T = I — U is -/-monotone, 
(cf[10],[17]). 

Theorem 3.2 is an extension of a result in Hilbert space given by the writer 
in [8]. 

We remark in conclusion that the most general form of aplication of Theorem 
(3.3) to initial value problems can be put in the following abstract form: 

Theorem 3.4: Let X be a reflexive Banach space, G a closed convex bounded 
subset of X. Let {U(t, s) \ t > s} be a family of transition operators on G9 i.e. 
for r < 8 <t, U(t, r) = U(t, s) U(s, r), where each U(t, s) is a (possibly) non
linear nonexpansive mapping of C into itself. Suppose further that there exists 
a convex function V from X to R+ such that V(0) = 0, V(u) > 0 for u ^ 0, 
and with the level surfaces of V uniformly convex, such that for all t and s, (s < t) 
and all u and v in G, 

V(U(t, s) u - U(t, s) v) < V(u - v). 

Suppose that the transition operators U(t, s) are periodic of period p > 0, in 
the sense that for every s < t in R+, U(t + p, s + p) = U(t, s). 

Then there exists uQ in C such that for every t in R+, U(t, 0) uQ is periodic 
in t of period p. 
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