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Abstract. In existence and uniqueness theory of boundary value prob-
lems for ordinary differential equations Compactness Condition plays an
important role. It has been a long standing problem whether other condi-
tions imposed on the differential equations imply this compactness con-
dition. In this lecture we shall survey known results on this problem,
including its complete unpublished proof essentially due to L. Jackson
and K. Schrader. We shall also discuss some related problems.
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1 Introduction

In this lecture we shall consider the following n (≥ 2)th order nonlinear differ-
ential equation

y(n) = f(x, y, y′, . . . , y(q)), 0 ≤ q ≤ n− 1, but fixed. (1.1.aga)

With respect to (1.1.aga) we shall assume that

(A) f(x, u0, u1, . . . , uq) : (a, b)× Rq+1 → R is continuous.
(B) Solutions of initial value problems for (1.1.aga) are unique.
(C) Solutions of (1.1.aga) extend to (a, b).
(Dn) For any a < a1 < a2 < · · · < an < b and any solutions y(x) and z(x)
of (1.1.aga), it follows that y(ai) = z(ai), 1 ≤ i ≤ n implies y(x) ≡ z(x), i.e., the
differential equation (1.1.aga) is n-point disconjugate on (a, b).

In the study of boundary value problems for the differential equation (1.1.aga),
one of the Propositions which has attracted several Mathematicians and has led
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to substantially new mathematics is whether conditions (A) – (Dn) imply the
following compactness condition:

(E) If [c, d] is a compact subinterval of (a, b) and {ym(x)} is a sequence of
solutions of (1.1.aga) which is uniformly bounded, i.e., |ym(x)| ≤ M on [c, d] for
some M > 0 and all m = 1, 2, . . . , then there is a subsequence {ym(j)(x)} such
that {y(i)

m(j)(x)} converges uniformly on [c, d] for each 0 ≤ i ≤ n− 1.

In this lecture we shall survey most of the known results on this Proposition,
and touch on some related topics.

2 Preliminary Results

We shall need the following version of Kamke’s convergence theorem.

Theorem 2.1. ([5, p. 14]) Assume that for the differential equation (1.1.aga) the
conditions (A) and (C) are satisfied. Then, if {ym(x)} is a sequence of solutions
of (1.1.aga) such that there exists a sequence {xm} ⊂ (a, b) with limm→∞ xm = x0 ∈
(a, b), limm→∞ y

(i)
m (xm) = yi, 0 ≤ i ≤ n − 1. Then, there is a solution y(x) of

the differential equation (1.1.aga) satisfying the initial conditions y(i)(x0) = yi, 0 ≤
i ≤ n−1, and a subsequence {ym(j)(x)} of {ym(x)} such that limj→∞ y

(i)
m(j)(x) =

y(i)(x), 0 ≤ i ≤ n− 1, uniformly on each compact subinterval of (a, b).

Lemma 2.2. Let y(x) ∈ C(n)[a1, ar], satisfying

y(ai) = y′(ai) = · · · = y(ki)(ai) = 0, 1 ≤ i ≤ r (≥ 2)

a < a1 < a2 < · · · < ar < b, ki ≥ 0,
r∑
i=1

ki + r = n.
(2.1.aga)

Then, there exist constants Cn,k, 0 ≤ k ≤ n− 1, such that

|y(k)(x)| ≤ Cn,k(ar − a1)n−k max
a1≤x≤ar

|y(n)(x)|. (2.2.aga)

The problem of finding the best possible constants Cn,k in (2.2.aga) is one of the
most outstanding problems in polynomial interpolation theory [1,2].

Inequalities (2.2.aga) will be used now to prove local existence of solutions of the
differential equation (1.1.aga) satisfying the r-point conjugate boundary conditions

y(ai) = A1,i, y
′(ai) = A2,i, . . . , y

(ki)(ai) = Aki+1,i, 1 ≤ i ≤ r. (2.3.aga)

Theorem 2.3 ([1]). Assume that for the differential equation (1.1.aga) the condi-
tion (A) is satisfied. Further, assume that
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(i) Ki > 0, 0 ≤ i ≤ q are given real numbers and let Q be the maximum of
|f(x, u0, u1, . . . , uq)| on the compact set [a1, ar]×D0, where

D0 = {(u0, u1, . . . , uq) : |ui| ≤ 2Ki, 0 ≤ i ≤ q},

(ii) max
a1≤x≤ar

|p(i)(x)| ≤ Ki, 0 ≤ i ≤ q, where p(x) is the Hermite interpolating

polynomial

p(x) =
r∑
i=1

ki∑
j=0

ki−j∑
`=0

1
j!`!

[
(x − ai)ki+1

Ω(x)

](`)

x=ai

Ω(x)
(x− ai)ki+1−j−`Aj+1,i

and

Ω(x) =
r∏
i=1

(x− ai)ki+1,

(iii) (ar − a1) ≤
(

Ki

QCn,i

)1/(n−i)
, 0 ≤ i ≤ q.

Then, the boundary value problem (1.1.aga), (2.3.aga) has a solution in D0.

Proof. The set

B[a1, ar] =
{
y(x) ∈ C(q)[a1, ar] : ‖y(i)‖ ≤ 2Ki, 0 ≤ i ≤ q

}
,

where
‖y(i)‖ = max

a1≤x≤ar
|y(i)(x)|

is a closed convex subset of the Banach space C(q)[a1, ar]. Consider an operator
T : C(q)[a1, ar]→ C(n)[a1, ar] as follows

(Ty)(x) = p(x) +
∫ ar

a1

g(x, t)f(t, y(t), y′(t), . . . , y(q)(t))dt, (2.4.aga)

where g(x, t) is the Green’s function of the boundary value problem y(n) = 0,
(2.1.aga). Obviously, any fixed point of (2.4.aga) is a solution of (1.1.aga), (2.3.aga).

We note that (Ty)(x)− p(x) satisfies the conditions of Lemma 2.2, and

(Ty)(n)(x) − p(n)(x) = (Ty)(n)(x) = f(x, y(x), y′(x), . . . , y(q)(x)).

Thus, for all y(x) ∈ B[a1, ar], ‖(Ty)(n)‖ ≤ Q, and

‖(Ty)(i) − p(i)‖ ≤ Cn,iQ(ar − a1)n−i, 0 ≤ i ≤ q

which also implies that

‖(Ty)(i)‖ ≤ ‖p(i)‖+ Cn,iQ(ar − a1)n−i ≤ Ki +Ki = 2Ki, 0 ≤ i ≤ q. (2.5.aga)
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Thus, the operator T maps B[a1, ar] into itself. Further, the inequalities (2.5.aga)
imply that the sets {(Ty)(i)(x) : y(x) ∈ B[a1, ar]}, 0 ≤ i ≤ q are uniformly
bounded and equicontinuous on [a1, ar]. Hence, TB[a1, ar] is compact follows
from the Ascoli-Arzela theorem. The Schauder fixed point theorem is applicable
and a fixed point of (2.4.aga) in D0 exits.

Corollary 2.4. Assume that for the differential equation (1.1.aga) the condition
(A) is satisfied. Further, assume that there exist constants Ni ≥ 0, 0 ≤ i ≤ q
such that maxa1≤x≤ar |p(i)(x)| ≤ Ni, 0 ≤ i ≤ q. Then, there exists a δ =
δ(N0, N1, . . . , Nq) > 0 such that if ar − a1 ≤ δ, the boundary value problem
(1.1.aga), (2.3.aga) has a solution y(x). Furthermore,

|y(i)(x)| ≤ Ni + 1, 0 ≤ i ≤ q on [a1, ar].

Theorem 2.5. Assume that for the differential equation (1.1.aga) the condition (A)
is satisfied. Further, assume that the conditions (i) and (iii) of Theorem 2.3
are satisfied. Then, for any g(x) ∈ C(n−1)[a1, ar] the differential equation (1.1.aga)
together with

y(j)(ai) = g(j)(ai), 0 ≤ j ≤ ki, 1 ≤ i ≤ r (2.6.aga)

has a solution, if

n−1∑
j=i

Mj(ar − a1)j−i ≤ Ki, 0 ≤ i ≤ q

where
Mj = max

a1≤x≤ar
|g(j)(x)|, 0 ≤ j ≤ n− 1.

Proof. We need to verify that the condition (ii) of Theorem 2.3 is satisfied. For
this, in p(x) we take Aj+1,i = g(j)(ai), 0 ≤ j ≤ ki, 1 ≤ i ≤ r. Then, the function
φ(x) = g(x) − p(x) has n zeros in [a1, ar]. Thus, from the generalized Rolle’s
theorem φ(k)(x), 1 ≤ k ≤ n − 1 vanishes at least n − k times in (a1, ar). Let
xk ∈ (a1, ar) be any zero of φ(k)(x), then∣∣∣p(n−1)(x)

∣∣∣ =
∣∣∣p(n−1)(xn−1)

∣∣∣ =
∣∣∣g(n−1)(xn−1)

∣∣∣ ≤ max
a1≤x≤ar

∣∣∣g(n−1)(x)
∣∣∣ = Mn−1

and ∣∣∣p(n−2)(x)
∣∣∣ ≤ ∣∣∣p(n−2)(xn−2)

∣∣∣+

∣∣∣∣∣
∫ x

xn−2

∣∣∣p(n−1)(t)
∣∣∣ dt∣∣∣∣∣

=
∣∣∣g(n−2)(xn−2)

∣∣∣+

∣∣∣∣∣
∫ x

xn−2

∣∣∣g(n−1)(xn−1)
∣∣∣ dt∣∣∣∣∣

≤Mn−2 +Mn−1(ar − a1).
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Using the same argument repeatedly, we obtain

∣∣∣p(i)(x)
∣∣∣ ≤ n−1∑

j=i

Mj(ar − a1)j−i.

Corollary 2.6. Assume that for the differential equation (1.1.aga) the condition
(A) is satisfied. Then, for any g(x) ∈ C(n−1)[a1, ar] there exist constants δ > 0,
Ni ≥ 0, 0 ≤ i ≤ q, all depending on g(x) such that the boundary value problem
(1.1.aga), (2.6.aga) has a solution y(x), provided ar − a1 ≤ δ. Furthermore, |y(i)(x)| ≤
Ni + 1, 0 ≤ i ≤ q on [a1, ar].

Corollary 2.7. Assume that for the differential equation (1.1.aga) the condition
(A) is satisfied. Further, assume that there exist constants Ni ≥ 0, 0 ≤ i ≤
q such that maxa1≤x≤ar |p(i)(x)| ≤ Ni, 0 ≤ i ≤ q. Then, there exist a δ =
δ(N0, N1, . . . , Nq) > 0, and an ε = ε(a1, . . . , ar) such that for ar − a1 ≤ δ, the
boundary value problem (1.1.aga),

y(ai) = A1,i+ε1,i, y
′(ai) = A2,i+ε2,i, . . . , y

(ki)(ai) = Aki+1,i+εki+1,i, 1 ≤ i ≤ r

has a solution yε(x), provided |εj,i| ≤ ε, 0 ≤ j ≤ ki, 1 ≤ i ≤ r. Furthermore,
|y(i)
ε (x)| ≤ Ni + 1, 0 ≤ i ≤ q on [a1, ar].

3 The Case n = 2

For the second order differential equation (1.1.aga) only conditions (A) and (C)
imply (E). We shall prove this in the following:

Theorem 3.1. If the differential equation (1.1.aga) is of second order and satisfies
conditions (A) and (C), then (1.1.aga) also satisfies condition (E).

Proof. If {ym(x)} is a sequence of solutions of (1.1.aga) with |ym(x)| ≤M on [c, d] ⊂
(a, b) for some M > 0, and each m ≥ 1, then for each m there is a xm ∈ (c, d)
such that

|y′m(xm)| = |ym(d)− ym(c)|
d− c ≤ 2M

d− c .

Consequently, {xm}, {ym(xm)} and {y′m(xm)} are bounded sequences. By tak-
ing subsequences in succession which converge, we conclude that there exist
values x0, y0, y

′
0 such that xm(1) → x0, ym(1)(xm(1)) → y0 y

′
m(1)(xm(1)) → y′0,

where {m(1)} is some subsequence of {m}. Thus, by Theorem 2.1 there is a
subsequence {ym(2)(x)} of {ym(1)(x)} and a solution y(x) of (1.1.aga) satisfying
y(x0) = y0, y

′(x0) = y′0 such that limm→∞ y
(i)
m(2)(x) = y(i)(x), i = 0, 1, uni-

formly on [c, d].
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4 Case n = 3

If the differential equation (1.1.aga) is of third order, then conditions (A) and (C)
are not enough for (E). In fact, the equation y′′′ = −[y′]3 satisfies (A) and (C)
on R4, but the sequence {ym(x)} of solutions of the initial value problem

y′′′ = −[y′]3, y(0) = y′(0) = 0, y′′(0) = m

for m = 1, 2, . . . , is uniformly bounded on R and does not contain a subsequence
satisfying (E) on any compact subinterval of R. Here, we shall show that condi-
tions (A), (C) and (D3) do imply (E). However, for this an immediate appeal to
Theorem 2.1 is not possible and we shall need the following lemmas.

Lemma 4.1. Assume that the differential equation (1.1.aga) is of third order and
satisfies the condition (A). Then, given any compact subinterval [c, d] ⊂ (a, b)
and any fixed M > 0, there is a δ(M) > 0 such that for any [a1, a2] ⊂ [c, d] with
a2−a1 ≤ δ(M), and any real α with |α| ≤M, (1.1.aga) has solutions satisfying each
of the boundary conditions

y(a1) = y(a2) = α, y′(a1) = 0 and y(a1) = y(a2) = α, y′(a2) = 0.

Furthermore, for any such solution |y′(x)| ≤ 1 and |y′′(x)| ≤ 1 on [a1, a2].

Proof. This is a particular case of Corollary 2.4.

Lemma 4.2 ([11]). Assume that the differential equation (1.1.aga) is of third order
and satisfies the condition (A). Let φ(x), ψ(x) be of class C(2) on [a1 − τ, a1 +
τ ] ⊂ (a, b) with φ(a1) = ψ(a1), φ′(a1) = ψ′(a1) and φ′′(a1) < ψ′′(a1). Then,
there is a δ, 0 < δ ≤ τ, such that all solutions y(x) of (1.1.aga) with the initial
conditions y(a1) = y0 = φ(a1), y′(a1) = y1 = φ′(a1), and y′′(a1) = y2 =
1
2 [φ′′(a1) + ψ′′(a1)] exist on [a1 − δ, a1 + δ] and satisfy φ(x) < y(x) < ψ(x) for
0 < |x− a1| ≤ δ.

Proof. Let 8ρ = ψ′′(a1) − φ′′(a1) and choose δ0, 0 < δ0 ≤ τ such that |φ′′(x) −
φ′′(a1)| ≤ ρ and |ψ′′(x) − ψ′′(a1)| ≤ ρ for |x− a1| ≤ δ0. Let M > 0 be a bound
for f(x, y, y′, y′′) on the compact set

{(x, y, y′, y′′) : |x− a1| ≤ δ0, |y − y0| ≤ 1, |y′ − y1| ≤ 1, |y′′ − y2| ≤ 1} .

Then, it follows from the relations

y(x) = y0 +
∫ x

a1

y′(t)dt, y′(x) = y1 +
∫ x

a1

y′′(t)dt

y′′(x) = y2 +
∫ x

a1

f(t, y(t), y′(t), y′′(t))dt
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that all solutions of the stated initial value problem exist on the closed interval
[a1 − δ1, a1 + δ1], where

δ1 = min
{
δ0,

1
M
,

1
1 + |y2|

,
1

1 + |y1|

}
.

Thus, if δ = min{δ1, ρ/M}, it follows that for all solutions y(x) of the initial
value problem |y′′(x) − y2| ≤ ρ for |x − a1| ≤ δ. Hence, for all solutions y(x) of
the initial value problem

y′′(x) − φ′′(x) ≥ 2ρ and ψ′′(x)− y′′(x) ≥ 2ρ

on [a1 − δ, a1 + δ].

Lemma 4.3 ([11]). Assume that the differential equation (1.1.aga) is of third order
and satisfies the conditions (A), (C) and (D3). Then, solutions of two point
boundary value problems for (1.1.aga) are unique, i.e., the following condition (D2)
holds:

(D2) If a < a1 < a2 < b, and y(x), z(x) are both solutions of (1.1.aga) satisfying
y(a1) = z(a1), y′(a1) = z′(a1), y(a2) = z(a2), or y(a1) = z(a1), y(a2) =
z(a2), y′(a2) = z′(a2), then it follows that y(x) ≡ z(x) on [a1, a2].

Proof. We shall consider only the case where y(a1) = z(a1), y′(a1) = z′(a1),
y(a2) = z(a2). We first assume that y′′(a1) 6= z′′(a1), and to be specific assume
that y′′(a1) > z′′(a1). Then, by Lemma 4.2 there is a δ > 0 with a < a1 − δ <
a1 + δ < a2 such that all solutions w(x) of the initial value problem for (1.1.aga)
with the initial conditions

w(a1) = y0 = z(a1), w′(a1) = y1 = z′(a1), w′′(a1) = y2 =
1
2

[y′′(a1) + z′′(a1)]

(4.1.aga)

satisfy z(x) < w(x) < y(x) for 0 < |x − a1| ≤ δ. Let {εm} be a monotone
decreasing sequence of positive numbers converging to zero, and let zm(x) be a
solution of (1.1.aga) with the initial conditions

zm(a1) = y0, z′m(a1) = y1 + εm, z′′m(a1) = y2. (4.2.aga)

Then, {zm(x)} contains a subsequence converging uniformly on [a1 − δ, a1 + δ]
to a solution of (1.1.aga), (4.1.aga). Hence, for sufficiently large m, there is a solution
zm(x) of (1.1.aga), (4.2.aga) such that

z(a1 − δ) < zm(a1 − δ) < y(a1 − δ) and z(a1 + δ) < zm(a1 + δ) < y(a1 + δ).

Since zm(a1) = y(a1) = z(a1) and z′m(a1) = y1 + εm > y′(a1) = z′(a1), it
follows that there are x1, x2 with a1 − δ < x1 < a1 < x2 < a1 + δ such that
zm(x1) = z(x1), and zm(x2) = y(x2). Since y(a1) = z(a1) at a2 > a1 + δ,
it follows that any extension of zm(x) intersects either y(x) or z(x) again on
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[a1 + δ, b). Since zm(x) 6≡ z(x) on [x1, a1] and zm(x) 6≡ y(x) on [a1, x2], this
contradicts condition (D3).

Thus, if y(x) 6≡ z(x) on [a1, a2], then y(i)(a1) = z(i)(a1) for i = 0, 1, 2.
However, if y(i)(a1) = z(i)(a1) for i = 0, 1, 2 and y(x) 6≡ z(x) on [a1, a2], then for
a < x3 < a1, u(x) and v(x) defined by

u(x) = v(x) = y(x) on [x3, a1], u(x) = y(x) on (a1, a2],
and v(x) = z(x) on (a1, a2]

will be solutions on [x3, a2] which again contradicts condition (D3). Thus, we
conclude that y(x) ≡ z(x) on [a1, a2].

Lemma 4.4 ([12]). Let y(x) ∈ C(2)[α, β] and assume that |y(x)| ≤M on [α, β].
There is a K > 0 depending on M and β−α such that if, max{|y′(x)|, |y′′(x)|} >
K for all α ≤ x ≤ β, then y′(x0) = 0 for some x0 with α < x0 < β.

Proof. Assume that the conclusion is false. We shall determine N > 0 so that
the following inequality holds

|y′(x)| + |y′′(x)| ≥ N +
2M
β − α + 1 on [α, β]. (4.3.aga)

For this, by the Mean value theorem there exists a x1 ∈ (α, β) such that

|y′(x1)| =
∣∣∣∣y(β)− y(α)

β − α

∣∣∣∣ ≤ 2M
β − α.

There are now two possible cases, however, since both are similar, we shall
consider only the case

0 < y′(x1) ≤ 2M
β − α and α < x1 ≤

α+ β

2
.

If y(x1) = M, then y′(x1) = 0 and the proof is finished. So, we assume that
y(x1) 6= M. (It is clear that we are assuming y′(x1) 6= 0.) We define η = (β−α)/8.
Now to complete the proof we need to consider the following two subcases:

Case (i). Assume that y′′(x1) ≤ 0. Then, in order (4.3.aga) holds, it is necessary
that y′′(x1) ≤ −N. Thus, y′(x) is decreasing on a right neighborhood of x = x1.
In fact, if 0 ≤ y′(x) ≤ (2M/(β − α)), then it will follow that y′′(x) ≤ −N on
[x1, β]. However, then by Taylor’s formula, we have

y(β) = y(x1) + (x1 − β)y′(x1) +
(x1 − β)2

2
y′′(ξ), ξ ∈ (x1, β)

< M +
2M(β − α)
β − α − (β − α)2

4
N

≤ −M
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provided

N ≥ 32M
(β − α)2

=
M

2η2
.

But, this implies that |y(β)| > M, which is a contradiction. Thus, there exists a
point x1 ≤ x0 < β such that y′(x0) = 0.

Case (ii). Assume that y′′(x1) > 0, (we shall work across [α, β] on subintervals
of length η.) Then, from (4.3.aga) it follows that y′′(x1) > N. We assume that
y′′(x) ≥ N/2 on [x1, x1 + η]. Again, by Taylor’s formula, we have

y(x1 + η) = y(x1) + ηy′(x1) +
1
2
η2y′′(ξ), ξ ∈ (x1, x1 + η).

As in Case (i), we find y(x1 + η) > −M +Nη2/4 ≥M, provided N ≥ (8M/η2),
which is a contradiction.

From this contradiction, we conclude that there exists a x1 < x2 < x1 + η
such that y′′(x2) = N/2. Since, y′′(x) is positive up to x2, we can assume that
x2 is the first point such that y′′(x2) = N/2. Thus,

y′(x2) >
1
2
N +

2M
β − α on [x1, x2).

Now assume that

y′(x) ≥ 1
2
N +

2M
β − α on [x2, x2 + η).

Then, it follows that

y(x2 + η) = y(x2) + ηy′(ξ), ξ ∈ (x2, x2 + η)

> −M +
1
2
ηN + η

2M
β − α

= −M +
1
2
ηN +

1
4
M

≥M,

provided N ≥ (7M/2η). But, this implies y(x2 + η) > M, which is a contradic-
tion.

From this contradiction, there exists a x2 < x3 < x2 + η such that

y′(x3) =
1
2
N +

2M
β − α,

and we take x3 to be the first such point, i.e.,

y′(x) >
1
2
N +

2M
β − α, on [x2, x3).
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So, y′(x) is decreasing on [x2, x3). Thus, y′′(x3) < −N/2. This implies that in a
right neighborhood of x3, y

′′(x) < −N/2 and y′(x) is decreasing. Assume that

0 < y′(x) ≤ 1
2
N +

2M
β − α on [x3, β).

Then, by Taylor’s formula

y(x3) = y(β) + (x3 − β)y′(β) +
(x3 − β)2

2
y′′(ξ), ξ ∈ (x3, β).

Since in the above relation the second term in the right side is nonpositive, in
view of (β − x3) ≥ (β − α)/4, it follows that

y(x3) < M − 1
4

(β − α)2N ≤ −M

provided N ≥M/η2. But, this leads to the contradiction that |y(x3)| > M.
From this construction we conclude that

0 < y′(x) ≤ 1
2
N +

2M
β − α on [x3, β)

is false. Thus, in conclusion y′(x0) = 0, for some x3 < x0 < β.

Theorem 4.5 ([12]). If the differential equation (1.1.aga) is of third order and
satisfies conditions (A), (C) and (D3), then (1.1.aga) also satisfies condition (E).

Proof. Suppose that the result is not true. Then, since |ym(x)| ≤ M on [c, d]
for n ≥ 1, it follows from Theorem 2.1 that |y′m(x)| + |y′′m(x)| → ∞ uniformly
on [c, d]. Let c ≤ a1 < a2 < a3 < a4 ≤ d be such that a4 − a1 ≤ δ(M), where
δ(M) is as defined in Lemma 4.1. By Lemma 4.4 there is a K > 0 such that, if
max{|y′m(x)|, |y′′m(x)|} > K for each x ∈ [c, d], then y′m(x) has a zero on (a1, a2),
on (a2, a3) and on (a3, a4). Furthermore, we can assume that K > 1. Now from
the fact that |y′m(x)| + |y′′m(x)| → ∞ uniformly on [c, d] we can conclude that
there is a positive integer m0 such that max{|y′m0

(x)|, |y′′m0
(x)|} > K on [c, d].

Let a1 < x1 < a2 < x2 < a3 < x3 < a4 be such that y′m0
(xi) = 0 for i = 1, 2, 3.

Then, |y′′m0
(xi)| > K > 1 for i = 1, 2, 3. Now we need to consider the following

two cases:
If ym0(xi) = ym0(xj) with xi < xj , then ym0(x) is the solution of the differ-

ential equation (1.1.aga) together with the two-point boundary conditions y(xi) =
y(xj) = ym0(xi), y′(xi) = 0. However, since xj − xi < δ(M), it follows from
Lemma 4.1 that |y′m0

(x)| ≤ 1 and |y′′m0
(x)| ≤ 1 on [xi, xj ], which is a contradic-

tion to |y′′m0
(xi)| > K > 1.

If ym0(xi) 6= ym0(xj) for xi 6= xj , then it suffices to assume that ym0(x1) <
ym0(x2) < ym0(x3). In fact, the same argument applies to the other orderings
of the values of ym0(xi), i = 1, 2, 3. If y′′m0

(x2) > K, there is a t1, x1 < t1 < x2,
such that ym0(t1) = ym0(x2). If y′′m0

(x2) < −K, there is a t2, x2 < t2 < x3, such
that ym0(t2) = ym0(x2). In either case Lemma 4.1 is again applied to obtain a
contradiction.

Hence, the sequence {ym(x)} contains a subsequence converging uniformly
on [c, d] along with its first and second order derivative sequences.



Compactness Condition for Boundary Value Problems 11

5 Weak Compactness Condition

It seems very difficult, if not impossible, to extend the method of Theorem 4.5 to
equations of higher orders. Here, we shall show that for equation (1.1.aga) of arbitrary
order n, conditions (A), (C) and (Dn) do imply a weaker type of compactness
condition for the solutions of (1.1.aga). For this we shall need the following:

Theorem 5.1. (Banach Indicatrix Theorem, [9, p. 271]) If h ∈ C[c, d] ∩
BV [c, d], then

V dc (h) =
∫ ∞
−∞

Nh(α)dα,

where

Nh(α) =


Card{x ∈ [c, d] : h(x) = α}, if this set is finite,

+∞, if the above set is infinite,

and where the above integral is in the Lebesgue sense.

Theorem 5.2 ([16]). Assume that the differential equation (1.1.aga) satisfies the
conditions (A), (C), and (Dn). Further, assume that [c, d] is a compact subinter-
val of (a, b) and {ym(x)} is a sequence of solutions of (1.1.aga) which is uniformly
bounded on [c, d]. Then, the sequence

{
V dc (ym)

}
of total variations of the func-

tions ym(x) on [c, d] is bounded, i.e., there exists an N > 0 such that V dc (ym) ≤ N
for all m.

Proof. Assume the assertion is false. Then there is a sequence of solutions
{ym(x)} of (1.1.aga), a compact interval [c, d] ⊂ (a, b), and an M > 0 such that
|ym(x)| ≤M on [c, d] for all m, but such that V dc (ym)→∞, as m→∞.

We claim that
∑n−1

i=0 |y
(i)
m (x)| → ∞ on [c, d] as m → ∞, i.e., given R > 0,

there exists a L > 0 such that
∑n−1

i=0 |y
(i)
m (x)| > R, on [c, d] for all m ≥ L. If the

claim is false, then there exists a β > 0 and a subsequence {ym(j)(x)} such that∑n−1
i=0 |y

(i)
m(j)(xj)| ≤ β, for all j ≥ 1, and where {xj} ⊂ [c, d]. Now by choosing

successive subsequences and relabeling, we obtain points {xp} and solutions
{yp(x)} such that {xp} and {y(i)

p (xp)}, 0 ≤ i ≤ n − 1 all converge. Thus, by
Theorem 2.1 there exists a further subsequence {yp(j)(x)} such that {y(i)

p(j)(x)}
converges uniformly on [c, d], 0 ≤ i ≤ n − 1. This implies that {y′p(j)(x)} is
a uniformly bounded sequence on [c, d]. Now since each y′p(j)(x) is absolutely
continuous, it follows that

V dc (yp(j)) =
∫ d

c

|y′p(j)(x)|dx.

Hence, the sequence {V dc (yp(j))} is a bounded sequence, which is a contradiction.
Thus,

∑n−1
i=0 |y

(i)
m (x)| → ∞ on [c, d] as m→∞.
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We shall now apply Corollary 2.4 with N0 = M and N0 = 0, 1 ≤ i ≤ n− 1,
so that there exists a δ(M) > 0 such that for any α with |α| ≤ M and any
points c ≤ a1 < · · · < an ≤ d with an − a1 ≤ δ, and with w(x) ≡ α so that
w(i)(x) ≡ 0, 1 ≤ i ≤ n − 1, the boundary value problem for (1.1.aga) satisfying
y(ai) = α, 1 ≤ i ≤ n has a solution y(x) with |y(i)(x)| ≤ Ni + 1 on [a1, an] for
0 ≤ i ≤ n − 1. In particular, the boundary value problem has a solution y(x)
with |y(x)| ≤ M + 1, and |y(i)(x)| ≤ 1, 1 ≤ i ≤ n − 1 on [a1, an]. Further, for
such a solution, we have

∑n−1
i=0 |y(i)(x)| ≤M + n on [a1, an].

Now let L0 be such that
∑n−1

i=0 |y
(i)
m (x)| > M + n on [c, d] for all m ≥ L0. It

follows that given m ≥ L0 and α, with |α| ≤ M the solution ym(x) intersects
the line y = α at most n − 1 times in any closed subinterval of [c, d] of length
less than δ. For if, there are points c ≤ x1 < · · · < xn ≤ d, xn − x1 ≤ δ such
that ym(xi) = α, 1 ≤ i ≤ n where |α| ≤M and m ≥ L0, there is also the above
mentioned solution y(x) by Corollary 2.4 satisfying y(xi) = α, 1 ≤ i ≤ n. By
(Dn), ym(x) ≡ y(x) on [x1, xn]. But, then

∑n−1
i=0 |y(i)(x)| ≤M+n on [a1, an] and∑n−1

i=0 |y
(i)
m (x)| > M+n on [a1, an] is not possible. Thus, for everym ≥ L0, ym(x)

intersects each line y = α, |α| ≤M at most n−1 times in any closed subinterval
of [c, d] of length less than δ. So, for all m ≥ L0,

Nym(α) ≤ (n− 1)
([

d− c
δ

]
+ 1
)
, if |α| ≤M

and Nym(α) = 0, if |α| > M. Thus, by the Banach Indicatrix Theorem it follows
that for m ≥ L0,

V dc (ym) =
∫ M

−M
Nym(α)dα

≤
∫ M

−M
(n− 1)

([
d− c
δ

]
+ 1
)
dα

= 2M(n− 1)
([

d− c
δ

]
+ 1
)
.

But, this contradicts V dc (ym)→∞, as m→ ∞. Hence, {V dc (ym)} is a bounded
sequence.

Theorem 5.3. (Helly’s Selection (or Choice) Theorem, [22, p. 398]) If
{ym(x)} is a sequence of functions on [c, d] such that for some M, |ym(x)| ≤M
on [c, d] for all m ≥ 1, and such that |V dc (ym)| ≤ H, for all m ≥ 1, and some
H > 0, then there exists a subsequence {ym(j)(x)} which converges point-wise on
[c, d]. Moreover, the limit function is of bounded variation on [c, d].

Corollary 5.4. Assume that the differential equation (1.1.aga) satisfies the condi-
tions (A), (C) and (Dn). Then, if [c, d] is a compact subinterval of (a, b) and
if {ym(x)} is a sequence of solutions of (1.1.aga) which is uniformly bounded on
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[c, d], there is a subsequence {ym(j)(x)} which converges point-wise on [c, d] and
z(x) = limj→∞ ym(j)(x) is of bounded variation on [c, d] (as a consequence z(x)
has finite derivative almost everywhere, and also

∫ d
c z(x)dx exists).

Proof. The result follows from Theorems 5.2 and 5.3.

Remark 5.1. In conjunction with Corollary 5.4 we remark that Schrader [19,20]
has proven that, if {ym(x)} is a uniformly bounded sequence of functions on a
compact interval [c, d], and if the functions ym(x) satisfy only the uniqueness
condition (Dn) on [c, d], then there is a subsequence of {ym(x)} which converges
point-wise on [c, d].

6 Generalized Solutions

To prove the Proposition now we shall follow another possible approach. For this,
if the differential equation (1.1.aga) satisfies (A) – (Dn), then it is straightforward
to show that the compactness condition (E) is equivalent to the following:

(E∗) If {ym(x)} is a sequence of solutions of (1.1.aga) which is monotone and
bounded on some compact subinterval [c, d] ⊂ (a, b), then limm→∞ ym(x) is a
solution of (1.1.aga) on [c, d].

Thus, to prove the Proposition it suffices to show that the conditions (A) –
(Dn) imply that the limit of a bounded monotone sequence of solutions of (1.1.aga)
is also a solution.

Definition 6.1. A function φ(x) defined on an interval J ⊂ (a, b) is said to be a
generalized solution of (1.1.aga) on J if for each set of points a1 < a2 < · · · < an con-
tained in J and any solution y(x) of (1.1.aga), the inequalities (−1)n+i [y(ai)− φ(ai)]
< 0, 1 ≤ i ≤ n imply that y(x) < φ(x) on J∩[an, b) and (−1)n+1[y(x)−φ(x)] < 0
on J ∩ (a, a1], and the inequalities (−1)n+i [y(ai)− φ(ai)] > 0, 1 ≤ i ≤ n imply
y(x) > φ(x) on J ∩ [an, b) and (−1)n+1[y(x) − φ(x)] > 0 on J ∩ (a, a1].

Theorem 6.1 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) – (Dn), and that limm→∞ ym(x) = φ(x) on J ⊂ (a, b), where
{ym(x)} is a sequence of solutions of (1.1.aga). Then, φ(x) is a generalized solution
of (1.1.aga) on J.

Proof. Assume that for a1 < a2 < · · · < an contained in J there is a solution
y(x) of (1.1.aga) such that (−1)n+i [y(ai)− φ(ai)] < 0 for 1 ≤ i ≤ n, but that
also y(a0) > φ(a0) for some a0 > an in J. Then, since limm→∞ ym(x) = φ(x),
there is a solution ym(x) of (1.1.aga) such that (−1)n+i [y(ai)− ym(ai)] < 0 for 1 ≤
i ≤ n and y(a0) > ym(a0). This contradicts the condition (Dn). The remaining
inequalities can be proved in a similar way.

Thus, the limit of a bounded monotone sequence of solutions {ym(x)} of
(1.1.aga) satisfying (A) – (Dn) is a generalized solution.



14 Ravi P. Agarwal

Lemma 6.2. Assume that the differential equation (1.1.aga) satisfies condition (A)
and that φ(x) ∈ C(n−1)[c, d], where [c, d] is a compact subinterval of (a, b). As-
sume that M > 0 is such that |φ(j)(x)| ≤ M on [c, d] for 0 ≤ j ≤ n − 1.
Then, there exists a δ > 0 such that, for any c ≤ a1 < a2 < · · · < an ≤ d
with an − a1 ≤ δ, (1.1.aga) has a solution y(x) with y(ai) = φ(ai), 1 ≤ i ≤ n and
|y(j)(x)| ≤ 2M on [a1, an] for 0 ≤ j ≤ n−1. Furthermore, δ can be chosen in such
a way that, for each fixed set a1 < a2 < · · · < an satisfying the above conditions,
there is an ε > 0 such that for any yi, 1 ≤ i ≤ n with |yi−φ(ai)| < ε, 1 ≤ i ≤ n,
(1.1.aga) has a solution y(x) satisfying y(ai) = yi, 1 ≤ i ≤ n, and |y(j)(x)| ≤ 3M
on [a1, an] for 0 ≤ j ≤ n− 1.

Proof. The proof follows from Corollary 2.7.

Theorem 6.3 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) and (Dn), and that limm→∞ ym(x) = φ(x) on [c, d] ⊂ (a, b),
where {ym(x)} is a sequence of solutions of (1.1.aga). Then, if φ(x) ∈ C(n−1)[c, d],
φ(x) is a solution of (1.1.aga) on [c, d] and limm→∞ y

(j)
m (x) = φ(j)(x) uniformly on

[c, d] for each 0 ≤ j ≤ n− 1.

Proof. Let M > 0 be such that |φ(j)(x)| ≤ M on [c, d] for 0 ≤ j ≤ n − 1. By
Lemma 6.2 there is a δ > 0 such that, if c ≤ a1 < a2 < · · · < an ≤ d is a
fixed set of points with an − a1 ≤ δ, there is an ε > 0 with the property that
|yi − φ(ai)| < ε, 1 ≤ i ≤ n implies that (1.1.aga) has a solution y(x) satisfying
y(ai) = yi, 1 ≤ i ≤ n and |y(j)(x)| ≤ 3M on [a1, an] for 0 ≤ j ≤ n− 1. It follows
that there is an N > 0 such that m ≥ N implies |ym(ai)−φ(ai)| < ε, 1 ≤ i ≤ n.
Hence, by condition (Dn) and the choice of ε, |y(j)

m (x)| ≤ 3M on [a1, an] for
0 ≤ j ≤ n− 1 and all m ≥ N. From this the conclusion follows.

Now let φ(x) be a real valued function defined on (c, d). At a point x0 ∈ (c, d)
where φ(x) has a finite right limit φ(x0 + 0), we define

D1φ(x0 + 0) = lim
x→x+

0

φ(x) − φ(x0 + 0)
x− x0

provided the limit exists. The left derivative D1φ(x0 − 0) is similarly defined.
Likewise, if φ(x0 + 0) and D1φ(x0 + 0) exist and are finite, we define

D2φ(x0 + 0) = lim
x→x+

0

{
2

(x − x0)2

[
φ(x) − φ(x0 + 0)−D1φ(x0 + 0)(x− x0)

]}
provided the limit exists. In general, if the limits defining φ(x0 +0) and Djφ(x0 +
0), 1 ≤ j ≤ k − 1 exist and are finite, we define

Dkφ(x0 + 0) =

lim
x→x+

0

{
k!

(x− x0)k

[
φ(x) − φ(x0 + 0)−

k−1∑
j=1

Djφ(x0 + 0)(x− x0)j

j!

]}
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provided the limit exists. The left derivatives Djφ(x0 − 0) are defined corre-
spondingly.

Theorem 6.4 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) and (Dn), and that φ(x) is a bounded generalized solution of
(1.1.aga) on (c, d) ⊂ (a, b). Then, φ(x) has right and left limits at each point of (c, d)
and D1φ(x0 − 0) and D1φ(x0 + 0) exist in the extended reals for all x0 ∈ (c, d).
Furthermore, if at a point x0 ∈ (c, d), Djφ(x0 + 0) exists and is finite for each
1 ≤ j ≤ k− 1 ≤ n− 2, then the limit defining Dkφ(x0 + 0) exists in the extended
reals. The same assertion applies to the left derivative Dkφ(x0 − 0).

Proof. Assume that for some x0 ∈ (c, d), lim infx→x+
0
φ(x) < lim supx→x+

0
φ(x)

and choose a real number r such that lim infx→x+
0
φ(x) < r < lim supx→x+

0
φ(x).

Then, there exist sequences {tm} and {xm} in (c, d) such that lim tm = limxm =
x0, x0 < tm+1 < xm < tm for each m ≥ 1, limφ(tm) = lim supx→x+

0
φ(x), and

limφ(xm) = lim infx→x+
0
φ(x). let y(x) be a solution of (1.1.aga) satisfying the initial

conditions y(x0) = r and y(j)(x0) = 0, 1 ≤ j ≤ n − 1. This solution exists on
[x0, x0 + δ] for some δ > 0, and since limx→x0 y(x) = r, there is an N > 0
such that m ≥ N implies that x0 < tm < x0 + δ and φ(tm) > y(tm), φ(xm) <
y(xm). This contradicts the fact that φ(x) is a generalized solution on (c, d). The
existence of φ(x0 − 0) can be proved similarly.

Now assume that for some x0 ∈ (c, d) the limit defining D1φ(x0 + 0) does
not exist in the extended reals. Then, choose the real number r such that

lim inf
x→x+

0

φ(x)− φ(x0 + 0)
x− x0

< r < lim sup
x→x+

0

φ(x) − φ(x0 + 0)
x− x0

.

If y(x) is a solution of (1.1.aga) satisfying the initial conditions y(x0) = φ(x0 +
0), y′(x0) = r, and y(j)(x0) = 0, 2 ≤ j ≤ n − 1, again sequences {tm} and
{xm} can be chosen so that lim tm = limxm = x0, x0 < tm+1 < xm < tm for
each m ≥ 1, and φ(tm) > y(tm), φ(xm) < y(xm) for all sufficiently large m.
This again contradicts φ(x) being a generalized solution. Thus, D1φ(x0 +0) and
D1φ(x0 − 0) exist in the extended reals for all x0 ∈ (c, d).

Finally, if we assume that for some x0 ∈ (c, d), Djφ(x0 + 0) exists and is
finite for each 1 ≤ j ≤ k − 1 ≤ n − 2, then by considering a solution of (1.1.aga)
satisfying the initial conditions y(x0) = φ(x0 + 0), y(j)(x0) = Djφ(x0 + 0) for
1 ≤ j ≤ k − 1, y(k)(x0) = r, and y(j)(x0) = 0 for k + 1 ≤ j ≤ n− 1, we can as
above prove that the limit defining Dkφ(x0 + 0) exists in the extended reals.

Corollary 6.5. Assume that the differential equation (1.1.aga) satisfies conditions
(A) and (Dn), and that φ(x) is a bounded generalized solution of (1.1.aga) on (c, d) ⊂
(a, b). Then, φ(x) has a finite derivative φ′(x) almost everywhere on (c, d).

Theorem 6.6 ([13,17]). Assume that the differential equation (1.1.aga) satisfies
conditions (A) – (Dn). Let {ym(x)} be a sequence of solutions of (1.1.aga) on (c, d) ⊂
(a, b) such that {ym(x)} is uniformly bounded on (c, d) and lim ym(x) = φ(x) on
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(c, d). Then, if for some x0 ∈ (c, d) the derivatives Djφ(x0 +0), 1 ≤ j ≤ n−1 all
exist and are finite, or the derivatives Djφ(x0 − 0), 1 ≤ j ≤ n− 1 all exist and
are finite, it follows that there is a subsequence {ym(j)(x)} such that {y(i)

m(j)(x)}
converges uniformly on each compact subinterval of (a, b) for each 0 ≤ i ≤ n−1.

Proof. Assume that for some x0 ∈ (c, d) the derivatives Djφ(x0 + 0), 1 ≤ j ≤
n− 1 exist and are finite. Let p(x) be the polynomial

p(x) = φ(x0 + 0) +
n−1∑
j=1

Djφ(x0 + 0)(x− x0)j

j!

then, it follows from the definition of Dn−1φ(x0 + 0) that given any ε > 0 there
is a δ > 0 such that x0 + δ < d, and

|p(x)− φ(x)| < ε(x− x0)n−1

(n− 1)!

for x0 < x ≤ x0 + δ. Let d0 be a fixed number satisfying x0 < d0 < d. By
Lemma 6.2 there is a δ0 > 0 such that for x0 < x1 < x2 < · · · < xn ≤ d0

with xi − xi−1 = η ≤ δ0 for each 1 ≤ i ≤ n, (1.1.aga) has a solution y(x) with
y(xi) = p(xi) for 1 ≤ i ≤ n and |y(j)(x)| ≤ 2M on [x1, xn] for 0 ≤ j ≤ n − 1
where |p(j)(x)| ≤M on [x0, d0] for 0 ≤ j ≤ n−1. Furthermore, there is an ε0 > 0
such that, if |yi − p(xi)| < ε0 for 1 ≤ i ≤ n, then (1.1.aga) has a solution y(x) with
y(xi) = yi for 1 ≤ i ≤ n and |y(j)(x)| ≤ 3M on [x1, xn] for 0 ≤ j ≤ n − 1. It is
not difficult to show that with equal spacing η between the x′is a suitable ε0 has
the form ε0 = Mhnη

n−1, where hn is a fixed constant depending on n. Now as
noted above, if we choose ε = Mhn/(2nn−1), there is a η, 0 < η ≤ δ0 such that
x0 < x < x0 + nη implies

|p(x)− φ(x)| < ε(x− x0)n−1

(n− 1)!
≤ ε0

2(n− 1)!
≤ ε0

2
.

For such a choice of η > 0, we have |p(xi) − φ(xi)| ≤ ε0/2 for 1 ≤ i ≤ n where
xi − xi−1 = η for 1 ≤ i ≤ n. Consequently, if N > 0 is such that m ≥ N
implies |ym(xi) − φ(xi)| < ε0/2 for 1 ≤ i ≤ n, then |p(xi) − ym(xi)| < ε0 for
m ≥ N and 1 ≤ i ≤ n. It follows from our construction and condition (Dn) that
|y(j)
m (x)| ≤ 3M on [x1, xn] for 0 ≤ j ≤ n− 1 and all m ≥ N. The conclusion of

the theorem now follows.

Thus, we see that, in order to prove that conditions (A) – (Dn) imply the
compactness condition (E), it is sufficient to prove that, if φ(x) is the point-
wise limit of a bounded sequence of solutions of (1.1.aga) on (c, d) ⊂ (a, b), then
there is at least one x0 ∈ (c, d) at which either Djφ(x0 + 0), 1 ≤ j ≤ n − 1 or
Djφ(x0 − 0), 1 ≤ j ≤ n− 1 are finite.
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7 The Case q = 0

As we have remarked in Section 6 for the differential equation (1.1.aga) the com-
pactness condition (E), under the assumptions (A) – (Dn), is equivalent to (E∗).
This observation is used in the following result to establish the Proposition for
the case q = 0.

Theorem 7.1 ([17]). If the differential equation (1.1.aga) with q = 0 satisfies con-
ditions (A) – (Dn), then (1.1.aga) with q = 0 also satisfies condition (E∗).

Proof. Let {ym(x)} be a monotone, bounded sequence of solutions of (1.1.aga) with
q = 0 which converges point-wise to a function φ(x) on [c, d] ⊂ (a, b). Let
c = a1 < a2 < · · · < an = d and pm(x) be the unique polynomial of degree n− 1
such that pm(ai) = ym(ai), 1 ≤ i ≤ n and m = 1, 2, . . . . Then, pm(x) converges
uniformly to p(x), where p(x) is the unique polynomial of degree n−1 such that
p(ai) = limm→∞ ym(ai), 1 ≤ i ≤ n. Now, since ym(x) are uniformly bounded on
[c, d], it is clear that M = sup{|f(x, ym(x))| : c ≤ x ≤ d, m ≥ 1} exists. Further,
from the properties of the Green’s function g(x, t), it follows that ∂g/∂x exists
and is continuous on [c, d] × [c, d], and hence |∂g/∂x| ≤ K for all x, t ∈ [c, d].
Thus, if x 6= t from the integral representation

ym(x) = pm(x) +
∫ d

c

g(x, t)f(t, ym(t))dt, (7.1.aga)

which is the same

ωm(x) ≡ ym(x)− pm(x) =
∫ d

c

g(x, t)f(t, ym(t))dt

we find

|ωm(x)− ωm(s)| ≤
∫ d

c

|g(x, t)− g(s, t)||g(t, ym(t))|dt

≤MK|x− s|(d− c).

Hence, {ωm(x)} is uniformly bounded and equicontinuous on [c, d]. Thus, a sub-
sequence and by monotonicity the whole sequence {ym(x)} converges uniformly
to φ(x) on [c, d]. Finally, taking limits through (7.1.aga) yields that φ(x) is a solution
of (1.1.aga) with q = 0 on [c, d], and hence the condition (E∗) is satisfied.

8 The Uniform Convergence

In [8] Henderson and Jackson in there closing remarks have mentioned the va-
lidity of the Proposition for fourth order differential equations. To prove the
Proposition for arbitrary order differential equations we let Pn denote the set of
all real-valued polynomials of degree at most n.
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Definition 8.1 ([3]). Given S ⊂ [c, d], x0 is a bilateral accumulation point of
S, in case x0 is an accumulation point of both S ∩ [c, x0] and S ∩ [x0, d].

Definition 8.2. A function g(x) : I → R, I an interval, is said to be n-convex
(n-concave), on I in case for any distinct points x0, x1, . . . , xn in I,

n∑
i=0

g(xi)
ω′(xi)

≥ 0, (≤ 0),

where

ω(x) =
n∏
i=0

(x− xi), so that ω′(xj) =
n∏

i=0,i6=j
(xj − xi).

The following results for n-convex functions are well known.

Lemma 8.1. Suppose g(x) ∈ C(n)(I). Then, g(x) is n-convex on I, if and only
if, g(n)(x) ≥ 0 on I.

Lemma 8.2. The function g(x) is n-convex, if and only if, g(x) ∈ C(n−2)(I)
and g(n−2)(x) is convex.

Remark 8.1. In Lemmas 8.1 and 8.2, ‘convex’ can be replaced by ‘concave’.

Lemma 8.3 ([3]). Let g(x) ∈ C[c, d] and assume that, for each p(x) ∈ Pn, the
set {x : p(x) = g(x)} does not have a bilateral accumulation point in (c, d).
Then, there exists a subinterval I ⊆ [c, d] on which g(x) is either (n+ 1)-convex
or (n+ 1)-concave.

Theorem 8.4 ([21]). Assume that the differential equation (1.1.aga) satisfies the
conditions (A) – (Dn). Then, (1.1.aga) also satisfies condition (E).

Proof. Let {ym(x)} be a sequence of solutions of (1.1.aga) which is uniformly bound-
ed on some subinterval [c, d] ⊂ (a, b). Then, by Corollary 5.4 there exists a
subsequence {ym(j)(x)} and a function z(x)∈BV [c, d] such that limj→∞ ym(j)(x)
= z(x) point-wise on [c, d]. Thus, z′(x) exists a.e. on [c, d] and

∫ d
c z(x)dx exists.

We set
Z(x) =

∫ x

c

z(t)dt.

Then, Z ∈ C[c, d], and by Lemma 8.3, either one of the following holds.

(i) Z(x) is (n+ 2)-convex or (n+ 2)-concave on some [c1, d1] ⊆ [c, d], or

(ii) there exists a p(x) ∈ Pn+1 such that {x : p(x) = Z(x)} has a bilateral
accumulation point in (c, d).

Case (i). Let us relabel the sequence {ym(j)(x)} as {ym(x)}. By Lemma
8.2, Z(x) ∈ C(n)[c1, d1] and Z(n)(x) is convex, (or concave). Thus, Z ′(x) ∈
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C(n−1)[c1, d1] and Z ′(x) = z(x) a.e. on [c1, d1]. Thus, as a consequence of Corol-
laries 2.6 and 2.7 there exists a δ = δ(Z ′, d1 − c1) > 0 such that, for fixed
c1 ≤ a1 < a2 < · · · < an ≤ d1, with an− a1 ≤ δ, there exists an ε0 > 0 such that
the boundary value problem for (1.1.aga) satisfying y(aj) = Z ′(aj) + εj , 1 ≤ j ≤ n,
where |εj | ≤ ε0, 1 ≤ j ≤ n, has a solution y(x). Furthermore, the first n − 1
derivatives of this solution are bounded, with bounds depending on Z ′ and
d1 − c1. We call these bounds as N0 + 1, . . . , Nn−1 + 1.

Let us now choose points c1 ≤ a1 < a2 < · · · < an ≤ d1, with an − a1 ≤ δ
and such that Z ′(aj) = z(aj), 1 ≤ j ≤ n. Then, there exists an M such that
|ym(aj)− z(aj)| ≤ ε0, 1 ≤ j ≤ n for all m ≥M. Now for m ≥M and 1 ≤ j ≤ n,
let εm(j) = ym(aj)− z(aj). Then, for m ≥M,

ym(aj) = z(aj) + εm(j) = Z ′(aj) + εm(j), 1 ≤ j ≤ n

and it follows from condition (Dn) that ym(x) is the solution referred to above
resulting from Corollaries 2.6 and 2.7. As a consequence, we have for m ≥ M,

|y(i)
m (x)| ≤ Ni + 1 on [a1, an] for each 0 ≤ i ≤ n− 1. Now we can apply Theorem

2.1 to obtain a further subsequence {ym(`)(x)} such that {y(i)
m(`)(x)} converges

uniformly on each compact subinterval of (a, b) for each 0 ≤ i ≤ n− 1.

Case (ii). Assume that {xm} ↓ x0 is such that p(xm) = Z(xm), for all m ≥ 1.
Thus, if on some subinterval [xj+1, xj ], Z ′(x) = z(x) ≥ p′(x) a.e., then we have

Z(xj)− Z(xj+1) =
∫ xj

xj+1

z(t)dt

≥
∫ xj

xj+1

p′(t)dt

= p(xj)− p(xj+1) = Z(xj)− Z(xj+1),

so that the inequality is in fact an equality. However, from z(x)− p′(x) ≥ 0, a.e.
on [xj+1, xj ], we have

∫ xj
xj+1

(z(t)−p′(t))dt = 0, we conclude that z(x)−p′(x) = 0
a.e. on [xj+1, xj ]. In particular,

Z ′(x) = z(x) = p′(x) a.e. on [xj+1, xj ].

Similarly, if we assume that on some subinterval [xj+1, xj ], Z ′(x) = z(x) ≤ p′(x)
a.e., then we would arrive at Z ′(x) = z(x) = p′(x) a.e. on [xj+1, xj ].

Now that p′(x) ∈ C(n−1)[c, d], by Corollaries 2.6 and 2.7 there exists a δ =
δ(p′, d − c) > 0 such that for fixed c ≤ a1 < a2 < · · · < an ≤ d, an − a1 ≤ δ,
there exists an ε0 > 0 such that the boundary value problem for (1.1.aga) satisfying
y(aj) = p′(aj) + εj, 1 ≤ j ≤ n, where |εj| ≤ ε0, 1 ≤ j ≤ n, has a solution y(x).
As in Case (i) this solution has bounds on its first n− 1 derivatives depending
only on p′ and d− c; again we call these bounds as N0 + 1, . . . , Nn−1 + 1.

Let us choose points x`+n < x`+n−1 < · · · < x` from {xm} such that x` −
x`+n ≤ δ. We need to consider two subcases:
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Case (a). For some 1 ≤ r ≤ n, on [x`+r, x`+r−1] we have z(x) ≥ p′(x) a.e., or
z(x) ≤ p′(x) a.e. From the above arguments we, however, have z(x) = p′(x) a.e.
on [x`+r, x`+r−1]. We repeat the arguments of Case (i). Choose points x`+r ≤
a1 < · · · < an ≤ x`+r−1 such that z(aj) = p′(aj), 1 ≤ j ≤ n. Then, there exists
an M such that |ym(aj) − z(aj)| ≤ ε0, 1 ≤ j ≤ n, m ≥ M. For m ≥ M and
1 ≤ j ≤ n let εm(j) = ym(aj)− z(aj). Then, for m ≥M,

ym(aj) = z(aj) + εm(j) = p′(aj) + εm(j), 1 ≤ j ≤ n

and it follows that, from condition (Dn), ym(x) is the solution referred to the
above problem arising from the Corollaries 2.6 and 2.7. Thus, for all m ≥M,

|y(i)
m (x)| ≤ Ni + 1 on [a1, an]

for each 0 ≤ i ≤ n − 1. Then, by Theorem 2.1 there exists a further subse-
quence {ym(s)(x)} such that {y(i)

m(s)(x)} converges uniformly on each compact
subinterval of (a, b), for each 0 ≤ i ≤ n− 1.

Case (b). For each 1 ≤ r ≤ n, there exist sets Ar, Br ⊂ [x`+r, x`+r−1], each
having positive Lebesgue measure, and z(x) > p′(x) on Ar, and z(x) < p′(x) on
Br. However, since limm→∞ ym(x) = z(x), and so there exists a M such that
for m ≥ M, ym(x) > p′(x), for some Ar, and ym(x) < p′(x), for some x ∈ Br.
By continuity, for all 1 ≤ r ≤ n, there exists ar ∈ (x`+r, x`+r−1) such that
ym(ar) = p′(ar).

In particular, there are points x`+n ≤ ã1 < · · · < ãn ≤ x` (ãn − ã1 ≤ δ), so
that, for some M ′ ≥M,

ym(ãj) = p′(ãj) + εm(j), 1 ≤ j ≤ n

where |εm(j)| ≤ ε0, 1 ≤ j ≤ n and all m ≥M ′.
It follows from condition (Dn) that ym(x) is the solution referred to before

Case (a) arising from Corollaries 2.6 and 2.7. Thus, for all k ≥M ′,

|y(i)
m (x)| ≤ Ni + 1 on [ã1, ãn],

for each 0 ≤ i ≤ n − 1. Now an application of Theorem 2.1 leads to a subse-
quence {ym(j)(x)} such that {y(i)

m(j)(x)} converges uniformly on each compact
subinterval of (a, b), for each 0 ≤ i ≤ n− 1.

9 Problems and Comments

The establishment of Theorem 8.4 implies that in the known results on conjugate
boundary value problems the condition (E) is, in fact, superfluous. As an example
we state an important result, which was independently proved by Hartman [6]
and Klassen [17] with the additional condition (E).
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Theorem 9.1. Assume that for the differential equation (1.1.aga) conditions (A)
– (Dn) are satisfied. Then, each r point boundary value problem, i.e., for any
a < a1 < a2 · · · < ar < b and any Aj+1,i, 0 ≤ j ≤ ki, 1 ≤ i ≤ r the problem
(1.1.aga), (2.3.aga) has a unique solution.

Problem 1. For the third order differential equations in Theorem 4.5 we have
proved that conditions (A), (C) and (D3) imply condition (E). It will be inter-
esting to extend this result to equations of arbitrary order, i.e., whether it is
possible to prove Theorem 8.4 without the assumption (B).

In [16] Jackson has indicated that for n-point boundary value problems,
Klassen has used a result he established in [18] to prove the existence of solutions
under the assumptions (A), (C), (Dn) and (E). Thus, if the answer to Problem 1
is affirmative, then for r = n, Theorem 9.1 holds without the assumption (B).

Let 2 ≤ r ≤ n and let mi, 1 ≤ i ≤ r, be positive integers such that
∑r

i=1mi =
n. Let s0 = 0 and for 1 ≤ k ≤ r, let sk =

∑k
i=1 mi. A boundary value problem

for (1.1.aga) with the boundary conditions

y(i)(ak) = yi,k, sk−1 ≤ i ≤ sk − 1, 1 ≤ k ≤ r (9.1.aga)

where a < a1 < a2 < · · · < ar < b is called a right (m1, . . . ,mr)-focal point
boundary value problem for (1.1.aga) on (a, b).

With respect to the boundary conditions (9.1.aga) we replace the condition (Dn)
by the following:

(Drf
n ) For any a < a1 < a2 < · · · < an < b and any solutions y(x) and z(x) of

(1.1.aga), it follows that y(i−1)(ai) = z(i−1)(ai), 1 ≤ i ≤ n implies y(x) ≡ z(x), i.e.,
the differential equation (1.1.aga) is right (1, 1, . . . , 1) disfocal on (a, b).

As an application of Rolle’s theorem it follows that condition (Drf
n ) implies

the condition (Dn). Thus, in Theorem 8.4 condition (Dn) can be replaced by
(Drf

n ). We state this observation in the following result.

Theorem 9.2. Assume that the differential equation (1.1.aga) satisfies conditions
(A) – (C) and (Drf

n ). Then, (1.1.aga) also satisfies condition (E).

Of course, in Theorem 8.4, we can always replace condition (Dn) by a stronger
condition. The point is now whether it is possible to replace condition (Dn) by
some other condition which does not imply (Dn). The first ‘round about’ result
in this direction is the following:

Theorem 9.3. If the differential equation (1.1.aga) is of third order and satisfies
conditions (A), (C) and (D2), then (1.1.aga) also satisfies condition (E).

Proof. The proof is similar to that of Theorems 4.5.

Problem 2. A result similar to that of Theorem 9.3 for arbitrary order differ-
ential equations (1.1.aga) remains undecided, i.e., does conditions (A), (C) and (Dr)
imply condition (E).
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For arbitrary order differential equations (1.1.aga) Jackson [14] has established
that conditions (A), (B) and (Dn) imply (Dr). A converse of this result for third
order differential equations (1.1.aga) is that the conditions (A), (C) and (D2) imply
(D3). Jackson’s proof [15] of this converse result uses Theorem 9.3, i.e., under
the assumptions, condition (E) is implied, and then this fact is used to prove
(D3). Thus, if we accept Jackson’s converse result without looking at its proof,
then we can argue that conditions (A), (C) and (D2) imply (D3), and therefore
Theorem 4.5 gives condition (E).

Problem 3. The question for arbitrary order differential equations (1.1.aga) which
remains open is whether conditions (A), (C) and (Dr) imply condition (Dn).

Finally, we state one more result which is similar in nature to that of Theorem
9.3.

Theorem 9.4 ([7]). If the differential equation (1.1.aga) is of third order and sat-
isfies conditions (A), (C) and

(Drf
2 ) each right (2, 1)-focal point boundary value problem for (1.1.aga) on (a, b)

has at most one solution,

then (1.1.aga) also satisfies condition (E).

Problem 4. A result similar to that of Theorem 9.4 for arbitrary order differ-
ential equations (1.1.aga) is not known.

The author is grateful to Professor Johnny Henderson for his help in the
preparation of this lecture.
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