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Es dürfte nützlich sein, zuweilen die allgemeinen Forschritte,
welche die Analysis in den letzen Jahren gemacht hat,

an einem bestimmten Beispiel zu prüfen.(...)
Wir wollen die Differentialgleichung des Herrn Duffing

in der ursprünglichen Form hier etwa genauer untersuchen.

G. Hamel, 1922

Description of the set P of f for which the equation u′′ + sin u = f(t)
has a T -periodic solution seems to remain a terra incognita.

S. Fučik, 1979

Abstract. We survey the recent progress made in the study of har-
monic, subharmonic and other solutions of the forced pendulum equa-
tion

u′′ + cu′ + a sin u = h(t)

when the forcing term h is periodic, almost periodic or bounded. The
results depend upon various methods of nonlinear functional analysis,
critical point theory and dynamical systems.

AMS Subject Classification. 34C25, 34C11, 34C27, 70K40

Keywords. Forced pendulum equation, periodic solutions, almost pe-
riodic solutions, Lagrange stability

1 Introduction

Seventy-five year ago, in a paper published in 1922 in the special issue of the
Mathematische Annalen dedicated to Hilbert’s sixtieth birthday anniversary
[86], Hamel, one of his former students, has provided the first general existence
results for the periodic solutions of the periodically forced pendulum equation

y′′ + a sin y = b sin t. (1.1.maw)
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This equation had been the central topics of a monograph published four years
earlier by Duffing [55], who had restricted his study to the approximate determi-
nation of the periodic solutions for the following approximation of equation (1.1.maw)

y′′ + ay − cy3 = b sin t,

which still bears his name today.
Hamel’s paper starts by an existence result for a 2π-periodic solution of

equation (1.1.maw) by using the direct method of the calculus of variations made
rigorous by Hilbert at the beginning of the century. He shows indeed that the
action integral

A(y) :=
∫ 2π

0

(
y′2(t)

2
+ a cos y(t) + by(t) sin t

)
dt

has a minimum on the space of 2π-periodic functions of class C1. His argument
extends easily to the more general case where b sin t is replaced by any 2π-
periodic function with mean value zero, a fact rediscovered independently, in
the easier framework of Sobolev spaces, some sixty years later [179,47], and
rapidly followed by the proof of the existence of a second 2π-periodic solution
[124] through the use of more sophisticated tools of critical point theory. In the
second section of [86], Hamel uses the Ritz method to find a first approximation of
the amplitude of the periodic solution found in the previous section. In Section 4,
Hamel observes that the symmetries of the equation imply that any solution of
equation (1.1.maw) such that

y(0) = y(π) = 0 (1.2.maw)

can be extended as an odd 2π-periodic solution. He then reduces the problem
(1.1.maw)–(1.2.maw) to the integral equation

y(t) = −a
∫ 2π

0

K(t, τ) sin y(τ) dτ − b sin t := F (y)(t), (1.3.maw)

where K(t, τ) is the Green function of its linear part, and shows that the corre-
sponding method of successive approximations

yn+1 = F (yn), y0(t) = −b sin t,

converges. His argument is equivalent to showing the existence of a sufficiently
large integer m, for which the mth iterate Fm of F is a contraction in the space
of C[0, π]. Observe that this is published the very same year where Banach pub-
lishes his version of the contraction mapping theorem! Notice also that this part
of Hamel’s paper will inspire Hammerstein’s famous researches on nonlinear inte-
gral equations. Hamel uses not only the equivalent integral equation for existence
and uniqueness conclusions, but also to obtain approximations to the solutions.
For this, Hamel relies upon Schmidt’s version of the Lyapunov-Schmidt’s method.
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This short description clearly shows that Hamel’s paper anticipates or uses sev-
eral of the fundamental methods of nonlinear analysis, and that the opening
sentence of his paper, recalled in exergue of this work, is fully justified.

The survey papers [110,111] describe the contributions to the forced pendu-
lum equation in the fifty-five years following Hamel’s work. An important role
in renewing the interest to the forced pendulum equation was played in the late
seventies by Fučik, who wrote, in the Introduction of Chapter 26 of his mono-
graph [72] : Finally we shall present here one attempt to obtain the existence of
a T -periodic solution of the mathematical pendulum equation

− u′′(x) + sinu(x) = f(x). (1.4.maw)

The result is not final since the necessary and sufficient condition obtained for
T -periodic solvability of (1.4.maw) is not useful. After describing very partial results
in this direction and mentioning extensions personally communicated by Dancer,
Fučik concluded with the sentence mentioned in exergue of this paper.

Motivated by Fučik’s remarks, but unaware of the existence of Hamel’s pa-
per, Castro [38], Dancer [47] and Willem [179], reintroduced in the early eight-
ies the use of variational methods in the study of the forced pendulum. The
time was ripe for the obtention, more than sixty years after the first one, of
a second periodic solution, using a version of the mountain pass lemma [124].
The survey papers [110,111,114,117,118,121,183], as well as to the monographs
[112,126,40,79,98,151] provide a description of the state of the art till the early
nineties for the global results on the existence and multiplicity of periodic solu-
tions.

At the same time, the forced pendulum equation also became a paradigm for
the theory of chaos, and appeared in the description of Josephson type junctions.
According to Baker and Gollub [13]: Now 400 years after Galileo’s initial work,
the pendulum has again become an object of research as a chaotic system. We
shall not develope this viewpoint here and refer to a nice survey of Chenciner [42]
and to the papers or monographs [13,22,25,26,29,49,54,80,81,82,87,88,89,94,95]
[96,97,100,101,104,127,152,160,168,150,170] and their references.

Despite its fundamental role in the development of the qualitative theory of
nonlinear differential equations and its applications to engineering, we shall not
discuss here the special case of the pendulum equation with a constant torque

y′′ + cy′ + a sin y = b,

initiated by Tricomi [175,176] and widely developed since (see e.g. [10,15,85,105]
[154,153,163,164] and their references).

Moreover, to keep the size of the paper reasonable and make more easy the
comparaison between results obtained through different methods, we shall only
state the theorems for the special case of the standard forced pendulum equation

y′′ + cy′ + a sin y = h(t).

Most of the assertions remain valid if a sin y is replaced by an arbitrary contin-
uous function g(y) which is S-periodic for some S > 0 and of mean value zero.
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There are even recent results which depend upon the fact that a sin y is replaced
by a S-periodic function whose Fourier series contains higher harmonics [93].
Also, some conclusions survive when the friction term cy′ is replaced by a more
general one of Liénard type f(y)y′ or of Rayleigh type f(y′) (see e.g. [124,83]).

For the same reason, we shall not describe the possible generalizations to
systems of equations of the pendulum-type, and in particular to the equations of
the forced multiple pendulum, and to higher order pendulum-type equations. The
reader can consult the original papers [125,36,53,66,149,64,119,40,62,171,173]
[174,56,57,128,63,58,67,21]. Some of those results are related to the famous solu-
tion by Conley and Zehnder [44] of a conjecture of Arnold in symplectic geometry.
See also, for example, [45,189,190,61,106]. We shall not describe the results deal-
ing with symmetric forcing terms h(t), which have been recently considered in
[161,162,155,16,136]. Also we shall leave aside the existence of forced oscillations
for the spherical pendulum (which depend upon methods of a quite different na-
ture, and have been the object of a sequence of papers by Furi, Pera and Spadini
[73,74,75,76,77]), for some pendulum-type equations describing the libration of
satellites (see [17,99,113,116,147,84]), and for delay-differential equations of the
pendulum type like the sunflower equation [37].

Let us mention also that the corresponding problem for the case of Dirichlet
boundary conditions, namely

y′′ + y + a sin y = h(t), y(0) = 0 = y(π),

and its analog for partial differential equations, has been the object, since the
pioneering paper of Ward [178], of a number of studies based upon various meth-
ods. See [169,107,156,157,158,159,46,11,31,32,33,34]. This problem has both deep
analogies and strong differences with the periodic boundary value problem for
the forced pendulum.

Finally, let us warn the reader that, despite of its substantial size, the given
bibliography is undoubtly far to be complete, but its size is sufficient to show how
stimulating has been the study of the forced pendulum equation in the recent
development of nonlinear and global analysis, and of the theory of dynamical
systems.

2 Periodic forcing

2.1 The problems

We consider the (possibly dissipative) periodically forced pendulum equation

y′′ + cy′ + a sin y = h(t), (2.1.maw)

where, without loss of generality, c ≥ 0, a > 0, and h is T -periodic, for some
period T > 0, and corresponding frequency ω := 2π

T . For the simplicity of ex-
position, we shall assume that h is continuous. Most results hold under weaker
regularity conditions.
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A T -periodic solution of equation (2.1.maw) is a solution y : R → R such that
y(t + T ) = y(t) for all t ∈ R. By integrating equation (2.1.maw) over [0, T ], we
immediately see that a necessary condition for the existence of a T -periodic
solution to equation (2.1.maw) is that∣∣∣∣∣ 1

T

∫ T

0

h(t) dt

∣∣∣∣∣ ≤ a.
The main questions which can be raised about the T -periodic problem for

equation (2.1.maw) are the following ones:

1. Determine the nature and the properties of the set

R = R(c, a, T )

of T -periodic forcings h such that equation (2.1.maw) has at least one T -periodic
solution, i.e. the range of the nonlinear operator

d2

dt2
+ c

d

dt
+ a sin(·)

over the space of T -periodic functions of class C2.
2. For h ∈ R, discuss the multiplicity of the T -periodic solutions.
3. For h ∈ R, discuss the stability of the T -periodic solutions.
4. Discuss the existence of other solutions and properties of the set of all solu-

tions.

Concerning the multiplicity, it is clear that if y is a T -periodic solution of
equation (2.1.maw), then the same is true for y+ 2kπ, k ∈ Z. Consequently, we shall
say that y1 and y2 are distinct T -periodic solutions of (2.1.maw) if they do not differ
by a multiple of 2π.

In the sequel of the paper, we shall use the following notations.

LpT = {h ∈ Lploc(R) : h(t+ T ) = h(t) for a.e. t ∈ R}

CT = {h ∈ C(R) : h(t+ T ) = h(t) for all t ∈ R}

H1
T = {h ∈ ACloc(R) : h′ ∈ L2}

‖h‖p =

(
1
T

∫ T

0

|h(t)|p dt
)1/p

, ‖h‖∞ = max
t∈[0,T ]

|h(t)|,

‖h‖H1 =
(
‖h‖22 + ‖h′‖22

)1/2
h =

1
T

∫ T

0

h(t) dt, h̃(t) = h(t)− h
(∫ T

0

h̃(t) dt = 0

)

L̃pT = {h ∈ LpT : h = 0}, C̃T = {h ∈ CT : h = 0}
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Consequently,
LpT = R⊕ L̃pT , CT = R⊕ C̃T ,

with the corresponding decomposition y = y + ỹ.
We shall also use an interesting equivalent formulation of the problem of

T -periodic solutions for equation (2.1.maw).

Lemma 1. If H̃(t) = H̃c,T (t) denotes the unique T -periodic solution in C̃T of

y′′ + cy′ = h̃,

then y(t) is a T -periodic solution of equation (2.1.maw) if and only x(t) = y(t)− H̃(t)
is a T -periodic solution of equation

x′′ + cx′ + a sin(x+ H̃(t)) = h. (2.2.maw)

2.2 The methods

Various methods have been used in the study of the T -periodic solutions of
equation (2.1.maw) or (2.2.maw). For the reader’s convenience, we shall give a brief survey
of the ones directly involved in the results described in this survey.

2.2.1 Poincaré’s method

Let y(t;u) be the solution of equation (2.1.maw) such that

y(0, u) = u1, y
′(0;u) = u2,

and let
P : R2 → R2, u 7→ [y(T ;u), y′(T ;u)].

Then y(t;u) is a T -periodic solution of equation (2.1.maw) if and only if u is a fixed
point of P. P is called the Poincaré’s operator.

If c = 0, P is area-preserving, and one can then use various twist theorems.
Take polar coordinates (r, θ) in the plane, and denote by A the annulus [a, b]×S1.
A first useful result is Poincaré-Birkhoff’s twist theorem [148,23].

Lemma 2. Every area-preserving homeomorphism φ : A→ A with lift

(r, θ) 7→ (f(r, θ), θ + g(r, θ)), (2.3.maw)

rotating the two boundaries in opposite directions, i.e. such that

g(a, θ)g(b, θ) < 0, θ ∈ R,

possesses at least two fixed points in the interior .

A second one is Moser’s twist theorem [129].
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Lemma 3. Let l ≥ 5, α ∈ C5(R) be such that |α′(r)| ≥ ν > 0 for all r ∈ [a, b],
and let ε > 0. Then there exists δ = δ(ε, l, α) > 0 such that any area-preserving
mapping (2.3.maw) of A into R2 with f, g ∈ Cl such that

|f − r|Cl + |g − α|Cl < νδ,

possesses an invariant curve of the form

r = c+ u(ξ), θ = ξ + v(ξ),

in A, where u, v are of class C1, 2π-periodic, such that |u|C1 + |v|C1 < ε, and
c ∈ ]a, b[ is constant. Moreover, the induced mapping on this curve is given by
ξ → ξ + ω, where ω is incommensurable with 2π, and satisfies infinitely many
conditions ∣∣∣∣ ω2π − p

q

∣∣∣∣ ≥ γq−τ ,
with some positive γ, τ, for all integers q > 0, and p. In fact, each choice of ω
in the range of α satisfying the above Diophantine inequalities gives rise to such
an invariant curve.

Call φ : A→ A a monotone twist homeomorphism if it preserves orientation,
preserves boundary components of A and if for a lift F (r, θ) = (f(r, θ), g(r, θ)),
the function g(·, θ) is a strictly monotone function for each θ. For definiteness,
we assume this function to be strictly increasing. Let F j(r, θ) = (rj , θj), and

αr(φ) = lim
j→∞

θj
j

be its rotation number. The twist interval of φ is the interval [αa(φ), αb(φ)]. It
is defined up to an integral translation. If φq(z) = z, then F q(r, θ) = T p(r, θ),
for some integer p determined up to a multiple of q, and T (r, θ) = (r, θ+ 2π). pq
is called the rotation number of z. One calls such a point z = (r, θ) a Birkhoff
point of type (p,q) if there exists a sequence (rn, θn)n∈Z such that (r0, θ0) = (r, θ),
θn+1 > θn, (n ∈ N), (rn+q, θn+q) = (rn+q, θn + 2π), (rn+q, θn+q) = F (rn, θn).

One then has the Birkhoff’s twist theorem [24].

Lemma 4. Let φ : A → A be an area-preserving monotone twist homeomor-
phism and

p

q
∈ [αa(φ), αb(φ)]

be a rational number with p, q relatively prime. Then there exist two Birkhoff
periodic orbits of type (p, q) for φ.

A Mather set of rotation number α for F is a closed invariant set for F with
representation u = u(θ), v = v(θ) where u is monotone increasing, u− Id and v
are 2π-periodic (not necessarily continuous!), and u(θ+α) = φ1(u, v), v(θ+α) =
φ2(u, v).

The following result is the Aubry-Mather’s twist theorem [12,109].
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Lemma 5. Let φ : A → A be an area-preserving monotone twist homeomor-
phism and let α ∈ [αa(φ), αb(φ)]. Then there exists an invariant Mather set Γα
with rotation number α. Furthermore, Γα is a subset of a closed curve y = w(x)
where w is 2π-periodic and Lipschitz continuous, i.e. v(θ) = w(u(θ). For rational
α = p

q , this theorem provides orbits (rj , θj) satisfying θj+q = θj +2pπ, rj+q = r0

for j ∈ Z.

For some surveys on the Aubry-Mather’s twist theorem, see [14,43,92].

2.2.2 Lyapunov-Schmidt’s method

The Lyapunov-Schmidt’s method (see e.g. [78]) is based upon the following ele-
mentary fact.

Lemma 6. y = y + ỹ is a T -periodic solution of equation (2.1.maw) if and only if it
is a solution of the system

ỹ′′ + cỹ′ + a sin(y + ỹ) = a sin(y + ỹ) + h̃(t), a sin(y + ỹ) = h (2.4.maw)

In the classical Lyapunov-Schmidt’s method, the first equation in (2.4.maw) is
solved with respect to ỹ for fixed y (using a fixed point or implicit function
theorem, or critical point theory) and this solution is introduced in the second
equation, which then becomes the (one-dimensional) bifurcation equation. One
can also study directly the equivalent system (2.4.maw) by degree theory or critical
point theory.

2.2.3 Upper and lower solutions
The method of upper and lower solutions for the periodic solutions of equation
(5) (see e.g. [112]) consists in the following statement.

Lemma 7. If α and β are of class C2, T -periodic and such that, for all t ∈ R,
i) α(t) ≤ β(t)
ii) α′′(t) + cα′(t) + a sinα(t) ≥ h(t) ≥ β′′(t) + cβ′(t) + a sinβ(t),
then (2.1.maw) has at least one T -periodic solution y such that α(t) ≤ y(t) ≤ β(t).

The reader will easily state the analogous statement for the periodic solutions
of (2.2.maw).

2.2.4 Critical point theory

The starting point of the use of a variational method or of critical point theory
to the periodic solutions of the forced pendulum equation without dissipation is
the following classical observation.

Lemma 8. y is a T -periodic solution of

y′′ + a sin y = h(t) (2.5.maw)
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if and only if y is a critical point of the action functional

Ah : H1
T → R, y 7→

∫ T

0

(
y′2(t)

2
+ a cos y(t) + h(t)y(t)

)
dt. (2.6.maw)

Various tools of critical point theory like minimization, mountain pass lem-
ma, Lyusternik-Schnirelmann theory, Morse theory (see e.g. [124]) can be applied
to (2.5.maw) or to its equivalent form (2.2.maw). Notice that a semi-variational method
has been used in [1] to study the dissipative forced pendulum.

2.3 Results valid for all c, a, T, h

Rewrite equation (2.1.maw) as

y′′ + cy′ + a sin y = h+ h̃(t) (2.7.maw)

The following results are now classical and can be found in [124,68,112]. Their
proof uses Lyapunov-Schmidt’s argument, topological degree, upper and lower
solutions. Some of them can already been found in [47] and some have been
reobtained in [91].

Theorem 1. For each h̃ ∈ L1
T , there exists

mh̃ = mh̃(c, a, T ) ≤Mh̃ = Mh̃(c, a, T )

such that the following hold.

1. −a ≤ mh̃ ≤Mh̃ ≤ a et −a = m0 < M0 = a.

2. mh̃k
→ mh̃ and Mh̃k

→Mh̃ if H̃k → H̃ uniformly on R.

3. Equation (2.7.maw) has at least one T -periodic solution if and only if h ∈ [mh̃,Mh̃].

4. Equation (2.7.maw) has at least two distinct T -periodic solutions if h ∈ ]mh̃,Mh̃[.
5. If mh̃ = Mh̃, equation (2.7.maw) has, for each ξ ∈ R, at least one T -periodic

solution y with y = ξ.

In particular, R(c, a, T ) is closed and

R(c, a, T ) =
⋃
h̃∈C̃T

[mh̃,Mh̃]× {h̃} ⊂ [−a, a]× C̃T .

2.4 Open problems and partial solutions.

Some important questions are left open by the results of Theorem 1, and are
only partially solved.
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2.4.1 Find an explicit element in [mh̃,Mh̃]

Theorem 2. When c = 0, then 0 ∈ [mh̃,Mh̃].

This is shown by proving the existence of a global minimum for the action
functional Ah ([86,179,180,47]). The reason of the success of the minimization
method is that Ah(y + 2π) = Ah(y) if and only if h = 0. This property together
with the coercivity of Ah with respect to ỹ allows easily to obtain a bounded
minimizing sequence for Ah. The periodicity property of Ah when h = 0 allows
also the use of a Lusternik-Schnirelmann type argument to prove directly that
Ah has two distinct critical points (see [119,40,149]). Another proof of this fact
has been given in [71] using a generalized Poincaré-Birkhoff theorem. No proof
based upon degree theory is known at this day.

Theorem 3. When c
T > 1

π
√

3
‖h̃‖2, then 0 ∈ ]mh̃,Mh̃[.

This is proved by topological degree arguments ([124]).

The question was then raised to know if 0 ∈ [mh̃,Mh̃] for each c > 0. A
negative answer was first given by a counterexample of Ortega [140], recently
improved by another one of Alonso [2] showing that for each c > 0, there exists
T0 = T0(a, c) such that for each T > T0, 0 6∈ [mh̃,Mh̃]. The idea of Alonso’s
counterexample consists in constructing a forcing term close to a piecewise con-
stant function h(t) taking a large positive value p in the interval [0, τ ] and a
small negative value −q in the interval [τ, T ], where pτ − q(T − τ) = 0.

2.4.2 Prove or disprove the existence of some h̃ such that mh̃ = Mh̃

This problem remains open. Here is some known partial information.

Theorem 4. The set {h̃ ∈ C̃T : mh̃ < Mh̃} is open and dense.

This has been proved using various arguments [124,112,108], and in partic-
ular a generalized Sard-Smale’s theorem. Thus, generically, [mh̃,Mh̃] is a non
degenerate interval.

Theorem 5. For c = 0,

{h̃ ∈ C̃T : lim
|λ|→∞

m(λh̃) = lim
|λ|→∞

M(λh̃) = 0}

contains an open and dense subset of C̃T .

This has been proved by Kannan and Ortega [91], who also gave an exam-
ple showing that this set is not open. The proof makes use of some Riemann-
Lebesgue lemma and asymptotic analysis techniques.
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2.5 The conservative case c = 0

We shall now concentrate on some results which hold for the conservative case
c = 0. Recall the a regular value for a continuously differentiable mapping f
between two smooth Banach manifolds is the image by f of a point c such that
f ′c is onto.

Theorem 6. The set G of regular values for y′′ + a sin y is open and dense in
C̃T , and, for every g ∈ G, there exists ε > 0 such that, if ‖h − g‖∞ ≤ ε, then
equation (2.5.maw) has a T -periodic solution.

This has been proved [108] using a generalized Sard-Smale lemma.

Recently, using techniques of critical point theory (a suitable minimax me-
thod), Serra, Tarallo and Terracini [167] have introduced a new condition in order
that mh̃ < Mh̃.

Theorem 7. If h = 0, and if c0 = infH1
T
Ah, then mh̃ < Mh̃ if and only if the

following condition

(K0) K(ξ) := {y ∈ H1
T : Ah(y) = c0, y = ξ} = ∅ for some ξ ∈ R

holds. Moreover, if (K0) does not hold, then, for each ξ ∈ R, K(ξ) = {yξ}, with
ξ → yξ continuous and yξ1(t) < yξ2(t) for all t ∈ R whenever ξ1 < ξ2, and
equation (2.5.maw) has no other periodic solutions.

In a subsequent paper [166], Serra and Tarallo have introduced a new reduc-
tion method of Lyapunov-Schmidt’s type, which sheds some light on some of the
unsolved problems for the conservative forced pendulum equation.

Theorem 8. For each ξ ∈ R, let

ϕh(ξ) := min
y=ξ

Ah(y), Mh(ξ) = {y ∈ H1
T : y = ξ, Ah(y) = ϕh(y)},

and let
Mh =

⋃
ξ∈R

Mh(ξ) = {u ∈ H1
T : Ah(u) = ϕh(u)}.

Then the following results hold.

1. ϕh is defined and locally Lipschitz continuous on R.
2. Mh(ξ) 6= ∅ and compact for each ξ ∈ R and Mh : R → 2H

1
T upper semi-

continuous.
3. If y ∈ M and y is a local minimum for ϕh, then y is a local minimum for

Ah.
4. ϕh is differentiable at ξ if and only if y 7→

∫ T
0 (a sin y(t)−h(t)) dt is constant

on Mh(ξ).
5. If ϕh has a critical point, then Ah has a critical point.
6. If ϕh is not strictly monotone, then Ah has a critical point.
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It is interesting to compare this approach to the classical method of Lya-
punov-Schmidt. In this case, one proves (by critical point theory if c = 0 and
Schauder’s fixed point theorem in all cases) that, for each ξ ∈ R, the set

Kh(ξ) = {y ∈ CT : y = ξ and ỹ solves the first equation in (2.4.maw)}

is not empty, and then the problem is reduced to find the elements of the set
Kh =

⋃
ξ∈RKh(ξ) such that a sin y = h. In the Serra-Tarallo’s approach, on each

slice ξ + H̃1
T of H1

T , one considers only the elements of Kh(ξ) which minimize
the restriction of Ah on this slice, which provides the subset Mh(ξ) ⊂ Kh(ξ),
and then, instead of trying to solve the second equation of (2.4.maw) on this set,
one concentrates on the reduced functional ϕh and relates its critical points to
those of Ah. Hence the spirit is more variational than in the earlier approaches
combining a Lyapunov-Schmidt argument with some variational method, in that
the emphasis, at each step, remains on the functional instead of on its gradient.
Because the minimization is made on each slice on the function space, one can
imitate the type of humor which has led from the name Klein-Gordon equation
for utt−∆u+u = 0 to the name Sine-Gordon equation for utt−∆u+ sinu = 0,
and call the Serra-Tarallo’s approach a Lyapunov-Schnitt’s method.

Notice that one of the main features of this approach is that, in contrast to
most other ones, it applies when a sin y is replaced by a more general almost
periodic function.

2.6 The case where c = 0 and a < ω2

In the conservative case, more precise results can be obtained when the following
condition

a < ω2 (2.8.maw)

holds.
Using global analysis and singularity theory, Donati [51] has proved the fol-

lowing result about the multiplicity of solutions.

Theorem 9. If (2.8.maw) holds and h ∈ [mh̃,Mh̃], then equation (2.5.maw) has at most
finitely many distinct T -periodic solutions when [mh̃,Mh̃] 6= {0}. Otherwise,
equation (2.5.maw) has an analytic unbounded curve of solutions.

Serra and Tarallo [166] have used their Lyapunov-Schnitt’s method to obtain
more precise information.

Theorem 10. Assume that (2.8.maw) holds. Then

1. If ϕh is constant, then Mh(ξ) = {yξ}, and if y is a periodic solution of
equation (2.5.maw), then h = 0 and y = yξ for some ξ ∈ R.

2. ϕh is not constant if and only if there exists ε0 > 0 such that equation (2.5.maw)
has at least one T -periodic solution for each |h| < ε0.
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3. [mh̃,Mh̃] = {0} if and only if ϕh is constant.
4. {h̃ ∈ C̃T : ϕh̃ is not constant} is open and dense in C̃T .

5. If ϕh is constant and h 6= 0, then equation (2.5.maw) has no bounded solution.

The same approach has also been used by Calanchi and Tarallo [30] to show
the following result.

Theorem 11. There exists K = K(a, T ) > 0 such that if ‖h‖2 < K, each
critical point of Ah over H1

T is a local minimum or a point of mountain pass
type.

2.7 Stability of the T -periodic solutions

2.7.1 The dissipative case c > 0
By imposing some restrictions upon c, a, and T, it is possible to obtain on one
hand exact multiplicity results for the T -periodic solutions, and, on the other
hand, informations upon their Lyapunov stability. The pioneering work in the
first direction is due to Tarantello [172] (using a Lyapunov-Schmidt approach)
and, in the second direction, to Ortega [141,142,143] (using some relations be-
tween stability and the Brouwer degree of Poincaré’s operator). A recent paper
of Čepička, Drábek and Jenšiková [39] provides the sharpest known conditions.

Theorem 12. If

c > 0, a < max
{
c2

4
+ ω2, ω

√
c2 + ω2

}
then equation (2.7.maw) has :

1. exactly one T -periodic solution if either h = mh̃ or h = Mh̃.

2. exactly two T -periodic solutions if h ∈ ]mh̃,Mh̃[.

If

c > 0, a < max

{
c2 + ω2

4
,
ω

2

√
c2 +

ω2

4

}
,

then the conclusions (1.-2.) remain true and the periodic solution obtained in
(1.) is unstable while one solution obtained in (2.) is asymptotically stable and
the other unstable.

The proof of the exact multiplicity results in Theorem 5 is based upon the
Lyapunov-Schmidt’s reduction method together with the real analytic version of
the implicit function theorem to analyze the bifurcation equation. The unique-
ness in the solution of the first equation in (2.4.maw) is deduced from some preliminary
assertions on the T -periodic solutions of linear equations of the type

y′′ + cy′ + g(t)y = 0,

with g T -periodic. The stability conclusion is obtained in the same way as in
Ortega’s papers.
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2.7.2 The conservative case c = 0
The difficulty in analyzing the stability in the conservative case is that asymp-
totic stability can no more be expected. In a recent paper, Dancer and Ortega
[48] have proved the following proposition.

Lemma 9. A stable isolated fixed point of an orientation preserving local home-
omorphism on R2 has fixed point index equal to one.

The proof of this result depends upon a variant of Brouwer’s lemma on
translation arcs. One of the given applications is the following result.

Lemma 10. If y is an isolated T -periodic solution of the second order equation,
with continuous right-hand member T -periodic with respect to t,

y′′ =
∂V

∂y
(t, y), (2.9.maw)

and y reaches a local minimum on H1
T of the action functional

f(y) =
∫ T

0

(
y′2(t)

2
+ V (t, y(t))

)
dt,

then y is unstable.

This result is proved by showing first, through a result of Amann on the
computation of degree of gradient mappings and a relatedness principle of Kras-
nosel’skii-Zabreiko, that the index of y is equal to minus one. The result then
follows from the previous one.

An immediate consequence for the pendulum equation is the following one.

Theorem 13. If h = 0, and if a T -periodic solution minimizing Ah̃ is isolated,
then it is unstable.

One can then raise the question to known if the above results still hold
without the assumption that the T -periodic solution is isolated. Ortega [145]
has proved the following interesting result.

Lemma 11. If D ⊂ R is a domain and F : D ⊂ R2 → R2 is real analytical and
not the identity on D, its Jacobian is equal to 1 on D, and if p is a stable fixed
point of F, then p is isolated in the fixed points set of F.

The delicate proof of this result uses Brouwer’s plane translation theorem.

As an application, the following unstability result is proved in [145].

Lemma 12. If V is T -periodic with respect to t and real analytic, and y is a
T -periodic solution of equation (2.9.maw) such that y reaches a local minimal of f on
H1
T , then y is unstable.



Forced Pendulum Equation 129

An immediate consequence for the forced pendulum equation is the following
one.

Theorem 14. If h is analytical and h = 0, then, given N ∈ Z, the number of
T -periodic solutions of equation (2.5.maw) that are stable and geometrically different
is finite.

2.8 Existence of more than two T -periodic solutions

In [50], Donati proved that given a > 0 and T > 0, there exists some h∗ ∈ CT
with h∗ = 0 and a neighborhoud V of h∗ such that for each h ∈ V, equation
(2.5.maw) has at least four distinct T -periodic solutions. The proof is based upon a
classification of singularities of the nonlinear Fredholm operator d2

dt2 + a sin(·).
Applying to (2.2.maw) a classical perturbation method as used for example by Loud for
Duffing’s equation, Ortega [146] has recently improved this result by replacing
4 by any even number.

Theorem 15. Given a > 0 and an integer N ≥ 1, there exists h∗ ∈ CT sat-
isfying h∗ = 0 and such that equation (2.5.maw) with h replaced by h∗ has at least
2N distinct T -periodic solutions. In addition, there exists δ > 0 such that if h
satisfies h = 0 and ‖h− h∗‖L1 < δ, then the conclusion also holds for equation
(2.5.maw).

The idea of the proof consists in considering the equation

y′′ + a sin (y + P0(t)) = 0, (2.10.maw)

where

P0(t) = 2π
(
t

T
−
[
t

T

])
,

which has a continuum (yc)c∈R of T -periodic solutions, and in considering a
perturbation of equation (2.10.maw)

y′′ + a sin (y + P0(t) + Ψ(t, ε)) = 0, (2.11.maw)

with conditions upon Ψ insuring that P0(t) +Ψ(t, ε) is smooth and that one has
at least 2N periodic simultaneous bifurcations for ε = 0.

To motivate a further multiplicity result of perturbation type, let us recall
that for the undamped free pendulum equation

y′′ + a sin y = 0 (2.12.maw)

it is known that the period T (A) of the periodic solutions of (2.12.maw) as a function
of their amplitude A > 0 is an increasing function such that

lim
A→0+

T (A) =
2π√
a
, lim

A→π−
T (A) = +∞.
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Consequently, given any positive integer N, then, if a > 4π2N2

T 2 , equation (2.12.maw)
has a closed orbit with least period T

k for each k = 1, 2, . . . , N. Using a perturba-
tion argument and W. Ding’s generalization of the Poincaré-Birkhoff fixed point
theorem for area-preserving twist mappings of an annulus, Fonda and Zanolin
[65] have proved the following result for the forced case.

Theorem 16. Given any positive integer N, there exists a constant a0 > 0
such that, for any a ≥ a0, equation (2.5.maw) has at least N periodic solutions with
minimal period T, which can be chosen to have exactly 2j simple crossings with
0 in the interval [0, T [, with j = 1, 2, . . . , N.

2.9 Subharmonic solutions in the conservative case c = 0

Let us first recall that, if k ≥ 2 is an integer, a subharmonic solution of order
k of (2.1.maw) is a periodic solution of equation (2.1.maw) with minimal period kT. The
first existence results for the subharmonic solutions of equation (2.5.maw) with h = 0
have been obtained by Fonda and Willem [64] (see also Offin [137] for a close
result based upon an index theory for periodic extremals and a variant of the
mountain pass lemma).

Theorem 17. Suppose that the T -periodic solutions of equation (2.5.maw) are iso-
lated and that every T -periodic solution of equation (2.5.maw) having Morse index
equal to zero is nondegenerate. Then there exists k0 ≥ 2 such that, for every
prime integer k ≥ k0, there is a periodic solution of equation (2.5.maw) with minimal
period kT. If moreover the kT -periodic solutions of equation (2.5.maw) are nondegen-
erate for k = 1 and every prime integer k, then there exists a k0 ≥ 3 such that,
for every prime integer k ≥ k0, there are two periodic solutions of equation (2.5.maw)
with minimal period kT.

To prove this result, Fonda and Willem consider the critical points of the
functional

Ah,k =
∫ kT

0

(
y′2(t)

2
+ a cos y(t) + h(t)y(t)

)
dt,

over the Sobolev space H1
kT . Then, by assumption and an easy reasoning, Ah,1 =

Ah has a finite number of critical points y0, y1, . . . , yn, which, of course, are also
critical points of Ah,k for any k ≥ 2. The first ingredient of the proof consists in
showing the existence of some integer k0 such that, for k ≥ k0 and 0 ≤ i ≤ n,
either the Morse index J(yi, kT, 1) of yi is equal to 0 and yi is nondegenerate,
or J(yi, kT, 1) ≥ 2. This is done using an iteration formula for the Morse index
due to Bott. Now, let k ≥ k0 be a prime number, so that the critical points of
Ah,k have minimal period T or kT. Assuming by contradiction that y0, . . . , yn
are the only critical points of Ah,k, one is led to a contradiction in the Morse
inequalities of Morse theory (see e.g. [126]) applied to Ah,k. The proof of the
second part of Theorem 17 is similar.

Combining the Fonda-Willem’s theorem with the generic results of [108], one
gets the generic existence of subharmonic solutions.



Forced Pendulum Equation 131

Theorem 18. There exists an open dense subset G of C̃T such that for every
h ∈ G, there exists a k0 ≥ 2 such that, for every prime integer k ≥ k0, equation
(2.5.maw) has a periodic solution with minimal period kT.

As shown in [167], the Lyapunov-Schnitt’s reduction method also provides
some information about subharmonic solutions, by relating their existence to
the properties of ϕh.

Theorem 19. Equation (2.5.maw) with h = 0 has subharmonics of infinitely many
distinct levels if and only if ϕh is not constant. If cT0 := minH1

T
Ah is isolated in

the set of critical levels of Ah, then equation (2.5.maw) with h = 0 admits subharmon-
ics of arbitrary large minimal period if and only if ϕh is not constant. Finally,
the isolatedness assumption in the previous statement can be dropped if a < ω2.

Finally, the Fonda-Zanolin multiplicity result [65] has a counterpart for sub-
harmonic solutions, proved using the same technique.

Theorem 20. Given any two positive integers M,N, there exists a constant
a0 > 0 such that, for any a ≥ a0, equation (2.5.maw) has, for each k = 1, 2, . . . ,M,
at least N periodic solutions with minimal period kT.

2.10 Rotating solutions in the conservative case c = 0

Besides periodic solutions, the free pendulum has also rotating solutions which
are the sum of a linear function of t and of a periodic term. Under some condi-
tions, the conservative forced pendulum (2.5.maw) can also admit such solutions. Most
of the results in this case are obtained via combination of Poincaré’s method and
some theorem for twist mappings.

The following results have been proved by Levi [103] using Moser’s twist
theorem. The basic idea is that, for large velocities x = y′, the forced pendulum
equation has solutions which are close to those of the integrable system y′′ = 0.

Theorem 21. For any ω ∈ ]0, 2π[ satisfying, for some c0 > 0 and µ > 0, the
set of inequalities ∣∣∣ ω

2π
− m

n

∣∣∣ > c0
n2+µ

,

for all m,n ∈ Z with n 6= 0, there exists an integer k0 = k0(c0, µ) such that the
Poincaré’s mapping associated to (2.5.maw) possesses, for all integers k with |k| ≥ k0,
a countable set of invariant curves y = f ω

2π+k(x) ≡ f ω
2π+k(x + 1). For any real

number α, equation (2.5.maw) has a Birkhoff orbit with that rotation number. For any
rational α = p

q there exists at least two solutions satisfying y(t+qT ) = y(t)+2pπ.

A similar result was proved independently by Moser [130], using a variational
method which can be traced to Percival and Mather (see [131]).

Theorem 22. If h = 0, then, for some sufficiently large irrational α (satisfying
a Diophantine condition), equation (2.5.maw) has solutions of the form y(t) = U(t, αt)
such that U(t, θ) − θ is continuous, T -periodic in t and 2π-periodic in θ, and
∂θU > 0.
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Physically, the above result means that there exists a motion with any average
angular velocity (see also Dovbysh [52]).

The following result of You [185] is also proved using Moser’s twist theorem.

Theorem 23. Equation (2.5.maw) admits an infinite number of invariant tori, and
thus an infinite number of almost periodic solutions, when h = 0, and no invari-
ant torus when h 6= 0.

In the case of an analytic h, Ortega’s approach described in Section 2.7.2
provides some information about the number and stability of rotating solutions
[145].

Theorem 24. If h is analytic and h = 0, then, given N ∈ Z, the number of
stable and distinct T -periodic solutions with winding number N (i.e. solution
such that y(t+ T ) = y(t) + 2Nπ) of equation (2.5.maw) is finite.

Finally, the change of variable y(t) = kωt+v(t), and the use of direct methods
of the calculus of variations to the transformed equation allows a very simple
proof of the following special case of Theorem 13 [121].

Theorem 25. For each a > 0, T > 0, k ∈ Z \ {0}, and each h with h = 0,
equation (2.5.maw) has at least one solution of the form y(t) = kωt + v(t) with v
T -periodic.

2.11 Lagrange stability

2.11.1 The conservative case c = 0

Equation (2.5.maw) is called Lagrange stable if any solution of (2.1.maw) is bounded over R
in the phase cylinder {(y mod 2π, y′)}. Physically, this means that any solution
of (2.1.maw) has angular velocity bounded over R.

The problem of the Lagrange stability of equation (2.5.maw) was raised by Moser
in the Introduction of [129]. Its positive solution is a consequence of the results
of Levi, Moser and You described in the previous section.

Theorem 26. If h = 0, then for any sufficiently large N > 0, there exists
M = M(N) such that any solution y(t) of equation (2.5.maw) with |y′(0)| ≤ M
satisfies |y′(t)| ≤ N for all t ∈ R.

As shown by You [185], the conditions that the mean value of h is zero is
necessary and sufficient for the Lagrange stability.

Theorem 27. If a > 0, then equation (2.5.maw) is Lagrange stable if and only if
h = 0.
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2.11.2 The dissipative case c > 0
Some results for Lagrange stability in the dissipative case have been obtained
by Andres [4,5] and Andres-Staněk [9] using Lyapunov function techniques. See
also [6,7,8] for further discussions and problems.

Here, Lagrange stability of (2.1.maw) has to be understood as the boundedness
over R+ of any solution in the phase cylinder {ymod 2π, y′}. Physically, that
means that any solution of (2.1.maw) has angular velocity bounded in the future.

Theorem 28. The equation (2.1.maw) is Lagrange stable provided h = 0 and

c >
(a+ ‖h‖∞)

{
‖H‖∞ +

[
‖H‖2∞ + 4(2a+ π(a+ ‖h‖∞))

]1/2}
2(2a+ π(c+ ‖h‖∞))

,

where H(t) =
∫ t

0 h(s) ds.

3 Bounded or almost periodic forcing

3.1 Bounded forcing

Using a version of the method of upper and lower solutions for solutions bounded
over R going back to to Opial [138] (see also [122]), one can prove the following
result, which is the one dimensional case of a result for elliptic partial differential
equations due to Fournier, Szulkin et Willem [69]. Consider the dissipative forced
pendulum-type equation

y′′ + cy′ + a sin y = h(t), (3.1.maw)

where a > 0, c ≥ 0, and h : R→ R is continuous and bounded.

Theorem 29. If c ≥ 0 and if h : R→ R continuous is such that

− a ≤ h(t) ≤ a, (3.2.maw)

for all t ∈ R, then equation (3.1.maw) has at least one solution y such that

π

2
≤ y(t) ≤ 3π

2

for all t ∈ R. If condition (3.2.maw) is restricted to

‖h‖∞ < a, (3.3.maw)

then there exists ε > 0 such that equation (3.1.maw) has a unique solution y such that

π

2
+ ε ≤ y(t) ≤ 3π

2
− ε (3.4.maw)

for all t ∈ R.
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Using the equivalent formulation for the forced pendulum problem together
with some results of Ortega on bounded solutions of second order linear equations
[144] (see also [122]), one can prove in a similar way the following existence and
uniqueness theorem [123].

Theorem 30. If c > 0, h = h∗+h∗∗ where h∗∗ is bounded and h∗ has a bounded
primitive over R, and if inequalities

oscRH
∗
c ≤ π,

and

‖h∗∗‖∞ ≤ a cos
(

oscRH
∗
c

2

)
,

hold, where H∗c is the unique bounded solution of y′′+ cy′ = h∗(t), then equation
(3.1.maw) has at least one solution y such that

π

2
+H∗c (t) ≤ y(t) ≤ 3π

2
+H∗c (t),

for all t ∈ R. If the inequalities above are strenghtened to

oscRH
∗
c <

π

2
, (3.5.maw)

‖h∗∗‖∞ ≤
a
√

2
2

[
sin
(

oscRH
∗
c

2

)
+ cos

(
oscRH

∗
c

2

)]
, (3.6.maw)

then there exists ε > 0 such that equation (3.1.maw) has a unique solution y satisfying
the inequality

π

2
+ ε ≤ y(t) ≤ 3π

2
− ε, (3.7.maw)

for all t ∈ R. When c = 0, the above results hold if h∗∗ = 0, h = h∗ has a second
primitive H1 bounded over R and H∗c is replaced by H1 in (3.5.maw).

3.2 Particular almost periodic forcings

3.2.1 A class of almost periodic functions
The following classes of almost periodic functions was introduced by Belley,
Fournier and Saadi Drissi [19,20,21]. Given a countable set Γ ⊂ R, symmetric
with respect to the origin, put

CΓ =
( ∑
λ∈Γ\{0}

1
λ2

)1/2

.

Let PΓ (R) denote the class of all (real-valued) trigonometric polynomials p(t) =∑
λ∈Γ αλe

iλt where all but finitely many of the coefficients αλ vanish, and α−λ
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is the complex conjugate of αλ. On PΓ (R) one can put the uniform norm ‖ · ‖∞
and the norm ‖ · ‖2 associated with the inner product

〈p, q〉 = lim
T→∞

1
T

∫ T

0

p(t)q(t) dt.

Let APΓ (R) and B2
Γ (R) denote the completion of PΓ (R) with respect to the

norms ‖ · ‖∞ and ‖ · ‖2 respectively. The operation 〈·, ·〉 can be extended to
B2
R(R) by defining it to be the inner product on B2

R(R) associated with the
norm ‖ · ‖2.

For any x ∈ APR(R), define x̂ : R→ C by

x̂(λ) = 〈x(t), e−iλt〉 = lim
T→∞

1
T

∫ T

0

x(t)e−iλ dt.

This notation can be extended to x ∈ B2
R(R) by x̂(λ) = limn→∞ p̂n(λ) for any

sequence {pn} in PR(R) such that ‖pn − x‖2 → 0. For any subset X of B2
Γ (R),

let X̃ : {x ∈ X : x̂(0) = 0.} One often writes

x = x̂(0) = lim
T→∞

1
T

∫ T

0

x(t) dt,

and x̃(t) = x(t) − x.
If x ∈ B2

Γ (R) and y ∈ B̃2
Γ (R) are such that

〈x, p′〉 = −〈y, p〉

for all p ∈ PΓ (R), then y is said to be the weak derivative of x. Note that y is
necessarily unique in B̃2

Γ (R), and we write y = x′.

3.2.2 The results
Consider first the dissipative forced pendulum-type equation

y′′ + cy′ + a sin y = h(t), (3.8.maw)

where a > 0, c ≥ 0, and h almost periodic.
The following result is due to Belley-Fournier-Saadi Drissi [20], and proved

using a Lyapunov-Schmidt’s argument modeled on that of [62].

Theorem 31. Let e ∈ B2
Γ (R) be fixed and assume that the following conditions

hold.

1. CΓ < +∞.
2. c > 0 and a < c

CΓ
.

3. β := CΓ (C−2
Γ + c2)−1/2a ≤ δ(ẽ), where

δ(ẽ) =
[(

cos Ẽ
)2

+
(

sin Ẽ
)2
]1/2

,

and Ẽ(t) is the unique weak almost periodic solution of equation y′′ + cy′ =
ẽ(t).
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4. |e| ≤ (δ(ẽ)− β)A.

Then there exists some Ỹ in the orthogonal supplement of B2(Γ ) in B2(R) such
that equation (3.8.maw) with h = e+ Ỹ has at least one weak almost periodic solution
y ∈ APΓ (R) such that y′ ∈ ÃPΓ (R) and y′′ ∈ B̃2

Γ (R).

Consider now the conservative forced pendulum equation

y′′ + a sin y = h(t), (3.9.maw)

where a > 0, and h almost periodic.
The following result was proved by Belley-Fournier-Saadi Drissi [19] and

Belley-Fournier-Hayes [18] using a Lyapunov-Schmidt’s argument modeled on
that of [62].

Theorem 32. If CΓ < ∞, then given ξ ∈ R, and ẽ ∈ B̃2
Γ (R), there exists a

function γ ∈ B2
R(R)	 B̃2

Γ (R) such that the equation

z′′ + a sin(ξ + z) = γ(t) + ẽ(t),

holds in B̃2
Γ (R) for some z ∈ ÃPΓ (R) for which the weak derivative z′ ∈ B̃2

Γ (R)
exists and admits a weak derivative z′′ ∈ B̃2

Γ (R). Furthermore, if a < C−2
Γ , this

solution z is unique.

3.3 General almost periodic forcing

Combining some results on the existence and uniqueness of bounded solutions
over R with Amerio’s criterion on the existence of almost periodic solutions (see
e.g. [60]), Fink [59] has given in 1968 some partial extension of the method of
upper and lower solutions to almost periodic solutions. A special case of his
results is the following proposition.

Lemma 13. Let c ∈ R, g ∈ C1(R,R) and h continuous and almost periodic.
Assume that there exist a < b and λ ∈ R such that g′(x) > 0 for all x ∈ [a, b],
and

g(a) + h(t) ≤ 0 ≤ g(b) + h(t)

for all t ∈ R. Then equation

y′′ + cy′ = g(y) + h(t)

has a unique almost periodic solution y such that a ≤ y(t) ≤ b for all t ∈ R.

This result implies the following existence theorem, also proved indepen-
dently by Fournier-Szulkin-Willem [69] as a special case of a more general result
for elliptic partial differential equations.

Theorem 33. For each c ≥ 0 and each h ∈ AP (R) such that ‖h‖∞ < a,
equation (3.8.maw) has a unique solution y ∈ AP (R) such that π/2 < y(t) < 3π/2.
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Indeed, the condition upon ‖h‖∞ implies the existence of ε > 0 such that
a = π

2 + ε and b = 3π
2 − ε satisfy the conditions of Lemma 13. The result

with c = 0 generalizes an earlier approximate solvability result of Blot [27] for
equation (3.9.maw), based upon variational techniques and convex analysis, which
provides the existence for a dense subset of forcing functions h only.

Similar arguments applied to the equivalent formulation of the forced pen-
dulum equation provide the following existence theorem [123].

Theorem 34. If c > 0, h = h∗ + h∗∗ where h∗∗ is almost periodic and h∗ has
an almost periodic primitive, and if conditions (3.5.maw) and (3.6.maw) are satisfied, then
there exists ε > 0 such that equation (3.8.maw) has a unique almost periodic solution
verifying inequality (3.7.maw). If c = 0, and h ∈ C has an almost periodic second
primitive H1 satisfying (3.5.maw) with H∗c replaced by H1, then the same conclusion
holds.

This result when c = 0 generalizes an earlier approximate solvability result
of Blot [28] for equation (3.9.maw), based upon variational techniques and convex
analysis, which gives existence for a dense subset of forcing functions h only.
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Montréal, 1985

113. J. Mawhin, Forced oscillations of pendulum-like equations, in Xth Intern. Conf.
Nonlinear Oscillations, Varna 1984, Brankov ed., Bulgarian Acad. Sci., Sofia,
1985, 192–194

114. J. Mawhin, Recent results on periodic solutions of the forced pendulum equation,
Rend. Ist. Mat. Univ. Trieste 19 (1987), 119–129
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