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The study of the Cauchy problem for differential and functional differential
equations in a Banach space relative to the strong topology has attracted much
attention in recent years. However a similar study relative to the weak topology
was studied by many authors, for example, Szep [11], Mitchell and Smith [9],
Szufla [12], Kubiaczyk [6,7], Kubiaczyk and Szufla [8], Cichoń [1], Cichoń and
Kubiaczyk [2], and others.

Let E be a Banach space, E∗ the dual space. We set Bb(x0) = {x ∈ E :
‖x−xo‖ ≤ b}, (b > 0). We denote by C(I, E) the space of all continuous function
from I to E, and by (C(I, E), w) the space C(I, E) with the weak topology. Put

B̃ = {x ∈ C(J,E) : x(J) ⊂ Bb(xo), ‖x(t) − x(s)‖ ≤M |t− s|, for t, s ∈ J} ,

note that B̃ is nonempty, closed, bounded, convex and equicontinuous, where
J = [0, h], h = min

{
a, bM

}
and M > 0 is a constant.

We deal with the Cauchy problem:

x′ = Fx, x(0) = x0, t ∈ I = [0, a], (1.mos)

in the case of F being an bounded operator of Volterra type from B̃ into P (I, E)
(the space of all Pettis integrable functions on I).

Let us introduce the following definitions.

This is the final form of the paper.
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Definition 1. F is said to be of Volterra type if for x1, x2 ∈ B̃ and for any
so > 0 the equality x1(t) = x2(t) for t < so implies (Fx1)(t) = (Fx2)(t) for
t ≤ so.

Now fix x∗ ∈ E∗, and consider

(x∗x)′(t) = x∗((Fx)(t)), t ∈ I. (1′.mos)

Definition 2. A function x : I −→ E is said to be a pseudo-solution of the
Cauchy problem (1.mos) if it satisfies the following conditions:

(i) x(·) is absolutely continuous,
(ii) x(0) = xo,

(iii) for each x∗ ∈ E∗ there exists a negligible set A(x∗) (i.e., mes (A(x∗)) = 0),
such that for each t 6∈ A(x∗),

x∗(x′(t)) = x∗((Fx)(t)) .

Here ′ denotes a pseudoderivative (see Pettis [10]).

In other words, by a pseudo-solution of (1.mos) we will mean an absolutely continuous
function x(·), with x(0) = xo, satisfying (1′.mos) a.e. for each x∗ ∈ E∗.

Definition 3. A function r : [0,∞) −→ [0,∞) is said to be a Kamke function
if it satisfies the following conditions:

(i) r(0) = 0,
(ii) u(t) ≡ 0 is the unique solution of the integral equation

z(t) =
∫ t

0

r(z(s))ds , t ∈ I .

Lemma 4 ([9]). Let H ⊂ C(I, E) be a family of strongly equicontinuous func-
tions. Then

βc(H) = sup
t∈I

β(H(t)) = β(H(I)) ,

where βc(H) denote the measure of weak noncompactness in C(I, E) and the
function t→ β(H(t)) is continuous.

Now suppose that:

(∗) For each strongly absolutely continuous function x : J :−→ E, (Fx)(·) is
Pettis integrable, F (·) is weakly-weakly sequentially continuous, then the
existence of a pseudo-solution of (1.mos) is equivalent to the existence of a
solution for

x(t) = xo +
∫ t

0

(Fx)(s)ds , (2.mos)

where the integral is in the sense of Pettis (see [10]).
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Theorem 5. Let F be a bounded continuous operator of Volterra type from B̃
into P (I, E) and under the assumption (∗) and

β
(⋃
{(Fx)[J ] : x ∈ X̃}

)
≤ r(β(X̃)) , (3.mos)

holds for every subset X̃ of B̃, where r is a non-decreasing Kamke function and
β is the measure of weak noncompactness. Then the set S of all pseudo-solutions
of the Cauchy problem (1.mos) on J is non-empty and compact in (C(J,E), w).

Proof. Put

Tu(t) = xo +
∫ t

0

Fu(s)ds , t ∈ I, u ∈ B̃ ,

where the integral is in the sense of Pettis.
By our assumptions the operator T is well defined and maps B̃ into B̃.
Using Lebesgue’s dominated convergence theorem for the Pettis integral

(see [4]), we deduce that T is weakly sequentially continuous.
Suppose that V = Conv({x} ∪ T (V )) for some V ⊂ B̃. We will prove that V

is relatively weakly compact, thus Theorem 1 in [7] is satisfied.
From the definition of B̃ and Lemma 4 it follows that the function v : t →

β(V (t)) is continuous on J .
For fixed t ∈ J , divide the interval [0, t) into m parts:

0 = to < t1 < · · · < tm = t, where ti = it/m , i = 0, 1, 2, . . . ,m .

Put

V ([ti−1, ti]) = {u(s) = u ∈ V, ti−1 ≤ s ≤ ti} .

By Lemma 4 and the continuity of v there is si ∈ [ti−1, ti] such that

β(V ([ti−1, ti])) = sup{β(V (s)) : ti−1 ≤ s ≤ ti} = v(si) . (4.mos)

On the other hand, by the mean value theorem we obtain

Tu(t) = xo +
m−1∑
i=0

∫ ti+1

ti

Fu(s)ds ∈ xo +
m−1∑
i=0

(ti+1 − ti)ConvFu([ti, ti+1])

for each u ∈ V . Therefore

TV (t) ⊂ xo +
m−1∑
i=0

(ti+1 − ti)ConvF ([V ])([ti, ti+1]) .
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By (4.mos) and the corresponding properties of β it follows that

β(T (V )(t)) ≤ β(xo +
m−1∑
i=0

(ti+1 − ti)ConvF ([V ])([ti, ti+1])) ≤

≤
m−1∑
i=0

(ti+1 − ti)β(F (V )([ti, ti+1])) ≤

≤
m−1∑
i=0

(ti+1 − ti)r(β(V [ti, ti+1])) ≤

≤
m−1∑
i+0

(ti+1 − ti)r(β(V (si)) , for some si ∈ [ti, ti+1]

=
m−1∑
i=0

(ti+1 − ti)r(v(si)) .

By letting m→∞, we have

β(T (V (t)) ≤
∫ t

0

r(v(s))ds . (5.mos)

Since V = Conv({x} ∪ T (V )) we have β(V (t)) ≤ β(T (V (t))) and in view of (5.mos),
it follows that v(t) ≤

∫ t
0
r(v(s))ds for t ∈ J .

Hence applying now a theorem on differential inequalities (cf. [5]) we get
v(t) = β(v(t)) = 0.

By Lemma 4, V is relatively weakly compact.
So, by Theorem 1 in [7], T has a fixed point in B̃ which is actually a pseudo-

solution of (1.mos).
As S = T (S), by repeating the above argument with V = S we can show

that S is relatively compact in (C(J,E), w).
Since T is weakly sequentially continuous on S(J)

ω
, S is weakly sequentially

closed. By Eberlein-Smulian Theorem [3], S is weakly compact.

Remark 6. One can easily prove that the integral of a weakly continuous func-
tion is weakly differentiable with respect to the right endpoint of the integration
interval and its derivative equals the integral at the same point (see [6], Lemma
2.3). In this case a pseudo-solution is, actually, a weak solution. Moreover, in
some classes of spaces our pseudo-solutions are also strong C-solutions (in sep-
arable Banach spaces, for instance).
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