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Abstract. We study nonlinear Volterra integral operators of first and
second kind on unbounded domains. We get bounded and Lp solutions on
all [0,∞) as domain with Schauder’s fixed point theorem over unbounded
sets.
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1 Introduction

We wish to find solutions x(t) for the following nonlinear problems of Volterra’s
kind:

g(t) =

t∫
0

F (t, s, x(s)) ds, t ≥ 0, (1.omo)

x(t) = x0(t) +

t∫
0

k(t, s, x(s)) ds, t ≥ 0. (2.omo)

General existence results can be found in [2], [3] essentially using standard tech-
niques of functional analysis. On first kind equation (1.omo), which is very difficult
for its implicit character, very few methods have been implemented on its study.

In this article for both equations we look for bounded and Lp solutions with
1 ≤ p < +∞, when easily checkable conditions are imposed to functions g, F, x0

and k. The main technique is based in compactness method which do not en-
sure uniqueness. The uniqueness problem in nonlinear integral equations is very
interesting but also not too touched; in [2] and [3] there are some interesting re-
sults. For the Lipschitz situation where the Banach contraction theorem is used,
there are important results in [5] and [6].

This is the final form of the paper.
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In equation (2.omo) (of second kind) the results are not hard to extend to the
Fredholm integral equation of second kind, namely

x(t) = x0(t) +

∞∫
0

k(t, s, x(s)) ds (2’.omo)

For our purpose we need a compactness criterion over not bounded subsets of
the whole real axis which are given in the first and second lemmas, and are a
well known generalization of the Arzela-Ascoli theorem and Fréchet-Kolmogorov
theorem [1].

2 Bounded Solutions

Initially, consider the equation (1.omo). Assuming that g is differentiable and F
has partial derivative with respect to the first variable (that will be denoted
Ft = ∂F

∂t ), then differentiating (1.omo) we obtain:

g′(t) = F (t, t, x(t)) +

t∫
0

Ft(t, s, x(s)) ds. (3.omo)

Let us denote C the Banach space of continuous and bounded functions over
[0,∞), normed by the supremum over all [0,∞). Now let us define the operator
T: C → C, such that given any x in C

Tx(t) = g̃(t) + F̂x(t) + K̂x(t), t ≥ 0, (4.omo)

where

g̃(t) = g′(t)− F (t, t, 0)−
t∫

0

Ft(t, s, 0) ds,

F̂ x(t) = x(t) + F (t, t, 0)− F (t, t, x(t)),

K̂x(t) = −
t∫

0

(Ft(t, s, x(s)) − Ft(t, s, 0)) ds.

With this definition any solution of equation (1.omo) satisfies the problem

Tx = x.

For this approach we will need the following definition and lemma:

Definition 1. Let f : [0,∞) × [0,∞) × Cn → Cn. We say that f(t, s, u) is
t-locally equicontinuous with respect to s and u if

∀ε > 0 ∃δ > 0 s.t. |t1 − t2| < δ ⇒ |f(t1, s, u)− f(t2, s, u)| < ε,

uniformly on s over compact sets and u over bounded sets.
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Lemma 2. Given A ⊂ C bounded, locally equicontinuous and equiconvergent,
then A is relatively compact on C.

Theorem 3. Let F = F (t, s, u) : [0,∞) × [0,∞) × Cn → Cn be continuous
on each variable, derivable with respect to the first one ; Ft continuous on each
variable and t-locally equicontinuous with respect to s and u. Assume

I. a) The functional F̂ is equicontinuous over any M ⊂ C bounded.
b) sup

t∈[0,∞)

|F (t, t, 0)| < +∞.

c) There exists a : [0,∞) → R+ ∪ {0} bounded, continuous, such that
a(t)→ 0 as t→∞ and verifying

|x+ F (t, t, 0)− F (t, t, x)| ≤ a(t)|x| ∀x ∈ Cn, ∀t ∈ [0,∞).

II. There exists a function L : [0,∞)× [0,∞)→ R+ ∪ {0} such that

a)

t∫
0

L(t, s)ds is continuous, and it goes to zero as t →∞,

b) |Ft(t, s, u)− Ft(t, s, 0)| ≤ L(t, s)|u| ∀t, s ∈ [0,∞), ∀u ∈ Cn.

III. a) sup
t∈[0,∞)

t∫
0

|Ft(t, s, 0)| ds <∞,

b) sup
t∈[0,∞)

[a(t) +

t∫
0

L(t, s)ds] < 1.

IV. g′ ∈ C and g(0) = 0.

Then, there exists a solution x̄ ∈ C of first kind equation (1.omo).

Proof. To prove the theorem we use a fixed point approach, showing first that
the operator T , given by (4.omo) is well defined in C; let us take any x ∈ C, then by
I.c) and II.b):

|Tx(t)| ≤ |g̃(t)|+ |F̂ x(t)| + |K̂x(t)|

≤ |g̃(t)|+ [a(t) +

t∫
0

L(t, s) ds]‖x‖∞.

Then Tx(·) is bounded. Moreover, Tx(·) is continuous for all x ∈ C, indeed: g̃(·)

is continuous (g′, F , and

t∫
0

|Ft(t, s, 0)|ds are continuous) ; F̂x(·) is continuous
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(x, F (·, ·, 0), F (·, ·, ·) are continuous) ; K̂x(·) is continuous, because

|K̂x(t)− K̂x(t′)| ≤
t∫

0

|Ft(t, s, x(s)) − Ft(t′, s, x(s))| ds ≤

t∫
0

|Ft(t, s, 0)− Ft(t′, s, 0)| ds+

t∫
t′

L(t′, s)ds‖x‖∞

and Ft is t-locally equicontinuous and

t∫
t′

L(t′, s)ds−→
t→t′

0. Then, Tx(·) is well

defined and continuous.
Secondly, using Lemma 2 we prove that T is a compact operator. Let M ⊆ C
bounded, i.e., ∀x ∈M , ‖x‖∞ ≤ R <∞, we will show that:

i) T (M) is bounded in C ;
ii) T (M) is locally equicontinuous in C ;

iii) T (M) is equiconvergent.

i) T (M) is bounded. As the functions g̃(.), a(.) and L(.,.) are bounded, given
x ∈M , we use I.b), I.c), II.b) and III.b), and we get that:

|Tx(t)| ≤ |g̃(t)|+ |F̂ x(t)|+ |K̂x(t)| ≤

|g̃(t)|+ [a(t) +

t∫
0

L(t, s) ds]R ≤ |g̃(t)|+R.

ii) T (M) is equicontinuous. First g̃ is continuous over [0,∞) because g’, F (., ., 0)
and Ft(., s, 0) are continuous on [0,∞). Moreover, F̂ x is equicontinuous on
bounded subsets of C. With these considerations, given [a, b] compact in
[0,∞) and t1 ≤ t2 on [a, b], then the equicontinuity of T (M) follows easily
from

|Tx(t1)− Tx(t2)| ≤ |g̃(t1)− g̃(t2)|+ |F̂ x(t1)− F̂ x(t2)|+
t2∫
t1

|Ft(t2, s, 0)| ds

+

t1∫
0

|Ft(t1, s, x(s))− Ft(t2, s, x(s))| ds

+

t2∫
t1

|Ft(t2, s, x(s))− Ft(t2, s, 0)| ds

≤ |g̃(t1)− g̃(t2)|+ |F̂ x(t1)− F̂ x(t2)|+
t2∫
t1

|Ft(t2, s, 0)| ds
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+

t1∫
0

|Ft(t1, s, x(s))− Ft(t2, s, x(s))| ds +R

t2∫
t1

L(t2, s) ds.

iii) T (M) is equiconvergent, because

|Tx(t)− g̃(t)| ≤ |F̂ x(t)|+ |K̂x(t)| ≤ R{a(t) +

t∫
0

L(t, s) ds} −→
t→∞

0.

So, by Lemma 2, T (M) is relatively compact in C. From Schauder’s fixed point
theorem ∃x̄ ∈ C such that x̄ = T x̄. Integrating this last fixed point equation and
as g(0) = 0, implies that x̄ is a solution of equation (1.omo). ut

Now, consider the equation of second kind:

x(t) = x0(t) +

t∫
0

k(t, s, x(s)) ds, t ≥ 0, (2.omod)

where k : [0,∞)× [0,∞)×Cn → Cn is continuous in s and x. We can formulate
now the following

Theorem 4. Assume that the function k : [0,∞)× [0,∞)×Cn → Cn is t-locally
equicontinuous and satisfies

I. sup
t∈[0,∞)

t∫
0

|k(t, s, 0)|ds <∞.

II. There exists L : [0,∞)× [0,∞)→ R+ ∪ {0} such that:
a) ∀(t, s, u) ∈ [0,∞)× [0,∞)× Cn with t ≥ s,

|k(t, s, u)− k(t, s, 0)| ≤ L(t, s)|u|.

b)

t∫
0

L(t, s)ds is continuous and converges to 0 as t→∞.

c) sup
t∈[0,∞)

t∫
0

L(t, s)ds < 1.

Then for all x0 ∈ C, equation (2.omod) has a solution x̄ ∈ C.

Proof. Consider the operator T : C → C defined as

Tx(t) = x0(t) +

t∫
0

k(t, s, 0)ds+

t∫
0

(k(t, s, x(s))− k(t, s, 0)) ds.

Proceeding as in the previous Theorem, from Schauder’s fixed point theorem
we obtain that there exists x̄ ∈ C such that x̄ = T x̄, and then a solution of
equation (2.omod). ut
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3 Lp Solutions

Now, we will find Lp[0,∞) solutions to equation (2.omod) with 1 ≤ p < ∞. For the
whole section, q will be the Holder conjugate of p, i.e., 1

p + 1
q = 1. We will need

the next definition and lemma for our result over Lp spaces.

Definition 5. The function k(t, s, u) is t-locally Lp equicontinuous if given
a, b, c, d ∈ R+, such that a ≤ b and c ≤ d, then

b∫
a

d∫
c

|k(t+ h, s, x(s))− k(t, s, x(s))|q dsdt−→
h→0

0,

with x on bounded subsets of Lp[0,∞).

Lemma 6. A ⊂ Lp[0,∞) bounded will be relatively compact if:

a) The restriction A|[a,b] where [a, b] ⊂ [0,∞) is a compact interval, satisfy the
Lp-equicontinuity of the translations (Fréchet-Kolmogorov criterion).

b) Equiconvergence: there exists u in Lp[0,∞) such that

∞∫
t

|x(s)−u(s)|p ds→ 0

as t →∞ uniformly for x ∈ A.

Now, our next result is

Theorem 7. Assuming k is t-locally Lp equicontinuous, and

I. There exist a function L : [0,∞)× [0,∞)→ R+ ∪ {0} such that:

a)

∞∫
0

( ∞∫
0

Lq(t, s) ds
) p
q

dt <∞,

b) sup
t∈[0,∞)

∞∫
0

( t∫
0

Lq(t, s)ds
) p
q

dt < 1,

c) ∀(t, s, u) ∈ [0,∞)× [0,∞)× Cn with t ≥ s,

|k(t, s, u)− k(t, s, 0)| ≤ L(t, s)|u|.

II.

t∫
0

|k(t, s, 0)| ds ∈ Lp[0,∞).

Then, given x0 ∈ Lp[0,∞), equation (2.omod) has a solution on Lp[0,∞).
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Proof. Let T : Lp[0,∞)→ Lp[0,∞) defined by

Tx(t) = x̃0(t) +

t∫
0

(k(t, s, x(s)) − k(t, s, 0)) ds,

where

x̃0(t) = x0(t) +

t∫
0

k(t, s, 0) ds.

Clearly x̃0 is in Lp, and there exists a constant c ≥ 0, such that

|Tx(t)|p ≤ c
{
|x̃0(t)|p +

( t∫
0

|k(t, s, x(s))− k(t, s, 0)|ds
)p}

and using hypothesis I.b) and Holder’s inequality we get that

|Tx(t)|p ≤ c
{
|x̃0(t)|p +

( t∫
0

Lq(t, s) ds
) p
q ‖x‖pLp

}
.

Then by hypothesis I.a) and II.), we have that Tx ∈ Lp[0,∞). Now we want to
see that T is a compact operator from Lp[0,∞) to Lp[0,∞). To this end, we use
Lemma 6. Let us take M ⊆ Lp[0,∞) bounded, i.e., ∀x ∈ M , ‖x‖Lp ≤ R < ∞,
then we must prove that T (M) is relatively compact.

First, by I.a), I.b), II. and the last inequality T (M) is bounded. Moreover,
we have

a) Equicontinuity in the translations. Given [a, b] ⊂ [0,∞) compact, there exists
a constant c ≥ 0 such that

|Tx(t+ h)− Tx(t)|p ≤ c
{
|x̃0(t+ h)− x̃0(t)|p +

[ t+h∫
t

|k(t+ h, s, x(s))− k(t+ h, s, 0)| ds
]p

+
[ t∫

0

|k(t+ h, s, x(s))− k(t, s, x(s))| ds
]p}

≤ c
{
|x̃0(t+ h)− x̃0(t)|p +

( t+h∫
t

Lq(t+ h, s) ds
) p
q ‖x‖pLp

+
[ t∫

0

|k(t+ h, s, x(s))− k(t, s, x(s))| ds
]p}

.
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Then, from Holder’s inequality, we have

b∫
a

|Tx(t+ h)− Tx(t)|pdt ≤ c
{ b∫
a

|x̃0(t+ h)− x̃0(t)|p dt+

Rp
b∫
a

( t+h∫
t

Lq(t+ h, s)ds
) p
q

dt

+ bp
b∫
a

b∫
0

|k(t+ h, s, x(s))− k(t, s, x(s))|q dsdt
}
.

and then, due to x̃0 ∈ Lp, the t-equicontinuity of k, and the integrability of
L(., .), we obtain the equicontinuity in the translations.

b) Finally, the Lp-equiconvergence follows from I.a) and I.b) because:

|Tx(t)− x̃0(t)|p ≤
( t∫

0

Lq(t, s)ds
) p
q
( t∫

0

|x(t)|p dt
)

≤ Rp
( t∫

0

Lq(t, s) ds
) p
q

and
∞∫
t̃

|Tx(t)− x̃0(t)|p dt ≤ Rp
∞∫
t̃

( t∫
0

Lq(t, s) ds
) p
q

dt.

Thus, T is a compact operator from Lp[0,∞) to Lp[0,∞) and Schauder’s
fixed point theorem implies there exist x̄ ∈ Lp[0,∞) satisfying T x̄ = x̄, and
then x̄ is an Lp solution of equation (2.omod). ut

As an example of the first theorem consider a function F (., ., .) as follows:
F (t, s, u) =

(
1 + (t− s)

)
/4e−tu+ f(t, s), such that

sup
t∈[0,∞)

|f(t, t)| <∞, sup
t∈[0,∞)

t∫
0

∣∣∣∂f
∂t

(t, s)
∣∣∣ds <∞.

The function a = 0 satisfies I.c). Moreover, conditions II.a) and II.b) are fulfilled
since

|Ft(t, s, x)− Ft(t, s, 0)| ≤ |1 + (t− s)|/4e−t|x|,
and

t∫
0

|1 + (t− s)|/4e−t ds→ 0
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as t → ∞. Then for any function g that satisfies g(0) and g′ in C, theorem 3
implies that the equation

g(t) =

t∫
0

(
(1 + (t− s))/4e−tx(s) + f(t, s)

)
ds

has a continuous and bounded solution.
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