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Abstract. In the contribution we state local existence of a weak solution
u to a degenerate quasilinear parabolic Dirichlet problem. Degeneration
occurs in the coefficient g(x, t, u) ≥ 0 in front of the time derivative,
which is not assumed to be bounded below and above, resp., by positive
constants. The nonlinear coefficients and the right-hand side are defined
with respect to u only in a neighbourhood of the initial function.

The quasilinear parabolic problem is approximated by linear elliptic
problems by means of semidiscretization in time (Rothe’s method). We
obtain L∞-estimates for the approximations and uniform convergence to
a Hölder continuous weak solution. An essential tool for this are esti-
mates of the first order derivatives uniformly for all subdivisions in the
space L∞([0, T ], Lν(G)) with certain ν > 2.
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1 Introduction

In this contribution we formulate a local existence result for the parabolic initial
boundary value problem

g(x, t, u)ut +A(t, u)u = f(x, t, u) in QT , (1.plu)
u(x, t) = 0 on Γ, (2.plu)
u(x, 0) = U0(x) x ∈ G, (3.plu)

where

A(t, v)u = −
N∑

i,k=1

∂

∂xk

(
aik(x, t, v)

∂u

∂xi

)
+

N∑
i=1

ai(x, t, v)
∂u

∂xi
, (4.plu)

The paper is an overview article summarizing the results of [8] and [9].
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which we obtain by means of semidiscretization in time (Rothe’s method). Here
we denote by G ⊂ RN , N ≥ 2, a simply connected, bounded domain with bound-
ary ∂G ∈ C1, I = [0, T ], QT = G× I, Γ = ∂G× I.

In the following we give an overview on the results of the author’s papers [8]
and [9]. In [8] the non-degenerated quasilinear problem (1.plu)–(3.plu) is investigated
where g ≡ 1. The aim of the paper [9] is to deal with the case where the coefficient
g(·, t, u) may degenerate (i.e. g = 0 or g = ∞) on some sets St,u ⊂ G with
meas(St,u) = 0 (there A = A(t) is linear).

In both papers it is supposed that the nonlinear coefficients and the right-
hand side f are defined only in a neighbourhood

MR(U0) = {(x, t, u) ∈ RN+2 : x ∈ G, t ∈ I, |u − U0(x)| ≤ R}

of the initial function for some given R > 0. In order to have convergence of the
Rothe approximations to a solution we have to ensure that the approximations
belong to the ball

BR(U0) = {u ∈ C(Ḡ) : ‖u− U0‖C(Ḡ) ≤ R}.

This holds for small time t ∈ Î = [0, T̂ ] due to L∞-estimates which are derived
by means of the technique of Moser [7] combined with recursive estimates due to
Alikakos [1]. Because of the nonlinear coefficient g we only can apply this tech-
nique to the semidiscrete problem if we have uniform boundedness of the discrete
time derivative δuj in L∞(I, Lν(G)) with sufficiently large ν > 2. In standard
literature on Rothe’s method (cf. Kačur [2], Chapter 2) such an estimate of δuj
is derived under the assumption of monotonicity of the nonlinear operator A.
Moreover, one obtains this estimate for ν = 2 only. Without assumption of full
monotonicity and with nonlinear coefficients in general one only obtains an es-
timate in L2(I, L2(G)) (cf. e.g. Kačur [4], Lemma 2.7, where a similar problem
with nonlinear coefficient of ut is treated). We use Lp-theory with p > 2, power-
type test functions, interpolation arguments, and nonlinear Gronwall lemma to
derive the desired a priori estimate. Moreover, degeneration forces to work in
weighted Lebesgue spaces.

These strong a priori estimates also yield strong convergence results for the
approximates despite of weak regularity of the data (Lebesgue data). We obtain
uniform convergence of the Rothe functions in Hölder space with respect to space
and time variables.

2 Preliminaries and result

We use standard notations of the function and evolution spaces, resp. (cf. [5]).
By ‖ · ‖p, ‖ · ‖1,p, and ‖ · ‖0,λ we denote the norms in Lp(G), W 1,p

0 (G), and
Cλ(Ḡ), respectively. Lp,g(G) denotes the weighted Lebesgue space with norm
‖u‖p,g = (

∫
G g|u|p dx)1/p for nonnegative g ∈ L1(G). 〈·, ·〉 is the duality between

Lp(G) and Lp′(G) (1/p+ 1/p′ = 1). For t ∈ I and v ∈ C(Ḡ) the operator A(t, v)
from (4.plu) generates a bilinear form on W 1,p

0 (G)×W 1,p′

0 (G) denoted by A(t,v)(·, ·).
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First we formulate the complete assumptions which we fix throughout the
paper.

Assumptions. For given R > 0 let g, aik ai, and f be Carathéodory functions
defined on MR(U0). Let further r1, r2, r3, µ1, µ2, µ3, µ4, ν1, ν, σ, κ be real
numbers fulfilling the relations 2 ≤ κ < ∞, r1 > N , r2 > N(κ−1)

2κ−N , r3 > N
2 ,

N
2 < µ1 ≤ ν1 = σ

σ+1κ, µi ≤ ν < Nκ
N−2 (i = 2, 3, 4), Nκ

κ−2 < µ2, Nκ
2κ−2 < µ3,

Nκ
2κ+N−2 < µ4, σ > 1.

Then we suppose for arbitrary t, t′ ∈ I and u, u′ ∈ BR(U0)

(i) U0 ∈
o

W1
r1(G) , A(0, U0)U0 ∈ L1(G);

(ii) g(·, t, u) : I × BR(U0) → Lr2(G) is bounded in Lr2(G) and fulfils the Lip-
schitz condition
‖g(·, t, u)− g(·, t′, u′)‖µ1 ≤ l1 (|t− t′|+ ‖u− u′‖ν1).

Furthermore, g(x, t, u) ≥ 0 for all (x, t, u) ∈MR(U0) and
1/g(·, t, u) : I × BR(U0)→ Lσ(G) is bounded in Lσ(G).

(iii) aik(·, t, u) : I × BR(U0) → C(Ḡ) and ai(·, t, u) : I × BR(U0) → L∞(G) are
bounded mappings which fulfil the Lipschitz conditions
‖aik(·, t, u)− aik(·, t′, u′)‖µ2 ≤ l2 (|t− t′|+ ‖u− u′‖ν)
‖ai(·, t, u)− ai(·, t′, u′)‖µ3 ≤ l3 (|t− t′|+ ‖u− u′‖ν)

as well as ellipticity condition (a > 0)∑
i,k aik(x, t, v) ξiξk ≥ a ξ2 for all (x, t, v) ∈MR(U0) and ξ ∈ RN .

(iv) f(·, t, u) : I × BR(U0) → Lr3(G) is bounded in Lr3(G) and fulfils the Lip-
schitz condition
‖f(·, t, u)− f(·, t′, u′)‖µ4 ≤ l4 (|t− t′|+ ‖u− u′‖ν).

(v) It holds the compatibility condition(
f(·, 0, U0)−A(0, U0)U0

)
/g(·, 0, U0) ∈ Lκ,g(·,0,U0)(G) .

We remark that the coefficient g may not only decay to zero on some sets
(this decay is governed by the assumption 1/g ∈ L∞(I, Lσ(G)) but it also may
have singularities because it belongs to the Lebegue space L∞(I, Lr2(G)). This
is equivalent to some degeneration of ellipticity of the operator A.

In order to solve the problem by semidiscretization in time (Rothe’s method)
we subdivide the time interval I by points tj = jh (h > 0, j = 0, . . . , n) and
replace (1.plu)–(3.plu) by the time discretized problem (in weak formulation)

〈gj δuj, v〉+Aj(uj, v) = 〈fj , v〉 ∀v ∈
o

W1
p′(G) , (1j .plu)

uj = 0 on ∂G , (2j .plu)

u0 = U0 , (30.plu)
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j = 1, . . . , n, where δuj := (uj −uj−1)/h, gj := g(x, tj , uj−1), fj := f(x, tj , uj−1),
and Aj(·, ·) := A(tj ,uj−1)(·, ·). This is a set of linear elliptic boundary value prob-
lems to determine the approximate uj if uj−1 is already known. However, we do
not know if uj ∈ BR(U0), i.e. whether the data of (1j+1), (2j+1) are well-defined
because of the local assumptions. Therefore we define global extensions

ψR(x, t, u) =

{
ψ(x, t, u) for (x, t, u) ∈ MR(U0)
ψ(x, t, U0(x) +R sign (u − U0(x)) otherwise

and replace g, aik, ai, and f by gR, aRik, aRi , and fR, respectively. By Lemma 3
we state that uj ∈ BR(U0) for tj ≤ T̂ , hence we omit the superscript R.

For sufficiently small fixed h now we can solve these elliptic boundary value
problems applying the Lax-Milgram theorem (after an interpolation procedure
to deal with the weighted norm with weight gj) and a regularity theorem (cf. [6,
Theorem 5.5.4’]).

Lemma 1. Let assumptions (i)–(iv) be fulfilled. Then there are h0 > 0, r > N
such that for 0 < h ≤ h0 the problem (1j .plu), (2j .plu), (30.plu) has a unique solution

uj ∈
o

W1
r(G), j = 1, . . . , n.

Especially, the embedding theorem implies continuity of uj .
By interpolation with respect to time we obtain the Rothe functions

ũn(x, t) =
tj − t
h

uj−1(x) +
t− tj−1

h
uj(x) , t ∈ [tj−1, tj ]

and

ūn(x, t) =

{
uj(x) if t ∈ (tj−1, tj ],
U0(x) if t ≤ 0.

Our result is the following

Theorem 2. Suppose assumptions (i)–(v). Then the following assertions hold:

a) There is an interval Î = [0, T̂ ] such that problem (1.plu)–(3.plu) has a unique weak so-

lution u with u(·, t) ∈ BR(U0) for any t ∈ Î fulfilling for all v ∈ L1(Î ,
o

W1
r′(G)∩

L%′(G)) (%′ = r′2κ
′) the relation∫

Î

〈g(·, t, u)ut , v〉 dt+
∫
Î

A(t,u)(u , v) dt =
∫
Î

〈f(·, t, u) , v〉 dt

and initial condition (3.plu).
b) The solution u belongs to the spaces

u ∈ Cα(Q̄T̂ ) ∩ L∞(Î ,
o

W1
r(G)) ∩W 1

∞(Î , Lν1(G))

for some r > N and α > 0. Moreover, ut ∈ Lκ(Î , Ls(G)) for s < Nκ
N−2 and

g(·, ·, u)ut ∈ L∞(Î , L%(G)) with % = r2κ
r2+κ−1 .
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c) The solution u is pointwise uniformly approximated by the Rothe functions
ũn with further convergence properties

ũn −→ u in Cα(Q̄T̂ )

ũn, ūn −→ u in L∞(Î , Cλ(Ḡ)) (λ < 1−N/r)

ũn, ūn−⇀∗ u in L∞(Î ,
o

W1
r(G))

ũnt −⇀∗ ut in L∞(Î , Lν1(G))

as n tends to infinity.
d) It holds an error estimate

sup
t∈Î
‖ũn(·, t)− u(·, t)‖ν1 ≤ c h 1/2

n .

The r > N may be explicitly given in terms of the Lebesgue exponents from
the assumptions. Furthermore, because of uniform boundedness of the approxi-
mations in L∞(Î ,

o

W1
r(G)) an interpolation inequality yields an error estimate in

Hölder space, too,

sup
t∈Î
‖ũn(·, t)− u(·, t)‖0,λ ≤ c h (1−λ−N/r)/2

n , 0 < λ < 1−N/r .

3 A priori estimates for the approximations

In this final section we sketch some steps of the proof of Theorem 2. For the
details compare [8] and [9].

In order to prove uj ∈ BR(U0) we have to estimate zj := uj − U0 in L∞(G).
Therefore, we rewrite (1j .plu) into

〈gj δzj , v〉+Aj(zj , v) = 〈fj , v〉 −Aj(U0, v) ∀v ∈
o

W1
r′(G). (5.plu)

We use the Moser iteration technique [7]. The idea of this technique is to
estimate ‖z‖p for arbitrary p ≥ p0 and then pass with p to infinity. Since ‖z‖p→
‖z‖∞ (cf. [2, Theorem 2.11.4]) one obtains an estimate in L∞(G). In our case,
because of degeneration, we have to work with the weighted norm ‖z‖p,g. But
we have the same property ‖z‖p,g → ‖z‖∞ as p → ∞, i.e. the influence of the
degeneration vanishes in the limit. In order to obtain an estimate of the weighted
Lp,g-norm for arbitrary p we test (5.plu) with v = |zj |p−2zj and obtain after some
manipulations

‖zj‖ pp,gj+1
− ‖zj−1‖ pp,gj + ch ‖wj‖ 2

1,2

≤ ch ‖zj‖ pp + cph ‖fj‖r3‖zj‖
p−1
r′3(p−1) + cph ‖U0‖1,r0‖wj‖1,2‖zj‖ (p−2)/2

s

+ cph (1 + ‖δuj‖ν1) ‖zj‖ pµ′1p , (6.plu)
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where wj := |zj |(p−2)/2zj . The last item on the right-hand side appears since
the item ‖zj‖ pp,gj arising from (5.plu) on the left-hand side must be replaced by
‖zj‖ pp,gj+1

. Hence, for our L∞-estimate we need uniform boundedness of ‖δuj‖ν1

(cf. Lemma 3). Then we have to estimate the unweighted norms of zj on the
right-hand side by weighted norms occuring on the left-hand side. For this we
use the Nirenberg-Gagliardo interpolation inequality

‖w‖s ≤ C ‖w‖ θ1,2 ‖w‖ 1−θ
1

for some θ ∈ (0, 1), s < 2N/(N − 2). This enables us to insert the weight by
means of Cauchy-Schwarz’ inequality

‖wj‖1 = ‖zj‖ p/2p/2 ≤ ‖1/gj+1‖ 1/2
1 ‖zj‖ p/2p,gj+1

. (7.plu)

Summing up the inequalities (6.plu) for j = 1, . . . , i we would then come to an
estimate of the weighted norm ‖zi‖p,gi+1 . However, in our case it is not possible
to hold the bounds depending on p uniformly bounded as p → ∞. Therefore,
for the limit process we use a recursive approach due to Alikakos [1]. Since
1/g ∈ Lσ(G) with σ > 1 is supposed we may even obtain the weighted norm
‖zj‖λp,gj+1 with λ < 1 on the right-hand side of (7.plu). Then we derive an recursive
estimate of the form

max
tj≤t
‖zj‖ pp,gj+1

≤ cpc t
(

max
tj≤t
‖zj‖ pλp,gj+1

+ max
tj≤t
‖zj‖ β(p)p

λp,gj+1

)
which is investigated for the special sequence pk = λ−kp0. Passing to the limit
k →∞ this yields an estimate of ‖zj‖∞ in terms of ‖zj‖p0,gj+1 for fixed p0. After
estimation of this norm for fixed p0 we obtain

Lemma 3. Let be ‖δuj‖ν1 ≤ C for j = 1, . . . , n independent of the subdivision.
Then there are constants c, γ > 0 such that

max
0≤tj≤t

‖uj − u0‖∞ ≤ c tγ .

Obviously, since uj ∈ C(Ḡ) due to Lemma 1 we have uj ∈ BR(U0) for all
tj ∈ Î := [0, T̂ ] if we fix T̂ for given R > 0 by cT̂ γ = R.

Remark 4. In [3, Theorem 4.17] J. Kačur proves a L∞-estimate for quasilinear
equations without the assumption ‖δuj‖ ≤ C of our Lemma 3. The reason is
that the degeneration in [3] corresponds to the case g(x, t, s) = b′(s), i.e. the item
concerning the time derivative is written in the form b(u)t. This is not possible in
our case. Moreover, we have weaker regularity of the data with respect to x. On
the other hand, the technique in [3] allows stronger degeneration with respect
to u.

The next task is to check the assumption of Lemma 3. One obtains an es-
timate of δuj by forming the difference (1j.plu)–(1j−1.plu) and testing the resulting
relation with an appropriate test function (cf. [2, Chapters 2.1, 2.2]). However,
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we run into problems since we have no full monotonicity of the nonlinear op-
erator Au := A(t, u)u unlike in [2, Example 2.2.17]. Testing (1j.plu)–(1j−1.plu) with
v = |δuj |κ−2δuj in order to estimate the weighted norm ‖δuj‖κ,gj we are forced
to deal with an item

ch (1 + ‖δuj−1‖ν) ‖uj‖1,r‖ωj‖1,2‖δuj‖ (κ−2)/2
s (8.plu)

(ωj = |δuj |(κ−2)/2δuj) arising from
(
Aj − Aj−1

)
(uj , v) on the right-hand side.

Hence, we have to estimate the space-like derivative ‖uj‖1,r in order to obtain
an estimate of the discrete time derivative. This is possible by means of a priori
estimates for elliptic equations like (1j .plu) is. However, we are not able to split
gj δuj into gj

uj
h and gj

uj−1
h ,resp., and then to use estimates of the solution uj

of the elliptic equation with right-hand side fj + gj
uj−1
h since we need a priori

bounds uniformly with respect to h > 0. Hence we write (1j.plu) in the form

Ajuj = fj − gj δuj =: Fj

where we obtain from Lp-theory for elliptic equations (cf. [6, Theorem 5.5.5’] the
estimate

‖uj‖1,r ≤ c (‖Fj‖ρ + ‖uj‖1) ≤ c
(

1 +
j∑
i=1

‖δui‖ν1

)
. (9.plu)

The constant c now is independent of the subdivision since the coefficients of
the elliptic operator Aj are uniformly bounded. Inserting this estimate into (8.plu)
we notice that the total power of ‖δuj‖ on the right-hand side of the result-
ing estimate is κ + 1 while we have the power κ on the left-hand side, only.
This seems to contradict the intention to obtain boundedness of ‖δuj‖ by these
estimations. However, after some very technical manipulations, we are able to
apply a nonlinear discrete version of the Gronwall lemma (cf. Willett, Wong [10,
Theorem 4]) to obtain at least a local bound for small tj . Since the unweighted
norm ‖δuj‖ν1 may be estimated by the weighted norm ‖δuj‖κ,gj we obtain

Lemma 5. Suppose assumptions (i)–(v). Then for h ≤ h0 there is a time in-
terval [0, T ∗] such that the estimate

‖δuj‖ν1 ≤ C1 ∀tj ∈ [0, T ∗]

holds independent of the subdivision.

By means of (9.plu) this lemma also yields boundedness of the space-like derivatives.

Lemma 6. For all h ≤ h0 the estimate

‖uj‖1,r ≤ C2 ∀tj ∈ [0, T ∗]

holds independent of the subdivision.

The time T ∗ is a bound for the length of our local existence interval Î. If T̂ > T ∗

for the T̂ choosen after Lemma 3 we have to fix Î := [0, T ∗].
The a priori estimates from Lemma 3, 5, and 6 now provide the tools to prove

the convergence results of Theorem 2.
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