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Abstract. In this paper, we try to explain two mathematical models
describing a dynamical behaviour of suspension bridges such as Tacoma
Narrows Bridge. Our attention is concentrated on their analysis concern-
ing especially the existence of a unique solution. Finally, we include an
interpretation of particular parameters and a discussion of known and
obtained results. This paper is based on our diploma thesis which deals
with a qualitative study of dynamical structures of this type.
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1 Introduction and historical review

One of the most problematic and not fully explained areas of mathematical mod-
elling involves nonlinear dynamical systems, especially systems with so called
jumping nonlinearity. It can be seen that its presence brings into the whole
problem unexpected difficulties and very often it is a cause of multiple solutions.

An example of such a dynamical system can be a suspension bridge. The
nonlinear aspect is caused by the presence of supporting cable stays which re-
strain the movement of the center span of the bridge in a downward direction,
but have no influence on its behaviour in the opposite direction.

Our paper sets a goal to develop a simple model describing the behaviour
of the suspension bridge, to make its analysis which means to determine under
what conditions the existence of a unique stable solution is guaranteed, and to
find out safe parameters of the bridge constructions.

We do not try to model the bridge in its full complexity, but on the other
hand, we would like to avoid some over-simplifications. That is why we consider
only one dimensional model and neglect the torsional motion, but we do not
simplify the problem even more — e.g. by eliminating the space variable at all.

This is the final form of the paper.

http://home.zcu.cz/~gabriela/
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As a result of this effort, we describe the behaviour of the suspension bridge
by one beam equation, or by a system of two coupled equations of “string-beam”
type, respectively.

As a motivation of our interest, we can mention the event which changed
radically the common view of these nonlinear dynamical systems.

On July 1, 1940, the Tacoma Narrows bridge in the state of Washington was
completed and opened to traffic. From the day of its opening the bridge began
to undergo vertical oscillations, and it was soon nicknamed “Galloping Gertie”.
As a result of its novel behaviour, traffic on the bridge increased tremendously.
People came from hundreds of miles to enjoy riding over a galloping, rolling
bridge. For four months, everything was all right, and the authorities in charge
became more and more confident of the safety of the bridge. They were even
planning to cancel the insurance policy on the bridge.

At about 7:00 a.m. of November 7, 1940, the bridge began to undulate per-
sistently for three hours. Segments of the span were heaving periodically up and
down as much as three feet. At about 10:00 a.m., the bridge started suddenly
oscillating more wildly. At one moment, one edge of the roadway was twenty-
eight feet higher than the other; the next moment it was twenty-eight feet lower
than the other edge. At 10:30 a.m. the bridge began cracking, and finally, at
11:00 a.m. the entire structure fell down into the river.

The federal report on the failure of the Tacoma Narrows suspension bridge
points out that the essentially new feature of this bridge was its extreme flexibil-
ity. Already, the Golden Gate bridge exhibited travelling waves, or in the Bronx
Whitestone Bridge, large amplitude oscillations were observed of such a mag-
nitude to make a traveller seasick. But due to a combination of damping and
readjusted stays, they were not considered threatening to the structure.

As soon as the more flexible Tacoma Narrows bridge was built, it began to
exhibit complex oscillatory motion with an order of magnitude higher than that
of earlier mentioned bridges. This resulted in a pronounced tendency to oscillate
vertically, under widely differing wind conditions. The bridge might be quiet in
winds of forty miles per hour, and might oscillate with large amplitude in winds
as low as three or four miles per hour. These vertical oscillations were standing
waves of different nodal types. They were not considered to be dangerous, and it
was expected that the bridge would be stabilized by a combination of the same
devices as in case of the Bronx Whitestone bridge.

The second type of oscillation was observed just before the collapse of the
bridge. It was a pronounced torsional mode with some of the cables alternately
loosening and tightening. Sometimes the oscillations even preferred one end of
the bridge to the other. These phenomenons caused that a large portion of the
center span fell into the river.

Subsequently, the entire structure was destroyed, and a new, much more
expensive bridge of more conventional and less flexible design was built in its
place.
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The first standard explanation (see e.g. M. Braun [4]) claims that the fre-
quency of a periodic force caused by alternating trailing vortices just happened
to be very close to the natural frequency of the bridge, and caused the linear
resonance. Thus, even though the magnitude of the forcing term was small, this
could explain the large oscillations and eventual collapse of the bridge.

However, the federal report includes the following paragraph:

“It is very improbable that resonance with alternating vortices plays
an important role in the oscillations of suspension bridges. First, it was
found that there is no sharp correlation between wind velocity and os-
cillation frequency, as is required in the case of resonance with vortices
whose frequency depends on the wind velocity. Second there is no evi-
dence for the formation of alternating vortices at a cross section similar
to that used in the Tacoma bridge . . . It seems that it is more correct
to say that the vortex formation and frequency is determined by the
oscillation of the structure than that the oscillatory motion is induced
by the vortex formation.”

But the precise cause of the large-scale oscillations of suspension bridges has not
been satisfactorily explained yet.

The aspect which distinguishes the suspension bridges is their fundamen-
tal nonlinearity. As we have mentioned above, it is caused by the presence of
supporting cable stays which restrain the movement of the center span in a down-
ward direction, but have no influence on its behaviour in the opposite direction.

This type of nonlinearity, often called jumping or asymmetric, has given rise
to the following principle:

Systems with asymmetry and large uni-directional loading tend to have
multiple oscillatory solutions: the greater the asymmetry, the larger the
number of oscillatory solutions, the greater the loading, the larger the
amplitude of the oscillations.

As we mentioned above, our paper tries to analyze such nonlinear dynamical
systems and to bring some new pieces of information into this area.

First of all, we present two possibilities how to model suspension bridges —
by a single beam and by a beam coupled with a vibrating string by nonlinear
cables — and give a brief survey of known facts in this field.

Then we introduce our own results concerning existence and uniqueness of
time-periodic solutions of two chosen models. We use two different attitudes.
The first one is based on the Banach contraction theorem which needs some
restrictions on the bridge parameters. The second one works in relatively greater
generality but with an additional assumption of sufficiently small external forces.

In the end, we summarize our intention and results and make a short discus-
sion where we compare our foundations with known facts.

We would like to emphasis that this paper is a short abstract of our diploma
thesis [21] and that is why it does not contain proofs of the assertions stated
here.
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2 Mathematical models and known results

One of the easiest ways how to model a behaviour of a suspension bridge is to
consider only one dimension. We do not have to take into account the other
two dimensions because proportions of the bridge in these dimensions are very
small in comparison with its length and so can be omitted (see Fig. 1). If we
also neglect the influence of the towers and side parts, we can use a model of
a simply supported one-dimensional beam.
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Fig. 1. The main ingredients in a model of a one-dimensional suspension bridge.

2.1 Single beam equation

In the first idealization, the construction holding the cable stays can be taken as
a solid and immovable object. Then we can describe the behaviour of the sus-
pension bridge by a vibrating beam with simply supported ends. It is subjected
to the gravitation force, to the external periodic force (e.g. due to the wind) and
in an opposite direction to the restoring force of the cable stays hanging on the
solid construction. Our system is illustrated on Fig. 2.

The displacement u(x, t) of this beam is described by nonlinear partial dif-
ferential equation:

m
∂2u(x, t)
∂t2

+ EI
∂4u(x, t)
∂x4

+ b
∂u(x, t)
∂t

= −κu+(x, t) +W (x) + εf(x, t), (1.taj)

with the boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,
u(x, t+ 2π) = u(x, t), −∞ < t <∞, x ∈ (0, L).

(2.taj)
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An immovable object

A bending beam with supported ends
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Nonlinear springs under tension
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Fig. 2. The simplest model of a suspension bridge — the bending beam with
simply supported ends, held by nonlinear cables, which are fixed on an immovable
construction.

The meaning of particular parameters used in the equation is the following:

m mass per unit length of the bridge,
E Young’s modulus,
I moment of inertia of the cross section,
b damping coefficient,
κ stiffness of the cables (spring constant),
W weight per unit length of the bridge,
εf external time-periodic forcing term (due to the wind),
L length of the center-span of the bridge.

As we can see from the equation (1.taj) and the boundary conditions (2.taj), we
are describing vibrations of a beam of length L, with simply supported ends.
Its deflection u(x, t) at the point x and at time t is measured in the downward
direction. The first term in the equation represents an inertial force, the second
term is an elastic force and the last term on the left hand side describes a viscous
damping. On the right hand side, we have the influence of the cable stays, the
gravitation force and the external force due to the wind (we assume it to be time-
periodic). The cable stays can be taken as one-sided springs, obeying Hooke’s
law, with a restoring force proportional to the displacement if they are stretched,
and with no restoring force if they are compressed. This fact is described by the
expression κu+, where u+ = max{0, u} and κ is a coefficient, which characterizes
the stiffness of the cable stays.

We have not considered the inertial effects of the rotation motion (in a plane
xu) in the equation since they are usually omitted.

This model was introduced e.g. in a paper [16] by P. J. McKenna and A. C. La-
zer and is used as a starting point for study of suspension bridges in the most of
cited works by the other authors. It does not describe exactly the behaviour of
a suspension bridge but on the other hand it is reasonably simple and applicable.
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For further considerations, it would be useful to transform the equation (by
making a change of the scale of the variable x and dividing by the mass m) to
the following form:

utt + α2uxxxx + βut + ku+ = W (x) + εf(x, t),
u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0, (3.taj)
u(x, t+ 2π) = u(x, t), −∞ < t <∞, x ∈ (0, π),

where α2 = EI
m

(
π
L

)4 6= 0 and β = b
m > 0. (We use the same symbols for rescaled

W , ε and f .)

As for as the results, which are known for this model, we can mention the
theorem proved (by the degree theory) in [5] by P. Drábek.

It says that the problem (3.taj) has at least one solution for an arbitrary right
hand side. Further, there is proved that in case that there is no external force (it
means no wind), the bridge achieves a unique position (called the equilibrium)
determined only by its weight W (x). Under some special assumptions on W (x),
the paper [5] shows that in case of small external disturbances, there is always
a solution “near” to the equilibrium. If we assume that W (x) = W0 sinx and
a periodic function f(x, t) is of a special form then there is another solution
which is in a certain sense “far” from this position.

Another known result concerns the case when the damping term is equal to
zero. This was studied by W. Walter and P. J. McKenna in paper [19]. Under
an additional assumption α = 1 they proved the theorem which says that if
W (x) ≡ W0 (positive constant) and f(x, t) is even and π-periodic in the time
variable t and symmetric in the space variable x about π

2 , then, if 0 < k < 3, the
equation (3.taj) has a unique periodic solution of the period π, which corresponds
to small oscillations about the equilibrium. If 3 < k < 15, the equation has in
addition another periodic solution with a large amplitude.

In other words, this theorem says that strengthening the stays, which means
increasing the coefficient k, can paradoxically lead to the destruction of the
bridge.

The similar result can be proved for the system of ordinary differential equa-
tions which we obtain from the equation (3.taj) using the spatial discretization. The
theorem proved in [1] by J. M. Alonso and R. Ortega says that if the condition

k < β2 + 2αβ

holds then there exists N0 ∈ N such that if N ≥ N0 then the discretization of
a suspension bridge equation has a unique bounded solution that is exponentially
asymptotically stable in the large.

This result has a similar sense as the previous one — the more flexible the
cable stays are, then the better the situation is and oscillations of the bridge
cannot be too high.
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2.2 “String-beam” system

Another possible but a little more complicated process is not to consider the
construction holding the cable stays as an immovable object, but to treat it as
a vibrating string, coupled with the beam of the roadbed by nonlinear cable
stays (see Fig. 3).
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The cable represented by a vibrating string

The vibrating beam with supported ends

Nonlinear springs
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Fig. 3. A more complicated model of a one-dimensional suspension bridge — the
coupling of the main cable (a vibrating string) and the roadbed (a vibrating beam)
by the stays, treated as nonlinear springs.

Instead of one equation, we have now a system of two connected equations
in the following form:

m1vtt − Tvxx + b1vt − κ(u− v)+ = W1 + εf1(x, t),

m2utt + EIuxxxx + b2ut + κ(u− v)+ = W2 + εf2(x, t),
(4.taj)

with boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(L, t) = 0,

where v(x, t) measures the displacement of the vibrating string representing the
main cable and u(x, t) means — as in the previous section — the displacement
of the bending beam standing for the roadbed of the bridge. Both functions are
considered to be periodic in the time variable. The nonlinear stays connecting
the beam and the string pull the cable down, hence we have the minus sign in
front of k(u − v)+ in the first equation, and hold the roadbed up, therefore we
consider the plus sign in front of the same term in the second equation.

We can transform both equations into a simpler form in the same way as in
the previous section. It means that we divide by the mass m1, and m2 respec-
tively, and change the scale of the space variable x. Then we obtain
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vtt − α2
1vxx + β1vt − k1(u− v)+ = W1 + εf1(x, t),

utt + α2
2uxxxx + β2ut + k2(u− v)+ = W2 + εf2(x, t),

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = v(0, t) = v(π, t) = 0,
−∞ < t <∞, x ∈ (0, π),

(5.taj)

where α2
1 = T

m1

(
π
L

)2, α2
2 = EI

m2

(
π
L

)4, k1 = κ
m1

, k2 = κ
m2

, β1 = b1
m1

and β2 = b2
m2

.
We use the same symbols as in the previous equations for the other transformed
parameters.

We can find a description of this model again in A. C. Lazer and P. J. McKen-
na [16], but these authors consider the right hand sides in a rather purer form.
In the first equation, they neglect the weight of the string W1, and on the other
hand, in the second equation, they ignore the external force εf2(x, t). However,
nobody (as far as we know) has treated this model in detail yet.

3 Application of Banach contraction principle

As we can see from the previous survey of known results, one of the problems
is to prove the existence of the solutions of particular models and find out the
conditions, under which the solution is unique and stable. In particular, it means
that we are looking for conditions which guarantee that the bridge cannot exhibit
large-scale oscillations and cannot be destructed by any wind of an arbitrary
power. We have tried to clear up these problems with use of Banach contraction
principle for both one-dimensional models — the first one considers the bridge
as a single beam supported by nonlinear springs, and the second one describes
the bridge as a beam coupled with a string by nonlinear cables.

3.1 The first case — a single beam

As we stated above, we model the suspension bridge as a one-dimensional beam
with simply supported ends, which is held by nonlinear springs hanging on an im-
movable construction. This situation is described by the boundary value prob-
lem (3.taj).

Let us denote Ω = (0, π) × (0, 2π) the considered domain, H = L2(Ω) the
usual Hilbert space with the corresponding L2-norm

‖u(x, t)‖ =
[∫

Ω

|u(x, t)|2dxdt
] 1

2

and D the set of all smooth functions satisfying the boundary conditions from
equation (3.taj). Now we can generalize the notion of a classical solution by which
we mean a continuous function with continuous derivatives up to the fourth
order with respect to x and up to the second order with respect to t in the set
[0, π]× [0, 2π], satisfying the boundary value problem (3.taj), and define a so called
generalized solution of (3.taj).
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Definition 1. A function u(x, t) ∈ H is called a generalized solution of the
boundary value problem (3.taj) if and only if the integral identity∫

Ω

u(vtt + α2vxxxx − βvt) dxdt =
∫
Ω

(W + εf − ku+)v dxdt

holds for all v ∈ D.

Remark 2. We can extend the generalized solution u = u(x, t) by 2π-periodicity
in t to (0, π) × R. So, any generalized solution can be regarded as a function
defined on (0, π)× R.

Let us consider a complex Sobolev space H̃ = H + iH . As the set

{eint sinmx;n ∈ Z,m ∈ N}

forms a complete orthogonal system in this space, each function u(x, t) can be
represented by Fourier series

u(x, t) =
∞∑

n=−∞

∞∑
m=1

unmeint sinmx. (6.taj)

Moreover, we have∑
n

∑
m

|unm|2 <∞, and u−nm = ūnm

(see J. Berkovits and V. Mustonen [3]).
Let p, r ∈ Z+. If we use this Fourier interpretation, we can define the following

spaces

Hp,r = {h ∈ H ;
∞∑

n=−∞

∞∑
m=1

(n2r +m2p)|hnm|2 <∞} (7.taj)

and the corresponding norm

‖h‖Hp,r =

( ∞∑
n=−∞

∞∑
m=1

(n2r +m2p)|hnm|2
) 1

2

. (8.taj)

Then Hp,r equipped with the norm ‖ · ‖Hp,r is the Sobolev space. In particular,
H0,0 = H .

First of all, we will treat the solvability of the linear equation

utt + α2uxxxx + βut − λu = h. (9.taj)

If we define a generalized solution of this equation in an analogous way as in
Definition 1, then the following lemma is a consequence of the expansion (6.taj)
(cf. [2]).
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Lemma 3. If unm and hnm are the corresponding Fourier coefficients of the
functions u and h, then the equation (9.taj) has a generalized solution if and only if

(−n2 + α2m4 + iβn − λ)unm = hnm (10.taj)

holds for all n ∈ Z, m ∈ N.

If we denote
L(u) = utt + α2uxxxx + βut

the linear operator, and put

Nλ = {(m,n) ∈ N× Z; α2m4 − n2 − λ = 0},

S = {λ ∈ R; Nλ 6= ∅},
σ = {λ ∈ R; λ = α2q4, q ∈ N},

then σ is a set of eigenvalues of the operator L, and σ ⊂ S holds. Further, we
can rewrite the equation (9.taj) into a new form

L(u)− λu = h

and formulate the following theorem (for the proof see G. Tajčová [20]).

Theorem 4. Let λ ∈ R. Then for an arbitrary h ∈ H the equation (9.taj) has
a unique generalized solution u ∈ H if and only if

λ 6∈ σ.

If λ 6∈ σ, then there exists a mapping

Tλ : H → H, Tλ : h 7→ u

with the following properties:

(i) Tλ is linear and R(Tλ) ⊂ C(Ω̄);
(ii) Tλ : Hp,r → Hp+2,r+1 and there exists a constant c > 0 such that for any

h ∈ Hp,r, p, r ∈ N ∪ {0}, we have

‖u‖Hp+2,r+1 ≤ c‖h‖Hp,r ,

whenever u = Tλh;
(iii) Tλ is compact from H into C(Ω̄) (and thus from H into H) and for its

norm we have

‖Tλ‖ ≤
1

max{dist(λ, S), min{β, dist(λ, σ)}} =

=
1

min{dist(λ, σ), max{β, dist(λ, S)}} .
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Now we turn our attention to the equation (3.taj) and deal with its solvability.
As zero is not an eigenvalue of the operator L, we can rewrite this equation

— in accordance with the previous paragraph — into an equivalent form

u = T0(−ku+ +W + εf). (11.taj)

Moreover, we have for the norm of the operator T0 the following estimate

‖T0‖ ≤ max
m∈N, n∈Z

1√
β2n2 + (α2m4 − n2)2

≤ 1
min{α2, β} = K0.

If we want to find out conditions for the existence of a unique solution, it is
suitable to use the Banach contraction principle which reads as follows:

Let the operator G : H → H be a contraction, i.e. there exists c ∈ (0, 1)
such that

‖G(u)−G(v)‖ ≤ c‖u− v‖ ∀u, v ∈ H.

Then there exists a unique u0 such that

G(u0) = u0.

In our case G(u) = T0(−ku+ +W + εf) and

‖G(u)−G(v)‖ = ‖T0(W + εf − ku+)− T0(W + εf − kv+)‖ =
= ‖T0(kv+ − ku+)‖ ≤
≤ k‖T0‖‖v+ − u+‖ ≤
≤ kK0‖v − u‖.

If we require the operator G to be a contraction, the condition

0 < kK0 < 1

must be satisfied, and thus

0 <
k

min{α2, β} < 1.

Hence, if we put again k = κ
m , a sufficient condition for the existence of a unique

solution of our boundary value problem has a form

κ < m ·min{α2, β}. (12.taj)
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3.2 The second case — the coupling of a beam and a string

In this part we complete the previous model by a movable main cable, which
holds the nonlinear cable stays and which is represented by a vibrating string.
Our model is described by a coupled system of partial differential equations (5.taj)
(see A. C. Lazer, P. J. McKenna [16])

If we introduce a new vector function

w =
[
v
u

]
, (13.taj)

we can rewrite the system (5.taj) into the following matrix form[
1 0
0 1

]
︸ ︷︷ ︸

I

wtt +
[

0 0
0 α2

2

]
︸ ︷︷ ︸

A2

wxxxx +
[
−α2

1 0
0 0

]
︸ ︷︷ ︸

A1

wxx +

+
[
β1 0
0 β2

]
︸ ︷︷ ︸

B

wt + F(w) =
[
h1

h2

]
︸ ︷︷ ︸

h

, (14.taj)

and thus

wtt + A2wxxxx + A1wxx + Bwt + F(w) = h, (15.taj)

where F(w) is a nonlinear vector function

F(w) =
[
−k1(u − v)+

k2(u − v)+

]
.

Moreover, we require the unknown function w(x, t) to be time-periodic and
to satisfy the boundary conditions prescribed for a vibrating string in its first
component, and the boundary conditions prescribed for a supported beam in its
second component.

Let us denote

L(w) = wtt + A2wxxxx + A1wxx + Bwt.

Then L is a linear operator and the equation (15.taj) can be written in the following
way

L(w) = −F(w) + h. (16.taj)

The set of all real eigenvalues of the operator L has a form

σ = {λ ∈ R; λ = α2
1m

2 ∨ λ = α2
2m

4, ∀m ∈ N}.

Now, we have our system described by an operator equation which has a sim-
ilar character as the operator equation for the single beam. It allows us to use the
same methods and formulate the analogous statements as in previous section.
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We can again define the notion of generalized solution and use the Fourier
representation of the considered functions. Moreover, we can as well prove the
existence of the resolvent Tλ (see G. Tajčová [20]).

Theorem 5. Let λ ∈ R. Then for an arbitrary h ∈ H the equation Lw −
λw = h has a unique solution w ∈ H if and only if

λ 6∈ σ.

If λ 6∈ σ then there exists the mapping

Tλ : H→ H, Tλ : h 7→ w

with the following properties:

(i) Tλ is linear and ImTλ ⊂ C(Ω̄)× C(Ω̄);
(ii) Tλ : Hp,r ×Hp,r → Hp+1,r+1 ×Hp+2,r+1 and there exists a constant c > 0

such that for any h ∈ Hp,r × Hp,r, p, r ∈ N ∪ {0}, we have

‖w‖Hp+1,r+1×Hp+2,r+1 ≤ c‖h‖Hp,r×Hp,r ,

whenever w = Tλh.
(iii) Tλ is compact from H into C(Ω̄) × C(Ω̄) (and thus from H into H), and

for its norm we have an estimate

‖Tλ‖ ≤ max
{

max
m,n

1
|Aλnm|

; max
m,n

1
|Bλnm|

}
,

where Aλnm = −n2 + α2
1m

2 + iβ1n − λ,
Bλnm = −n2 + α2

2m
4 + iβ2n − λ.

As zero is not the eigenvalue of the operator L, we can define the operator
T0 and to estimate its norm as follows

‖T0‖ ≤ max
{

max
m,n

1
|A0
nm|

; max
m,n

1
|B0
nm|

}
.

Further,

max
m,n

1
|A0
nm|

= max
m,n

1
| − n2 + α2

1m
2 + iβ1n|

= max
m,n

1√
β2

1n
2 + (α2

1m
2 − n2)2

≤

≤ 1
min{α2

1, β1}
,

max
m,n

1
|B0
nm|

= max
m,n

1
| − n2 + α2

2m
4 + iβ2n|

= max
m,n

1√
β2

2n
2 + (α2

2m
4 − n2)2

≤

≤ 1
min{α2

2, β2}
.
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Hence we finally obtain

‖T0‖ ≤ max
{

1
min{α2

1, β1}
;

1
min{α2

2, β2}

}
=

=
1

min {α2
1, α

2
2, β1, β2}

= K̄0. (17.taj)

If we use this operator T0, we can rewrite our equation (16.taj) in the equivalent
form

w = T0(h− F(w)). (18.taj)

Since we want to prove its unique solvability, it is again suitable to apply the
Banach contraction principle.

In our case G(w) = T0(h−F(w)). We have to verify, whether this operator
is a contraction:

‖G(w1)−G(w2)‖ = ‖T0(h− F(w1))−T0(h− F(w2))‖ =
= ‖T0‖‖F(w2)− F(w1)‖ ≤
≤ ‖T0‖(k1 + k2)‖(u2 − v2)+ − (u1 − v1)+‖ ≤
≤ ‖T0‖(k1 + k2)‖(u2 − v2)− (u1 − v1)‖ =
= ‖T0‖(k1 + k2)‖(u2 − u1)− (v2 − v1)‖ ≤
≤ ‖T0‖(k1 + k2) [‖u2 − u1‖+ ‖v2 − v1‖] ≤
≤ (k1 + k2)K̄0‖w2 −w1‖.

Hence it follows that the operator G is a contraction if the condition

0 < (k1 + k2)K̄0 < 1

holds. Equivalently,

k1 + k2 < min
{
α2

1, α
2
2, β1, β2

}
.

As we have k1 = κ
m1

, k2 = κ
m2
, we obtain a condition of the existence of

a unique solution of the operator equation (16.taj) in the following form

κ <
m1m2

m1 +m2
min

{
α2

1, α
2
2, β1, β2

}
. (19.taj)

Remark 6. The question left is whether the condition (19.taj) is stronger or weaker
than the condition

κ = m2k < m2 min{α2
2, β2},

obtained by the same way for the bridge modelled only as a supported beam
(i.e. by a scalar equation — see (12.taj)), and whether they have any practical sense.
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4 General existence and uniqueness result

In the previous chapter, we proved the existence and uniqueness of the solu-
tion, but the price we had to pay was a certain restriction on the coefficient κ
representing the stiffness of the nonlinear cable stays. On the other hand, the
advantage was an arbitrary right hand side. Now we can convert the situation
and prove the mentioned existence and uniqueness of the solution in a relative
generality of the structure coefficient, but with some special assumptions on the
external forcing terms.

We again pay our attention to two chosen mathematical models of suspension
bridges. The first one consists of the single beam equation and the second one
respects the coupling of the main cable and the roadbed — i.e. the string-beam
system.

4.1 The first case — a single beam

We again consider the periodic-boundary value problem (3.taj) for the beam equa-
tion which serves as a simple one-dimensional model of a suspension bridge.

Before we state our main result, we formulate some auxiliary assertions which
are necessary for its full understanding and which are proved by J. Berkovits,
P. Drábek, H. Leinfelder, V. Mustonen and G. Tajčová in [2].

Proposition 7. Let u ∈ H and h ∈ H, h is independent of t. Then u is a unique
generalized solution of

utt + α2uxxxx + βut + ku+ = h(x) (20.taj)

if and only if the function u is independent of the variable t and ũ(x) = u(x, t)
is a classical solution of the boundary value problem

αũ(4) + kũ+ = h(x) in (0, π),
ũ(0) = ũ(π) = ũ′′(0) = ũ′′(π) = 0.

(21.taj)

Under even more special assumption that the right hand side is a constant
function, we can prove some other properties of the generalized solution.

Proposition 8. Assume in (3.taj) that ε = 0 and W (x) ≡W0 (nonzero constant).
Then the corresponding generalized solution u0 of (3.taj) is unique, positive, time-
independent, symmetric with respect to the line x = π

2 and satisfies

(u0)x(0, t) > 0, (u0)x(π, t) < 0 (22.taj)

for every t ∈ R.

Remark 9. In particular, this means that the equation

utt + α2uxxxx + βut + ku+ = 0

has due to uniqueness only a trivial generalized solution for any k ∈ R.
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Our main result is the following.

Theorem 10. Let ε ∈ R, k > 0, W (x) ≡ W0 > 0, f ∈ H1,1. Then there exists
ε0 > 0 such that for |ε| < ε0 the problem (3.taj) has a unique generalized solution
u ∈ H3,2. Moreover, this generalized solution is strictly positive in (0, π)× R.

The proof of this main result would be carried out in several steps. We know
that there exists at least one generalized solution of the equation (3.taj) for any
right hand side (see P. Drábek [5]). Moreover, by Proposition 8, there exists
a positive, time-independent solution u0(x, t) = ũ0(x) of the equation

utt + α2uxxxx + βut + ku+ = W0,

with ũ′0(0) > 0 and ũ′0(π) < 0.

Step 1. We prove that there exists a positive generalized solution u ∈ H3,2

of (3.taj) which is “close” to u0 from Proposition 8 with respect to the norm in
H3,2.

Step 2. There is no other positive generalized solution of (3.taj) than u =
u0 + uε.

Step 3. There is no other generalized solution of (3.taj) (changing signs) than
ũε = u0 + uε if |ε| < ε0 and ε0 is small enough.

(For the complete proof see G. Tajčová [21] or J. Berkovits, P. Drábek, H. Lein-
felder, V. Mustonen and G. Tajčová [2].)

4.2 The second case — the coupling of a beam and a string

Now, we can try to apply the previous ideas on the system of two coupled
equations which model the suspension bridge as a simply supported beam and
a string connected by nonlinear cable stays.

We work again with a periodic-boundary value problem (5.taj). We would like
to formulate a similar assertion as in the previous section, it means to prove
under some additional assumptions that if the weight of the bridge W1 and
the weight of the main cable W2 are constant and the external forces εf1(x, t)
and εf2(x, t) are sufficiently small, then our problem (5.taj) has a unique solution
which is symmetric and strictly positive in its both components and close to the
stationary solution. However, as it can be seen later, we are not able to overcome
some problems with regularity of the solution and thus we formulate statements
which are more general and — in some sense — weaker.

Similar argument as that used in [2] enables us to prove the following asser-
tion.
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Proposition 11. Let u, v ∈ H and h1, h2 ∈ H, h1, h2 are independent of t.
Then [v, u]T is a generalize solution of

vtt − α2
1vxx + β1vt − k1(u− v)+ =h1(x),

utt + α2
2uxxxx + β2ut + k2(u− v)+ =h2(x)

(23.taj)

if and only if the functions v, u are independent of the variable t and [ṽ(x), ũ(x)]T

= [v(x, t), u(x, t)]T is a solution of the boundary value problem

−α1ṽ
′′ − k1(ũ− ṽ)+ = h1(x),

α2ũ
(4) + k2(ũ− ṽ)+ = h2(x) in (0, π), (24.taj)

ṽ(0) = ṽ(π) = ũ(0) = ũ(π) = ũ′′(0) = ũ′′(π) = 0.

As for as the uniqueness of the solution, the following statement holds.

Proposition 12. Let k1, k2 > 0 and h1, h2 ∈ H, h1 and h2 are independent
of t. Then (23.taj) has at most one generalized solution w0 = [v0, u0]T ∈ H which
is independent of t.

Remark 13. As a consequence of Propositions 11 and 12, we can state that for
ε = 0 and W1 = W2 = 0 (it means no loading), the nonlinear system (5.taj)

vtt − α2
1vxx + β1vt − k1(u− v)+ = 0,

utt + α2
2uxxxx + β2ut + k2(u − v)+ = 0,

with standard string-beam boundary conditions, has only a trivial solution.

Now, we have all auxiliary assertions to formulate the following theorem
concerning the general existence of a solution of the system (5.taj) for an arbitrary
right hand side. The proof is based on the degree theory and is a direct analogy
to the proof by P. Drábek in [5].

Theorem 14. Let ε ∈ R, k1, k2 > 0, W1(x), W2(x) ∈ L2(0, π), and f1(x, t),
f2(x, t) ∈ H. Then the system (5.taj) has at least one generalized solution w =
[v, u]T ∈ H.

Now, we can have a look at the case when the right hand sides are constant
functions. It means that the corresponding solution is (according to Proposi-
tion 11) a stationary solution and should express the equilibrium of the suspen-
sion bridge.

By a detailed analysis of a linear system

−γ1v
′′ − u+ v = h1, x ∈ (0, π),

γ2u
(4) + u− v = h2, (25.taj)

v(0) = v(π) = u(0) = u(π) = u′′(0) = u′′(π) = 0

we can prove the following assertion.
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Proposition 15. Assume in a boundary value problem (5.taj) that W1(x) ≡ W1

and W2(x) ≡ W2 are nonzero constants and ε = 0. Moreover, let the weight
W2 is “large enough”. Then (5.taj) has a unique generalized solution w0 which is
positive, time-independent, symmetric with respect to the line x = π

2 in its both
components and satisfies

u0(x, t) > v0(x, t) ∀(x, t) ∈ (0, π)× R

and
(u0 − v0)x(0, t) > 0, (u0 − v0)x(π, t) < 0

for every t ∈ R.

Now, we can have a closer look at the solution of the system (5.taj) and its prop-
erties. We would like — on the basis of the previous statements — to formulate
the analogy of Theorem 10.

However, the only thing we know is that there exists at least one generalized
solution of the boundary value problem (5.taj) and, moreover, (see Proposition 15),
that under some additional assumptions, there exists a symmetric, strictly pos-
itive, time-independent solution w0 = [v0, u0]T of the system

vtt − α2
1vxx + β1vt − k1(u− v)+ = W1,

utt + α2
2uxxxx + β2ut + k2(u − v)+ = W2,

where W1 and W2 are positive constants, and the conditions

(u0 − v0)x(0, t) > 0, (u0 − v0)x(π, t) < 0,

hold.
But we are not able to prove the existence and uniqueness of the solution of

the system (5.taj) which would be “close” to this w0. The obstacle is the fact that
we have not manage to prove a better regularity that w ∈ H2,2×H3,2. It means
(due to embedding theorems) that w ∈ C0,0 × C1,0. And this is not enough to
guarantee the existence of the positive solution

w = w0 + wε

neither for ε sufficiently small.

5 Final remarks and discussion

In this chapter, we would like to clear up our results and compare them with
known facts mentioned in Chapter 2.

Our main effort was to determine sufficient conditions for the existence and
uniqueness of the solution. Let us have a closer critical look at them.
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5.1 The application of Banach contraction principle

First of all, we dealt with the uniqueness using the Banach contraction principle.
The price we had to pay was a certain restriction on the magnitude of the stiffness
κ of the cable stays.

For the single beam model, it was in the roughest form (cf. (12.taj))

κ < m min{α2, β}. (26.taj)

The corresponding result for the string-beam model was (cf. (19.taj))

κ <
m1m2

m1 +m2
min{α2

1, α
2
2, β1, β2}. (27.taj)

In Chapter 2, we mentioned two similar results. The first one was obtained
by W. Walter and P. J. McKenna in [19] for a non-damped single beam model
under an additional assumption α = 1. It says that the solution of such a system
is unique in case that

0 < k < 3, (28.taj)

where k = κ/m.
The second result was obtained by J. M. Alonso and R. Ortega in [1] for

a discrete system of ordinary differential equations derived from a damped single
beam model using the spatial discretization by finite differences. It says again
that the solution of such a system is unique if

k < β2 + 2αβ. (29.taj)

We have again k = κ/m.

Obviously, all these results have a similar sense — the more flexible the cable
stays are, the better the situation is, because the nonlinearity is less pronounced
and we have guaranteed the uniqueness of the solution.

We can make short discussion where we compare our result (26.taj) with (29.taj)
derived by J. M. Alonso and R. Ortega, and the results for single beam with that
ones for a string-beam model.

We ask whether the result (29.taj)

k < β2 + 2βα

by J. M. Alonso, R. Ortega is stronger or weaker than our relation (26.taj) which
can be formulated as

k < min{α2, β}.

(In both cases, k = κ/m, where κ is the stiffness of the cable stays and m is the
mass of the bridge.)

We can make the following discussion.
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(i) If the condition

α ∈
(

0;β +
√

2β
〉
∪
〈

1− β
2

;∞
)

is satisfied, which means (in an equivalent form)

β ∈
〈√

2α− α;∞
)
∪ 〈1− 2α;∞) ,

(see Fig. 4), then the implication

k < min{α2, β} =⇒ k < β2 + 2αβ

holds and the result of J. M. Alonso and R. Ortega is stronger than (26.taj).
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Fig. 4. The shaded region where the result of J. M. Alonso and R. Ortega is
stronger than our condition.

(ii) But if the condition

α ∈
〈
β +
√

2β;
1− β

2

〉
is satisfied, which again means

β ∈
(

0;
√

2α− α
〉
∩ (0; 1− 2α〉 ,

(see Fig. 5), then the implication

k < β2 + 2αβ =⇒ k < min{α2, β}

holds and our result (26.taj) is stronger than that of J. M. Alonso and R. Ortega.



Mathematical Models of Suspension Bridges 301

-

6β

α

A
A
A
A
A
A
A
A
A
A
A
A
A
A

!!
!!
!!

!!
!!
!!

!!
!!

β =
√

2α− α

β = 1− 2α

Fig. 5. The shaded region where our condition is stronger than the result of
J. M. Alonso and R. Ortega.

Remark 16.

1. By physical reason we take into account only positive values of the parame-
ters α and β.

2. In particular, the previous discussion means that for sufficiently small α and
β in a certain relation, our result is stronger than the result published in
J. M. Alonso, R. Ortega [1].

3. The question left concerns the real values of bridge parameters.

Now, we can have a look at the conditions (26.taj) and (27.taj). It means to compare
the relation

κ < m2 min{α2
2, β2},

obtained for the single beam model (we use the notation m = m2, α = α2,
β = β2), with the condition

κ <
m1m2

m1 +m2
min{α2

1, α
2
2, β1, β2}

concerning the string-beam model.
We can expect that the mass of the main cable m1 will be considerably less

than the mass of the roadbed m2, and thus
m1m2

m1 +m2
' m1.

The damping coefficients β1 a β2 can be considered almost the same.
The relation between α2

1 and α2
2 is still an open problem for us.

As for the real parameters of particular suspension bridges, we have found
in the paper [7] by A. Fonda, Z. Schneider and F. Zanolin the following values.
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Tacoma Golden Gate Bronx-Whitestone
m 8.5× 103 kg m−1 3.1× 104 kg m−1 1.6× 104 kg m−1

I 0.2 m4 5.3 m4 0.4 m4

L 855 m 1 280 m 700 m

The acceleration of gravity at earth’s surface and the steel’s modulus of
Young are usually taken to be

g = 9.8 m s−2,

E = 2× 1011 kg m−1s−2.

However, we still have not found anything about the real values of the stiffness
of the cable stays k, of the inner tension T and the mass m1 of the main cable.

On the other hand, we succeeded to gain approximate values concerning
a similar structure — a concrete suspension footbridge. The corresponding pa-
rameters are as follows.

m1
.= 256 kg m−1,

m2
.= 7 300 kg m−1,

L
.= 103 m,

E
.= 30 000 MPa

I
.= 1 m4

T
.= 2 708 000 N

κ
.= 4.5 105 kg m−1 s−2.

It means that

α2
1
.= 9.8,

α2
2
.= 3.5.

However, we still do not know anything about the damping coefficients β1, β2.

Unfortunately, on basis of this information, we can say that our condi-
tions (26.taj), (27.taj) are too restrictive and cannot be satisfied in practice.

Remark 17. Another aspect we have not mentioned so far is the periodicity of
the external force and of the solution with respect to the time variable. We
assume from the beginning that the period is equal to 2π. Of course, the reality
is a little bit different and if we consider a different period, we can obtain new
values of the mentioned parameters and the situation can change considerably.

5.2 The general existence and uniqueness

Now, we can make a short discussion about our main result of Chapter 4, which
is summed up in Theorem 10. It says that in case of constant weight and small
external force (e.g. due to the wind), the bridge stays in a unique position near
the equilibrium.
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This is surprisingly different from previous results obtained in this direction.

This problem was also studied under the special assumption that the weight
of the bridge has a form W (x) = W0 sinx. Moreover, it was assumed that the
external force f(x, t) = f(t) sinx, as well as the displacement of the bridge
u(x, t) = y(t) sinx have a similar character.

This assumptions lead to an ordinary differential equation and results ob-
tained by A. C. Lazer and P. J. McKenna in [15], [16], [17], and by J. Glover,
A. C. Lazer and P. J. McKenna in [10] are, roughly speaking, of the following
spirit:

Even if the external force is small enough, the system admits at least two
(small amplitude and large amplitude, asymptotically stable) solutions.

These results are illustrated by several interesting numerical experiments (see
e.g. A. C. Lazer, P. J. McKenna [16], J. Glover, A. C. Lazer, P. J. McKenna [10],
A. Fonda, Z. Schneider, F. Zanolin [7], etc.).

However, from the practical point of view, the assumptions on W and f seem
to be somewhat peculiar and it seems to be more natural to assume that the
weight of the roadbed is constant along the bridge instead of having distribu-
tion as a function W0 sinx. This, more natural situation is discussed in [19] by
P. J. McKenna and W. Walter. However, also in this case the problem is not
studied in its full generality and some oversimplifications are made. First of all,
the authors neglect the damping term. Second, the data as well as the solution
are considered in the space of functions with certain symmetries with respect to
both variables x and t.

The main result is summed up in [19] and says that under the assumptions
mentioned above, the external force sufficiently small, and 3 < k < 15, the
non-damped problem has at least two solutions.

Also this result supports the idea of multiple solutions of a single beam model
under more general assumptions.

However, our Theorem 10 shows that the presence of nonzero damping in
the model changes the situation qualitatively and we get uniqueness result.

Moreover, our result describes that the problem is well-posed. If there is no
external disturbance (no wind, no cars driving across the bridge, etc.) then the
bridge achieves unique steady state position (the equilibrium) determined only
by its weight W0. In the case of “small external disturbances” represented by
the term εf(x, t) there is always unique solution which is “near” the steady state
position when the bridge is not disturbed. This fact illustrates the stability of
the solution with respect to small perturbations given by εf(x, t).

Of course, there are still many open questions. We can expect that for a cer-
tain critical value of parameter ε1 > 0 we have lack of uniqueness of the solution
when ε ≥ ε1. Another question concerns asymptotical stability of the unique
solution.

Unfortunately, for the system of two coupled equations describing the motion
of the main cable and of the roadbed, we are not able to obtain a similar result
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as in the case of one single beam equation. The only thing we can prove is the
general existence of at least one solution for any right hand side.

The problem is the lack of regularity in the string equation and this fact is
the obstacle for the proof of uniqueness. Moreover, it does not allow us to state
that there is at least one solution which is “close” is some sense to the steady
state position (the equilibrium) determined only by the weight of the main cable
and by the weight of the roadbed.

This unpleasant problem could be solved for example by the following way.
We can put an additional small term

εvxxxx

into the string equation and thus modify the model little bit. The presence of
such a term can ensure that we obtain higher degree of regularity and, moreover,
it expresses a relatively natural fact that the main cable has some stiffness and
it is not only a simple string.

However, we have not considered this situation yet and thus we have no idea
whether adding this term into the model cannot cause some other troubles.

Another element, which could be added into the problem and which would
have a reasonable interpretation, is a certain “pretension”. It can be represented
e.g. by a function h(x) which would appear in the nonlinear terms. It means,
that we could replace the term (u − v)+ with the term (u + h − v)+, or — in
case of a single beam model — replace the term u+ with the term (u + h)+,
respectively. Such a modification can cause that in case of no external force (no
wind, no cars driving across the bridge), the beam representing the roadbed
achieves a negative (or zero) position. This result would be more realistic since
the real suspension bridges are never bent in a downward direction if they are
in a steady state position.

This pretension was considered e.g. by A. Fonda, Z. Schneider and F. Zanolin
in [7]. In this paper, the function h(x) was used in a form

h(x) = h sin
πx

L

which allowed under some additional assumptions on the right hand side to
eliminate the space variable x from the boundary value problem.

It would be interesting to include this term into the models considered in our
paper as well and find out how it influences our results and whether it can draw
them near to the real behaviour of a suspension bridge.
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[12] P. Krejč́ı: On solvability of equations of the 4-th order with jumping nonlinearities,
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