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Abstract. The boundary-value problem of plasticity is formulated as
the evolution variational problem (EVP) over the parameter of external
loading for the displacement in the framework of the small deformations
theory. The questions of the mathematical correctness of the plasticity
EVP are discussed. The general existence and uniqueness theorem is for-
mulated. The main necessary and sufficient condition has the simplest
algebraic form and does not coincide with the classic Drucker’s hypothe-
sis and similar thermodynamical postulates. By means of finite element
approximation the plasticity EVP transforms into the Cauchy problem
for a non-linear system of ordinary differential equations unsolved re-
garding derivative. Moreover, this system can be stiff. Therefore, for the
numerical solution the implicit Euler scheme with the decomposition
method of adaptive block relaxation (ABR) is used. The numerical re-
sults show that, for finding the displacement and the time of calculation,
the ABR method has advantages over the standard method.
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1 Introduction

The solution of plasticity boundary-value problems (BVPs) is of particular inter-
est in both theory and practice. At present there are many models of plasticity
in the framework of the small deformations theory [1,2,3]. Adequacy and the
field of application of every model must be found only by correlation between
experimental data and solutions of appropriate BVPs. Therefore, the analysis
of mathematical correctness and the treatment of numerical methods for these
problems is very important [4,5,6,7].

In this paper the plasticity BVP is formulated as the evolution variational
problem (EVP) (i.e. as the abstract Cauchy problem in the weak form) for the
displacement in the Hilbert space [8]. For this reason the parameter of external
loading in the interval [0, 1] is used. The general existence and uniqueness theo-
rem for the plasticity EVP is formulated. The proof of this theorem is based on
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the monotonous operators theory and the theory of the abstract Cauchy problem
in the Hilbert space [7]. The main necessary and sufficient condition has the sim-
plest algebraic form and does not coincide with the classic Drucker’s hypothesis
and similar thermodynamical postulates [2,3,9,10]. This condition is the general
criterion of mathematical correctness for plasticity models. Its independence is
illustrated for the plasticity model of linear isotropic-kinematic hardening with
ideal Bauschinger’s effect, dilatation and internal friction [11,12].

For the numerical solution of the plasticity EVP the standard spatial piece-
wise linear finite element approximation is used [13]. For some models the appro-
priate finite dimensional Cauchy problem can be stiff [14,15]. The main cause of
this phenomenon consists of the following: the global shear stiffness matrix has
lines with significantly different factors (it is badly determined). Moreover, for
real plasticity models both initial continuum and discrete Cauchy problems are
principally unsolved regarding derivative [1,2,12]. Therefore, for the numerical
solution the implicit Euler scheme with the decomposition method of adaptive
block relaxation (ABR) is used [4,5,6,7]. The main idea of this method consists
of iterative improvement of zones with ”proportional” deformation by special
decomposition of domain (variables), and separate calculation in these zones
(on these variables). The global convergence theorem for the ABR method is
formulated. The proof of this theorem is based on the monotonous operators
theory [4,5].

The numerical results show that, for finding the displacement and the time
of calculation, the ABR method has advantages over the standard method.

2 Evolution formulation of the plasticity BVP

Let a homogeneous rigid body in the undeformed reference configuration occupy
a domain Ω ⊂ R3 with boundary Γ . In the deformed configuration each point
x ∈ Ω moves into a position x+u(x) ∈ R3, where u : Ω → R3 is the displacement.
In the framework of the small deformations theory the strain Cauchy tensor
ε = ε(u) = 1

2

(
∂iuj + ∂jui

)
: Ω → S3 is used as the measure of deformation,

where ∂i = ∂/∂xi; i, j = 1, 2, 3. The symbol S3 denotes the subspace of real
symmetrical 3× 3 matrices.

In the mathematical theory of plasticity the isotropic material is described
by the constitutive relation for speeds [1,2,3,7,10,12]

σ̇ij = Sij (ε, ε̇) = Cijkm

(
ε̇km − Ṗkm(ε, ε̇)

)
,

Cijkm = 2µ δikδjm +
(
k0 − 2

3
µ
)
δijδkm,

(1.bri)

where σ : Ω → S3 is the Cauchy stress tensor, P : Ω → S3 is the plastic part
of the Cauchy strain tensor, Cijkm are the components of elasticity acoustic
tensor [2,3], µ > 0 and k0 > 0 are the shear and bulk moduli, respectively; δij
is the Kronecker symbol, the above point is d/dt and t ∈ [0, 1] is the parameter
of external loading. Here and in what follows we use the rule of summing over
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repeated indices and the designation |A| = |Akm| = (AijAij)
1/2 for modulus of

matrix A.
We consider the following boundary-value problem. The quasi-static influ-

ences acting on the body are: a mass force with density f in Ω, a surface force
with density F on a portion Γ 2 of the boundary, and a surface displacement uγ
on a portion Γ 1 of the boundary is also given. Here Γ 1 ∪ Γ 2 = Γ , Γ 1 ∩ Γ 2 = ∅
and area(Γ 1) > 0.

According to the evolution description [8] the external influences, internal
displacement and stress tensor are taken as continuous and piecewise smooth
abstract functions acting from interval [0, 1] to appropriate Banach spaces, sup-
posing that Γ 1 = const(t) and f = 0, F = 0, uγ = 0 for t = 0.

The plasticity BVP is formulated as the evolution variational problem (EVP)
(i.e. as the abstract Cauchy problem in the weak form): the sought displacement
corresponds to the abstract function u∗(t) = u0(t) + u(t), where the piecewise
smooth abstract function u0(t) with u0(0) = 0 corresponds to the surface dis-
placement uγ , and unknown abstract function u : [0, 1] → V 0 must satisfy the
initial condition u(0) = 0 and the differential equation for every v ∈ V 0 and
almost every t ∈ (0, 1)∫

Ω

Sij
(
ε(u0 + u), ε(u̇0 + u̇)

)
∂jvi dx = L(t, v),

L(t, v) =
∫
Ω

ḟi(t)vi dx+
∫
Γ 2

Ḟi(t)vi dγ.
(2.bri)

Here V 0 = {v : Ω → R3; v(x) = 0, x ∈ Γ 1} — is the set of kinematically
admissible variations of the displacement. For real plasticity models this equation
is principally unsolved regarding u̇ [2,7,12].

Concerning the constitutive relation S, the domain Ω and the functions f ,
F , uγ we make the following hypotheses:

(H1) Matrix function S(A,B) is the continuous and strongly monotonous in B,
i.e. there exists a constant m0 > 0 such that for every A,B1, B2 ∈ S3 the
following estimate is true(

Sij(A,B1)− Sij(A,B2)
) (
B1
ij −B2

ij

)
≥ m0

∣∣B1 −B2
∣∣2 .

(H2) Matrix function S(A,B) is the Lipschitz continuous in A, i.e. there exists
a scalar function M0 : S3 → (0,+∞) such that for every A1, A2, B ∈ S3

the following estimate is true∣∣S(A1, B)− S(A2, B)
∣∣ ≤M0(B)

∣∣A1 −A2
∣∣ .

(H3) Matrix function S(A,B) has the growth in A and B no above linear, i.e.
there exists a constant M1 > 0 such that for every A,B ∈ S3 the following
estimate is true

|S(A,B)| ≤M1 (|A| + |B|).
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(H4) Ω is a connected bounded domain in R3 with a Lipschitz boundary Γ .
(H5) f ∈ C0,1

(
[0, 1], L6/5(Ω,R3)

)
.

(H6) F ∈ C0,1
(
[0, 1], L4/3(Γ 2, R3)

)
.

(H7) uγ ∈ C0,1
(
[0, 1], L2(Γ 1, R3)

)
.

We define the set of kinematically admissible variations of the displacement
in the following way:

V 0 =
{
v ∈ H1 : v(x) = 0, x ∈ Γ 1

}
,

where H1 := W 1,2(Ω,R3) is the Hilbert space.

Theorem 1 (was proved in [7]). In the framework of the hypotheses (H1)–
(H7) the following statements are true:

(i) The unique strict solution of the EVP (2.bri) exists, i.e. the absolutely con-
tinuous function u ∈ C0,1([0, 1], V 0), u(0) = 0 with the strong derivative u̇,
satisfying the equation (2.bri) for a.e. t ∈ (0, 1).

(ii) The map (f, F, uγ) 7→ u is continuous.

Remark 2. For the constitutive relation S the main condition (H1) is necessary
and sufficient. It is the general criterion of mathematical correctness for plasticity
models. This question is in detail discussed in [7]. Therefore, we rewrite this
condition for the matrix function Ṗ (ε, ε̇), usually used in the modern theory of
plasticity [2,7,12].

(H1) Matrix function Ṗ (A,B) is continuous in B and satisfies the following
estimate for every A,B1, B2 ∈ S3

Cijkm

(
Ṗkm(A,B1)− Ṗkm(A,B2)

) (
B1
ij −B2

ij

)
< 2µ

∣∣B1 −B2
∣∣2 . (3.bri)

This condition does not coincide with the Lipschitz condition of the matrix
function Ṗ (A,B) over second matrix argument. It is easily to get convinced that
the Lipschitz condition is stronger than the condition (3.bri). In the following section
we show that this condition is independent and does not coincide with the classic
Drucker’s hypothesis based on the thermodynamical postulates [2,3,9,10].

3 Example of analysis of plasticity models

The independence of the main necessary and sufficient condition (3.bri) of mathe-
matical correctness of plasticity EVP (2.bri) we illustrate for the generalized model
of plasticity with linear isotropic-kinematic hardening, ideal Bauschinger’s effect,
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dilatation and internal friction [12]

Ṗkm = (1 + h0 + 3λΛ)−1H (ρe − ε∗ + λ tr(ε− P ))×
×H

(
cos γ + λε̇−1

e tr(ε̇)
)
ρ−2
e (ρkm + Λρeδkm)(ρpq + λρeδpq)ε̇pq,

ρkm = εDkm − (1 + h0)PDkm, cos γ = (ρeε̇e)−1ρij ε̇
D
ij , (4.bri)

ρe = |ρij | , ε̇e =
∣∣ε̇Dij ∣∣ ,

H(q) = 0 for q < 0 and H(q) = 1 for q ≥ 0,

where h0 is the parameter of plastic hardening, λ ≥ 0 and Λ ≥ 0 are the
parameters of dilatation and internal friction, respectively; ε∗ ≥ 0 is the limit of
elastic strain, ADij = Aij − 1

3 tr(A)δij are the components of deviatoric part and
tr(A) = δijAij is the trace (first invariant) of matrix A.

For λ = Λ = 0 model (4.bri) equals the classic model of plasticity with linear
isotropic-kinematic hardening and ideal Bauschinger’s effect [1,2,3]. In this case
tr(P ) = 0 and the constitutive relation (4.bri) is associated with the Mises yield
surface ρe − ε∗ = 0 [2,3].

For λ = Λ 6= 0 the constitutive relation (4.bri) is associated with the yield sur-
face for strain ρe − ε∗ + λ tr(ε− P ) = 0. This surface for h0 = 0 corresponds to
the Mises-Schleiher yield surface for stress

∣∣σD∣∣+ c−1λ tr(σ)− 2µ ε∗ = 0, where
c = 3k0/(2µ) [11]. For λ 6= Λ the constitutive relation (4.bri) is non-associated with
some yield surface. In both cases tr(P ) 6= 0 what is a well known experimental
phenomenon of dilatation [11,12].

Let matrices A,B1, B2 ∈ S3 be arbitrary. Then from condition (3.bri) for model
(4.bri) we have

Cijkm
(
Ṗkm(A,B1)− Ṗkm(A,B2)

) (
B1
ij −B2

ij

)
≤

≤ (1 + h0 + 3λΛ)−1
[ ∣∣B1 −B2

∣∣+ λ tr
(
B1 −B2

) ]
×

×
[

2µ
∣∣B1 −B2

∣∣+ 3k0Λ tr
(
B1 −B2

) ]
≤

≤ 2µΨ(λ, Λ, h0)
∣∣B1 −B2

∣∣2 ,
where

Ψ =
(1 +

√
3 λ)(1 +

√
3 cΛ)

1 + h0 + 3λΛ
.

The constant c = (1 + ν)/(1 − 2ν) ≥ 1, because for real materials the Poisson
ratio 0 ≤ ν < 1/2 [1,2,3]. Therefore, for parameters λ, Λ ≥ 0 the condition (3.bri) is
true (Ψ < 1) only for the positive parameter of plastic hardening, satisfying the
following estimate

h0 > 3(c− 1)λΛ +
√

3 (λ+ cΛ) ≥ 0. (5.bri)

If this condition is disturbed then the effects of bifurcation and internal
instability exist in the plasticity EVP (2.bri) [9,12].

The classic Drucker’s hypothesis σ̇ij Ṗij ≥ 0 is the only necessary condition
for the uniqueness of solution of EVP (2.bri). For the model (4.bri) it has the following
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form

h0 ≥ 3 (cΛ− λ)Λ. (6.bri)

For example, if Λ = 0, λ > 0 then the condition (5.bri) is carried out only
for h0 >

√
3λ > 0, but the condition (6.bri) is fulfilled for h0 ≥ 0. This simple

example proves that the classic Drucker’s hypothesis, based on thermodynamical
postulates [2,3,9,10], does not provide the existence of solution of the plasticity
EVP (2.bri).

4 Computational method

For the numerical solution of the plasticity EVP (2.bri) the standard spatial piece-
wise linear finite element approximation is here used: Ωh = ∪Th, Γh = ∂Ωh and
vol(Ω\Ωh)→ 0, area(Γ\Γh)→ 0 for h→ 0 regularity, where Th is the simplest
simplex and h is the step of approximation [13].

For the displacement the following piecewise linear approximation is used

uh(t, x) = Uγ(t)Φγ(x) (γ = 1, 2, . . . ,m),

where Uγ ∈ R3 is the displacement in the node xγ , Φγ : Ωh → R is the standard
continuous piecewise linear function such that Φγ(xα) = δαγ (α, γ = 1, 2, . . . ,m),
m is the number of nodes. In this case the subspace V 0 ⊂ H1 is approximated
by the subspace V 0

h ⊂ R3m

V 0
h =

{
U ∈ R3m : Uα = 0, xα ∈ Γ 1

h

}
.

The plasticity EVP (2.bri) is approximated by the Cauchy problem for nonlinear
system of ordinary differential equations: vector function U : [0, 1] → V 0

h must
satisfy the initial condition U(0) = 0 and the following differential equation for
almost every t ∈ (0, 1)

Apq(U, U̇)U̇q = Bp, (7.bri)

where U is the global vector of free nodal displacements, A is the global shear
stiffness matrix and in the end B is the global vector of nodal speeds of in-
fluences; p, q = 1, 2, . . . , 3m. Here Up = Uγi with index p = 3(γ − 1) + i. Due to
the properties of the real plasticity models this equation is principally unsolved
regarding U̇ in the explicit form.

For some plasticity models the differential system (7.bri) can be stiff. The main
cause of this phenomenon consists of the following: matrix A has lines with
significantly different factors (it is badly determined) for the small parameter of
plastic hardening h0 � 1 [4,5,6,7].

Example 3. Let the bounded rigid body Ω ⊂ R3 with the regular boundary Γ
consist of incompressible material describing by the model (4.bri) with parameters
λ = Λ = 0. The body is fastened on a portion Γ 1 of the boundary (i.e. uγ ≡ 0)



The Abstract Cauchy Problem in Plasticity 67

and deformed by the external forces. In this case the set of kinematically admis-
sible displacements is

V 0
div =

{
u ∈ V 0 : div(u(x)) = 0, x ∈ Ω

}
.

We use the following approximation for unknown displacement

uN (t, x) = Yr(t)wr(x) (r = 1, . . . , N),

where {wr}Nr=1 ⊂ V 0
div are the basic functions.

In this case the plasticity EVP (2.bri) is approximated by the Cauchy problem for
nonlinear system of ordinary differential equations: vector function Y : [0, 1]→
RN must satisfy the initial condition Y (0) = 0 and the following differential
equation for almost every t ∈ (0, 1)

Aqr(Y, Ẏ )Ẏr = Bq (q, r = 1, 2, . . . , N), (8.bri)

where

Aqr(Y, Ẏ ) =
∫
Ω

Ψqr(Y, Ẏ )|ε(wq)| |ε(wr)| dx,

Ψqr = cos γqr − (1− ψ)H(ρe − ε∗)H(cos γ) cosγq cos γr,

Bq = (2µ)−1L(t, wq).

Here and in what follows the summing over indices q, r, s does not used, ρe =
ρe(uN ), γ = γ(uN , u̇N ) from (4.bri), the parameter ψ = h0/(1 + h0) and

cos γs = (ρe |ε(ws)|)−1
ρijεij(ws) (s = q, r),

cos γqr = (|ε(wq)| |ε(wr)|)−1
εij(wq)εij(wr).

Due to the properties of the finite element approximation the matrix A is
symmetrical and has the largest elements on the main diagonal

Aqq(Y, Ẏ ) =
∫
Ω

Ψqq(Y, Ẏ )|ε(wq)|2 dx,

Ψqq =
[
1− (1 − ψ)H(ρe − ε∗)H(cos γ) cos2 γq

]
.

If the solution of problem (8.bri) has the zone of active deformation with a small
curvature trajectory (γ ∼ 0) then for basic functions wq with cos γq ≈ 1 the
factors Ψqq ≈ ψ. In the zone of passive deformation, or for a large curvature
trajectory (γ ∼ π/2), or for basic functions wr with cos γr ≈ 0 the factors
Ψrr ≈ 1.

It is easily seen that for the small parameter of plastic hardening (h0 � 1)
the global shear stiffness matrix A has lines with significantly different factors
(it is badly determined). As a result, the following estimate was proved in [4,6]

cond(A) :=
νmax

νmin
≥ C N2h−1

0 � 1,

where cond(A) is the condition number of matrix A; νmax and νmin are the largest
and smallest eigenvalues of the matrix A, respectively, and C = const(N, h0).
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According to standard technique [14,15] for the solution of the unsolved re-
garding derivative and stiff problem (7.bri) the implicit Euler scheme is used

Apq(Uk + τV, V )Vq = Bk+1
p , V ∈ V 0

h ,

Uk+1 = Uk + τV, U0 = 0,
(9.bri)

where index k corresponds to the parameter tk = kτ , k = 0, 1, . . . , K − 1;
τ = 1/K and K � 1. Here and in what follows the summing over index k does
not used.

For the numerical solution of algebraic system (9.bri) for every k = 0, 1, . . . , K−1
the decomposition method of adaptive block relaxation (ABR) is used. This
method disregards the condition number of the matrix A and has the following
description [4,5,6,7].

Step 1. As the initial approach the explicit solution is used (here O is the
zero vector)

Y (0)
q = A−1

pq (Uk, O)Bk+1
p .

Step 2. Due to the properties of the finite element approximation the ma-
trix A has the largest elements on the main diagonal. Therefore, by the cur-
rent approach Y (m) variables are separated on quick and slow ones by the
proximity criterion of appropriate diagonal elements of the matrix A(m) =
A
(
Uk + τY (m), Y (m)

)
I(m)
s =

{
p = 1, 2, . . . , N : ∆(s−1)/L ≤ A(m)

pp /d(m) < ∆s/L
}
,

I
(m)
L = {1, 2, . . . , N}\

L−1⋃
s=1

I(m)
s ,

where s = 1, 2, . . . , L − 1; ∆ = D(m)/d(m); D(m) and d(m) are the largest and
smallest diagonal elements of the matrix A(m), respectively, L = int(ω lg∆) + 1
is the number of blocks (1 ≤ L ≤ N), ω ≥ 0 is the decomposition parameter.

Step 3. The block version of the Seidel method is used [16]. In practice one
step of this method is enough (here the summing over index s does not used)

Y (m+1) =
{
w1 ⊕ w2 ⊕ · · · ⊕ wL

}T
,

wsi = [Λss]−1
ij

(
Ξsj −

s−1∑
t=1

Λstjrw
t
r −

L∑
t=s+1

Λstjrv
t
r

)
,

Λst =
{
A(m)
pq : p ∈ I(m)

s , q ∈ I(m)
t

}
,

Ξs =
{
Bk+1
p : p ∈ I(m)

s

}
, vt =

{
Y (m)
q : q ∈ I(m)

t

}
.

It is easily seen that the ABR method practically disregards the condition
number of the matrix A(m) because

cond (Λss) ∼ cond1/L
(
A(m)

)
� cond

(
A(m)

)
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for every s = 1, 2, . . . , L even if L = 2.
By the new approach Y (m+1), variables are separated on quick and slow ones

too, etc.
Step 4. For termination of the iteration process the following condition is

used ∣∣∣A(m)
pq Y (m)

q −Bk+1
p

∣∣∣ < ξ, (10.bri)

where ξ is the prescribed precision.

Theorem 4. In the framework of the hypotheses (H1)–(H7) the following state-
ments are true:

(i) The solutions of systems (7.bri) and (9.bri) exist.
(ii) The ABR method converges: lim

m→∞
Y (m) = V .

Proof. According to the properties of the finite element approximation for the
constitutive relation satisfying the conditions (H1)–(H3) the vector function
{Apq(U + τY, Y )Yq} : R3m → R3m is strongly monotonous in Y for every
U ∈ R3m and τ ∈ [0, 1] [8,13]. Therefore, according to the classic results of
the theory of ordinary differential equations [15] and algebra [16] the statements
(i) and (ii) are true.

Remark 5. In the computational mathematics the Schwarz decomposition meth-
ods are well known [17]. But they are used only for linear BVPs without the main
idea of adaptiveness (see References in [17]).

5 Numerical results

The numerical analysis was realized on series of BVPs with model (4.bri) for the ax-
isymmetrical kinematic deformation of long round tube fastened on the internal
radius ρ = a. The complicated plane deformation was given by different regimes
of the displacement on the external radius ρ = b [4,6,7]: (here the summing over
indices ϕ and ρ does not used)

u0
ϕ(t) = CϕZϕ(t), u0

ρ(t) = CρZρ(t)

where t ∈ [0, 1], Cϕ = ε∗b(1−a2/b2) and Cρ =
√

3
2 Cϕ are the maximum external

displacements for which the clearly elastic deformation is realized in the frame-
work of the classic model of plasticity (i.e. for the model (4.bri) with parameters
λ = Λ = 0) [6].

In the computer experiments the following data were used: a = 10, b = 20
(mm), k0 = 105, µ = 7.5 · 104 (MPa), ε∗ = 5 · 10−3, h0 = 0.001 and λ = Λ = 0 in
the model (4.bri). The radius [a, b] was discretized by 50 segments and the standard
piecewise linear approximation was used for unknown functions uϕ(t, ρ) and
uρ(t, ρ) such that uϕ ≡ 0, uρ ≡ 0 for ρ = a and uϕ ≡ u0

ϕ(t), uρ ≡ u0
ρ(t) for ρ = b.
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Fig. 1. The tangential displacement in the end of the simplest radial regime

The ABR method with the decomposition parameter ω = 0.5 was compared
with the standard method of simple iterations which equals the ABR method
with parameter ω = 0.

For the simplest radial regime of clear twisting Zϕ(t) = 10t, Zρ(t) ≡ 0 in
the implicit Euler scheme (9.bri) K = 100 steps over the parameter of loading were
used. In figure 1 the following solutions in the end of process are shown: curves
1 and 2 correspond to the standard method with the single ξ = 10−3 and double
ξ = 10−5 precision in the criterion (10.bri), respectively; curve 3 corresponds to the
ABR method with the single precision. The last numerical solution (curve 3)
practically equals the analytical solution which was built in [4,5].

For the complicated cyclic regime Zϕ(t) = 10 sin(4πt), Zρ(t) = 10 sin(2πt) in
the scheme (9.bri) K = 800 steps over parameter t ∈ [0, 1] were used. In figure 2 the
following solutions in the end of process are shown: curves 1 and 2 correspond to
the standard method with the single and double precision, respectively; curve 3
corresponds to the ABR method with the single precision.

In all experiments the time of calculation with single precision was approx-
imately equal for both methods; whereas with double precision, the time of
calculation was longer for the standard method than for the ABR method.

It is easily seen that, for finding the displacement and the time of calculation,
the ABR method has advantages over the standard method.
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Fig. 2. The tangential displacement in the end of the cyclic regime

6 Conclusion

The questions of mathematical correctness and effective numerical solution for
the plasticity BVP have been discussed. By using the evolution variational
method: 1) the general algebraic criterion of mathematical correctness for plas-
ticity models has been constructed; 2) the effective qualitative FE analysis has
been realized. As a result, an original implicit adaptive strategy has been pre-
sented for the numerical simulation of practically important plastic and similar
effects in the Mechanics of Solids.
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