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Abstract. In this paper I discuss two questions on p-Laplacian type oper-
ators: I characterize sets that are removable for Hölder continuous solutions
and then discuss the problem of existence and uniqueness of solutions to
−div(|∇u|p−2∇u = µ with zero boundary values; here µ is a Radon mea-
sure. The joining link between the problems is the use of equations involving
measures.

MSC 2000. 35J60, 35J70

1 Removable sets

Throughout this talk we let Ω be an open set in Rn and 1 < p < ∞ a fixed
number. Continuous solutions u ∈ W 1,p

loc (Ω) of the equation

−divA(x,∇u) = 0 (1.1)

are called A-harmonic in Ω; here ARn ×Rn → Rn is assumed to verify Leray-
Lions type conditions, that is, for some constants 0 < λ ≤ Λ <∞:

the function x #→ A(x, ξ) is measurable for all ξ ∈ Rn , and

the function ξ #→ A(x, ξ) is continuous for a.e. x ∈ Rn ;
(1.2)

for all ξ ∈ Rn and a.e. x ∈ Rn

A(x, ξ) · ξ ≥ λ|ξ|p , (1.3)

|A(x, ξ)| ≤ Λ|ξ|p−1, (1.4)

(A(x, ξ) −A(x, ζ)) · (ξ − ζ) > 0 (1.5)
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whenever ξ != ζ. A prime example of the operators is the p-Laplacian

−∆pu = −div(|∇u|p−2∇u).

Here we understand the divergence in the sense of distributions, i.e.

−divA(·,∇u)(ϕ) =
∫
A(x,∇u) · ∇ϕdx , ϕ ∈ C∞

0 Ω .

Definition. We say that a closed set E ⊂ Ω is removable for A-harmonic func-
tions in F , if every u ∈ F that is A-harmonic in Ω \E is A-harmonic in the whole
of Ω.

Examples. The following results are well known and can be found e.g. in [HKM]
or [S1].

A set E is removable for A-harmonic functions in W 1,p
loc (Ω) if and only if

capp(E) = 0; here the p-capacity of the set E is defined as

capp(E) = inf
ϕ

∫
Rn

(
|∇ϕ|p + |ϕ|p

)
dx ,

where the infimum is taken over all ϕ that are ≥ 1 on an open neighborhood of
E. That cappE = 0 roughly means that the Hausdorff dimension of E does not
exceed n− p.

Similarly, E is removable for A-harmonic functions in L∞(Ω) if and only if
capp(E) = 0.

Further, E is removable for A-harmonic functions in Ls(Ω) if and only if
capq(E) = 0, where

p < q =
ps

s− p ≤ n .

Next, I consider the case where F = C0,α(Ω), 0 < α ≤ 1. The following
theorem was proved in [KZ]:

Theorem 1.1. A closed set E is removable for A-harmonic functions in C0,α(Ω)
if and only if E is of n− p+α(p− 1) Hausdorff measure zero. For the only if part
we assume that 0 < α < κ, where κ is the best local Hölder continuity exponent
for the A-harmonic functions.

For the p-Laplacian κ = 1. In the case where α = κ the necessity part does
not hold. Then the problem is a way more difficult. For instance, in the case of the
classical Laplacian the question which sets are removable for Lipschitz continuous
p-harmonic functions was treated by David andMattila [DM] in the case n = p = 2:
a compact set E of finite 1-Hausdorffmeasure is removable for Lipschitz continuous
harmonic functions if and only if E is purely unrectifiable. The other cases remain
open.

Carleson [C] proved Theorem 1.1 for the Laplacian (p = 2). As to the quasi-
linear case, Heinonen and Kilpeläinen [HK], 4.5 proved the sufficiency part for
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α = 1. Trudinger and Wang [TW1] had a version of the sufficiency under the
assumption that u has an A-superharmonic extension to Ω, which assumption can
be dispensed with for small α.

Our method of proof combines some ideas from [K], [L], and [TW1]. We use
solutions of equations

−divA(x,∇u) = µ ,

where µ is a nonnegative Radon measure from W−1,p′
loc (Ω).

I shall give a1

Sketch for proof of Theorem 1.1. Suppose first that

Hn−p+α(p−1)(E) = 0

and let u ∈ C0,α(Ω) be A-harmonic in Ω \ E. Let v be the smallest A-superhar-
monic function not smaller than u, i.e. v is the pointwise infimum of all functions
ṽ ∈ W 1,p

loc (Ω) such that
−divA(x,∇ṽ) ≥ 0

and ṽ ≥ u in Ω. Then v is A-superharmonic [HKM] and there is a nonnegative
Radon measure µ such that

µ = −divA(x,∇v) .

We claim that

CLAIM:
µ(B(x, r)) ≤ crn−p+α(p−1)

if B(x, 8r) ⊂ Ω.
We consider two separate cases: Case i): u(x) = v(x). Then one can show by

using the weak Harnack inequality that

osc v,B(x, r) ≤ c osc u,B(x, 2r) ≤ c rα ,

whence for a usual cut-off function η ∈ C∞
0 B(x, 2r)

µ(B(x, r)) ≤
∫
B(x,2r)

ηp dµ =
∫
B(x,2r)

A(y,∇v) · ∇ηp dy

≤ cr(n−p)/p
(∫

B(x,2r)

|∇v|pηp dy
)(p−1)/p

≤ c rn−p osc v,B(x, 2r)p−1

≤ c rn−p+α(p−1) ,

which shows the claim in the case i).

1 A detailed proof can be found in [KZ]
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Case ii): u(x) < v(x). Now either

B(x, r) ∩ {u = v} = ∅ ,

whence µ = 0 in B(x, r), or there is a point y ∈ B(x, r) such that u(y) = v(y).
Now we have by case i) that

µ(B(x, r)) ≤ µ(B(y, 2r)) ≤ c rn−p+α(p−1) ,

as desired.
Using the estimate above we can easily conclude the proof for the “if” part:

Let K ⊂ E be compact and ε > 0. Choose balls B(xj , rj), xj ∈ K so that∑
j

r
n−p+α(p−1)
j < ε .

Then by the claim above

µ(K) ≤
∑
j

µ(B(xj , rj)) ≤
∑
j

r
n−p+α(p−1)
j < ε ,

whence
µ(E) = 0 .

It follows that v is A-harmonic in Ω.
Next, we make the same construction from below: let w be such that −w is

the smallest A-superharmonic function not smaller than −u. Arguing as above,
we find that w is also A-harmonic. Because w and v coincide on the boundary of
Ω with u, the uniqueness yields that v = w. It follows that u = v is A-harmonic
in Ω.

To prove the “only if” part we need the following regularity theorem which is
of independent interest.

Theorem 1.2. Suppose that u ∈ W 1,p
loc (Ω) and µ = −divA(x,∇u) is a nonnega-

tive Radon measure. Then u ∈ C0,α(Ω) if and only if there is a constant M > 0
such that

µ(B(x, r)) ≤Mrn−p+α(p−1)

whenever B(x, 3r) ⊂ Ω. For the if part we assume that 0 < α < κ, where κ is the
best local Hölder continuity exponent for the A-harmonic functions.

If Hn−p+α(p−1)(K) > 0 for some compact K ⊂ E, then by Frostman’s lemma
([AH], 5.1.12, [C]) there is a nonnegative Radon measure µ on K with µ(K) > 0
and

µ(B(x, r) ≤ rn−p+α(p−1) .

Any solution u ∈ W 1,p
loc (Ω) to

−divA(x,∇u) = µ

is A-harmonic in Ω \E [M], 3.19 and u ∈ C0,α(Ω) by Theorem 1.2, but u fails to
have an A-harmonic extension to E, since µ(E) > 0.
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2 Uniqueness

A question that is under an intensive research is the unique solvability of the
Dirichlet problem {

−divA(x,∇u) = µ on Ω

u = 0 on ∂Ω .
(P)

Choosing µ = δ, the Dirac measure, one easily sees that |∇u|p−1 cannot in general

be in Ln/(n−1)
loc . Thus the best regularity one can hope for is not W 1,p(Ω), but

W 1,n(p−1)/(n−1)−(Ω). We reformulate the problem
−divA(x,∇u) = µ on Ω

u ∈
⋂

q<n(p−1)
n−1

W 1,q
0 (Ω) . (P’)

The existence of solutions to problem (P′) is well known, cf. [BG]: If µ is in the
dual of W 1,p(Ω), this is the classical Leray-Lions result. If not, then approximate
µ by smooth nonnegative functions µj with uniformly bounded masses such that

µj → µ weakly in the sense of measures.

Then solve the problem{
−divA(x,∇uj) = µj on Ω

uj = 0 ∈W 1,p
0 (Ω)

and prove the estimate

||uj ||1,q ≤ c for all q <
n(p− 1)
n− 1

.

Then infer that there is
u ∈

⋂
q<n(p−1)

n−1

W 1,q
0 (Ω)

such that
uj → u and ∇uj → ∇u a.e.

so that
−divA(x,∇u) = µ .

What about the uniqueness?

Example (Serrin [S2]). Given q < 2 = p, there is a linear operator

Lu = −diva(x,∇u)

and u ∈ W 1,q
0 (Ω) such that u !≡ 0, but Lu = 0. This example shows that the

uniqueness of solutions to (P′) fails in general (at least if n ≥ 3) and one needs an
extra condition to get both existence and uniqueness.
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One would like to prove the uniqueness for (P′) by using the difference of two
solutions as the test function. This is, however, not legitimate. There are different
attempts to treat the uniqueness by changing the concept of solution that allows
testing by (truncations of) solutions: For example,

– entropy solution [BBGGPV] i.e.∫
A(x,∇u) · ∇Tk(u − ϕ) dx ≤

∫
Tk(u− ϕ) dµ

for all ϕ ∈ C∞
0 Ω and k > 0; here Tk(t) = min

(
max(t,−k), k

)
is the truncation

at level k.
– renormalized solution [DMOP] i.e.∫

A(x,∇u) · ∇(h(u)ϕ) dx =
∫
h(u)ϕdµ

for all ϕ ∈ C∞
0 Ω and h ∈ W 1,∞(R) with h(u)ϕ ∈W 1,p(Ω).

The following result has been proved by several authors, see [BGO], [KX],
[DMOP].

Theorem 2.1. If µ is absolutely continuous with respect the p-capacity, then there
is a unique entropy/renormalized solution of (P′) with

Tku ∈ W 1,p(Ω) for all k > 0 .

Trudinger and Wang [TW2] have recently proved the following very interesting
result which does not employ any artificial concept of solutions:

Theorem 2.2. If Ω is Lipschitz and µ is absolutely continuous with respect the
p-capacity, then there is a unique solution of (P′) with

Tku ∈ W 1,p(Ω) for all k > 0 .

In the borderline case p = n there are a couple of good uniqueness results;
usually they apply for operators satisfying a strong monotonicity assumption.
Therefore we formulate them only for the n-Laplacian: Suppose that p = n, Ω
is smooth and

A(x, ξ) = |ξ|n−2ξ .

Then

[GIS] There is a unique solution u of (P) in W 1,n)(Ω), i.e.

u ∈
⋂
q<n

W 1,q
0 (Ω) and sup

ε>0
ε

∫
|∇u|n−ε <∞ .
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[DHM] There is a unique solution u of (P′) such that

u ∈
⋂
q<n

W 1,q
0 (Ω) and ∇u ∈ weakLn(Ω) ,

i.e.
sup
t>0

tn|{∇u > t}| <∞ .

Finally Zhong proved in his thesis that

[Z] For p = n and Ω “smooth” there is a unique solution u of (P’).

There are other partial results concerning the uniqueness, but for p < n the
problem seems not to be well understood yet.
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