
EQUADIFF 10

Martin Stynes; R. Bruce Kellogg
N -widths for singularly perturbed problems

In: Miroslav Krbec and Jaromír Kuben (eds.): Proceedings of Equadiff 10,
Czechoslovak International Conference on Differential Equations and Their
Applications, Prague, August 27-31, 2001, [Part 1] Invited Lectures. Masaryk
University, Brno, 2002. CD-ROM issued as a complement to the journal edition
Mathematica Bohemica 2002/2. pp. 197--205.

Persistent URL: http://dml.cz/dmlcz/700323

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/700323
http://project.dml.cz


Equadiff 10, August 27–31, 2001
Prague, Czech Republic

Equadiff 10 CD ROM
Invited Lectures, pp. 197–205

N -widths for singularly perturbed problems

Martin Stynes1 and R. Bruce Kellogg2

1 Mathematics Department
National University of Ireland

Cork, Ireland
Email: m.stynes@ucc.ie

2 P.O. Box 698
Landrum, SC 29356, USA

Email: kellogg@ipst.umd.edu

Abstract. Kolmogorov N-widths are an approximation theory concept
that, for a given problem, yields information about the optimal rate of
convergence attainable by any numerical method applied to that problem.
We survey sharp bounds recently obtained for the N-widths of certain
singularly perturbed convection-diffusion and reaction-diffusion boundary
value problems.

MSC 2000. 41A46, 34E15, 35B25, 65L10, 65N15

Keywords. N-width, singularly perturbed, differential equation, bound-
ary value problem, convection-diffusion, reaction-diffusion

1 Introduction

Singularly perturbed differential equations arise in the modelling of various phys-
ical processes. For example, the Navier-Stokes equations of computational fluid
dynamics are singularly perturbed at high Reynolds number. Such equations typ-
ically exhibit solutions with layers, which cause severe computational difficulties
for standard numerical methods. Consequently many papers have been devoted to
the construction and analysis of accurate numerical methods for singularly per-
turbed problems. Nevertheless, relatively little attention has been paid to a basic
question that underlies such methods: given a specified amount of smoothness of
the problem data in a singularly perturbed problem, what is the optimal rate of
convergence that can be attained by a numerical method? We shall survey the
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main results of four recent papers [5,6,7,9] that throw light on the answer to this
fundamental question.

These papers show that for certain classes of singularly perturbed problems,
when one is given a certain amount of smoothness of the data, the rate of con-
vergence that can in general be attained by any numerical method is less than
that attainable for classical non-singularly perturbed problems. Moreover, one can
precisely quantify the amount of deterioration in the rates of convergence as a
function of the singular perturbation parameter.

When computing solutions to classical boundary-value problems, one uses the
approximation-theoretic concept of N -widths to quantify optimal attainable rates
of convergence. For example,N -widths tell us that for Poisson’s equation−∆u = f
on Ω, where the boundary ∂Ω is smooth, if f lies only in L2[0, 1] and not in any
higher-order Sobolev space, then in general any numerical method for computing
u can be at best second-order convergent in the L2 norm. Lorentz [8] and Pinkus
[11] discuss the computation and application of N -widths, and Aubin [2] describes
their use in a finite element context. Results similar to that just described are well
known in the context of elliptic differential equations with moderate coefficients,
but to obtain similar results for singularly perturbed problems is more difficult.

The basic definition is as follows. Given a set S ⊂ L2(Ω), where Ω is some
domain, then the N -width of S in the L2 norm is defined to be

dN (S,L2(Ω)) = inf
XN

sup
u∈S

inf
v∈XN

||u− v||L2(Ω),

for N = 0, 1, · · · , where the outer infimum is taken over all subspaces XN of
dimension N that lie in L2(Ω). Thus dN measures how well a “worst” point u ∈ S
can be approximated using N -dimensional subspaces. The quantity dN (S,L2(Ω))
might be infinite; it is finite for all N if and only if S is bounded in L2(Ω),
and dN (S,L2(Ω)) → 0 as N → ∞ if and only if S is compact in L2(Ω). If
dN (S,L2(Ω)) = O(N−α) as N → ∞, where α is the largest positive constant for
which this equation holds, then any numerical method designed to approximate
points in S can in general attain at best O(N−α) convergence in the L2(Ω) norm
when N degrees of freedom are used.

2 Methodology and Notation

The singularly perturbed elliptic boundary value problems studied in this paper
have constant coefficients and a small singular perturbation parameter ε multiplies
their second-order derivatives; that is, 0 < ε << 1. When the equation has no first-
order derivative term, we say it is of reaction-diffusion type; when a first-order term
is present, we say the problem is of convection-diffusion type. This terminology is
drawn from the physical models where such equations are derived.

The notation C (sometimes subscripted) denotes a generic positive constant
that is independent of ε and of the dimension of any approximating subspace. Note
that C may take different values in different places.
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Let m be a non-negative integer. Write Hm(Ω) for the usual Sobolev space
of functions whose derivatives up to the mth order are square-integrable over
a domain Ω, where Ω may lie in R1 or R2. In particular H0(Ω) ≡ L2(Ω). We use
‖ · ‖m,Ω to denote the standard Hm(Ω) norm. Standard interpolation theory [3]
can then be used to define the spaces Hs(Ω) for s ≥ 0. Let Bs(Ω) denote the unit
ball in Hs(Ω).

When Ω ⊂ R2, set Γ = ∂Ω; the spaces Hm(Γ ) are defined analogously to
Hm(Ω) and the trace spaces Hs(Γ ) are defined as in [1].

From the classical theory ofN -widths there is a useful classical result [8, p. 140]:

Theorem 2.1. Let l2 be the usual Hilbert space of square summable sequences
{ak}∞0 , with norm (

∑∞
0 a2

k)
1/2. Let 0 < δk ≤ ∞ be a monotone decreasing se-

quence. Set D = {{ak} :
∑∞

0 δ−2
k a2

k ≤ 1}. Then dN (D, l2) = δN , for n = 0, 1, · · · .
Given a differential equation Lu = f on some domain Ω with u = 0 on its

boundary ∂Ω, define the solution operator E by u = Ef . Now, given f ∈ T for
some set T , we want to compute the N -width dN (S,L2(Ω)), where S = ET .

The methodology of [5,6,7] is the following:
(i) upper bound for dN (S,L2(Ω)): carefully construct an N -dimensional sub-

space SN of L2(Ω) with good approximation properties, then compute

sup
u∈S

inf
xN∈SN

‖u− xN‖0,Ω.

(ii) lower bound for dN (S,L2(Ω)): choose T̂ ⊂ T in such a way that the term
dN (Ŝ, L2(Ω)) (where Ŝ = ET̂ ) can be computed using Theorem 2.1, via Fourier
series expansions and Parseval’s equation.

Of course one aims to obtain upper and lower bounds that have the same
asymptotic behaviour as functions of N and ε, so that the precise asymptotic
behaviour of dN is determined.

The somewhat different approach used by Melenk [9] will be described later.

3 Reaction-diffusion and convection-diffusion problems in
one dimension

This Section is based on [5]. Let Ω be the one-dimensional domain (0, 1).
We begin by considering a reaction-diffusion problem with Dirichlet boundary

conditions. Let f ∈ Hk(Ω), where k is a non-negative integer. Let u = Ef be the
solution of the two-point boundary value problem

−εu′′ + u = f on (0, 1), u(0) = u(1) = 0. (3.1)

Using Fourier sine series expansions one obtains

Theorem 3.1 ([5, Theorem 2.3]). Let k be a non-negative integer. There are
positive constants C1(k) and C2(k) such that

C1(k)
Nk(1 + εN2)

≤ dN (E(Bk(Ω)), L2(Ω)) ≤ C2(k)
Nk(1 + εN2)

, for N = 0, 1, · · ·
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Consider now the relationship of Theorem 3.1 to the finite element method. In
the case ε ≈ 1, the N -width dN (E(Bk), L2(Ω)) is of order N−(k+2) as N → ∞.
The usual finite element error analysis shows that this approximation order is at-
tained by the finite element approximation using a uniform mesh, and numerical
experiments confirm this result. In comparison with this classical result, the singu-
larly perturbed nature of reaction-diffusion problems will in practice cost a factor
N2 in convergence rates for data of given smoothness; this happens because typi-
cally N2 << ε−1, so the term εN2 in Theorem 3.1 will not contribute significantly
to the rate of convergence.

For example, in order to obtain second-order convergence in practice for small
ε, one must in general have f ∈ H2(Ω). If f ∈ H2(Ω) and we solve (3.1) using
a Galerkin finite element method with piecewise linear functions on a Shishkin
mesh, then it is easy to modify the analysis of [13] to prove that

‖u− uN‖0,Ω ≤ CN−2 ln2N‖f‖2,Ω, (3.2)

where N is the dimension of the trial space and uN is the computed solution. We
see from Theorem 3.1 that in the case k = 2, this method is almost optimal (up
to the ln2N factor) with respect to the given data. From a practical point of view
the logarithmic factor in (3.2) is not important in assessing the accuracy of the
Shishkin mesh method.

We now consider problems where a first-order derivative appears in the differ-
ential equation. Consider f ∈ Hk(Ω), where k is a non-negative integer. Now let
u = Ef denote the solution of the two-point boundary value problem

Lu := −εu′′ + u′ = f on (0, 1), u(0) = u(1) = 0. (3.3)

Unlike the reaction-diffusion case, the presence of the convection term means
that one must use full Fourier expansions to prove

Theorem 3.2 ([5, Theorem 3.2]). Let k be a non-negative integer. There are
positive constants C1(k) and C2(k) such that

C1(k)
Nk+1(1 + εN)

≤ dN (E(Bk(Ω)), L2(Ω)) ≤ C2(k)
Nk+1(1 + εN)

, for N = 0, 1, , · · · .

Despite the extensive literature dealing with (3.3), we know of no finite element
method error bound for this problem that attains (or comes close to) the upper
bound of Theorem 3.2.

In the case ε ≈ 1, the N -width dN (E(Bk(Ω)), L2(Ω)) is of order N−(k+2) as
N →∞. In comparison with this classical result, the singularly perturbed nature
of convection-diffusion problems will in practice cost a factor N in convergence
rates for data of given smoothness; this happens because typically N << ε−1,
so the term εN in Theorem 3.2 does not contribute significantly to the rate of
convergence.

We see that for convection-diffusion problems, the approximability of the solu-
tion does not deteriorate as badly as in the reaction-diffusion case; compared with



N-widths for singularly perturbed problems 201

the case ε ≈ 1, one power of N is lost here, while in Theorem 3.1 the loss was
O(N2). Thus, to obtain a given order of convergence, in practice more smooth-
ness of the data will be needed in the reaction-diffusion case. (This should not be
interpreted as saying that convection-diffusion problems are easier to solve numer-
ically than reaction-diffusion ones, since other considerations such as stability of
numerical methods matter also.)

4 Reaction-diffusion problems in two dimensions

Consider now the analyses of [6] and [9]. Let Ω be an open bounded domain in R2

with smooth boundary Γ . In this Section we consider the boundary value problem

Lu := −ε∆u+ u = f in Ω, where u = 0 on Γ, (4.1)

and the parameter ε lies in (0, 1]. This problem is well-posed; if f ∈ Hs(Ω) for any
s ≥ 0, then the solution u lies in Hs+2(Ω) (see, e.g., [10]). We write E : f #→ u for
the solution operator of (4.1).

Our aim in the following is to find upper and lower bounds for the N -width
dN (E(Bs(Ω)), L2(Ω)) when s ≥ 0 but (for technical reasons) s − 1/2 is not an
even integer. We have the following theorem:

Theorem 4.1 ([6, Theorem 2.1]). Let s ≥ 0 with s− 1/2 not an even integer.
There are positive constants C1(s) and C2(s) such that

C1(s)
Ns/2(1 + εN)

≤ dN (E(Bs(Ω)), L2(Ω)) ≤ C2(s)
Ns/2(1 + εN)

, for N = 0, 1, · · · .

This result says essentially that there is an N -dimensional subspace XN ⊂
L2(Ω) with the following property: for each f ∈ Hs(Ω) there is a uN ∈ XN such
that

|‖u− uN‖0,Ω ≤ C

Ns/2(1 + εN)
‖f‖s,Ω, (4.2)

and furthermore, no other N -dimensional subspace of L2(Ω) can achieve a similar
result with a smaller factor multiplying ‖f‖s,Ω. If we rewrite this result in terms
of a mesh-width h (as is customary in numerical analysis), then on a quasiuniform
mesh we have N = O(h−2) so (4.2) becomes

‖u− uN‖0,Ω ≤ Chs

1 + εh−2
‖f‖s,Ω, (4.3)

and (as just stated) the order of convergence is best possible. When one rewrites the
result of Theorem 3.1 in terms of a quasiuniform mesh, then the one-dimensional
meshwidth h = O(N−1), and it’s easy to see that one also obtains (4.3) with s
an integer. Thus when expressed in terms of meshwidths, our results for reaction-
diffusion problems in one and two dimensions coincide.

In the case ε = 1, (4.3) is ‖u− uN‖0,Ω ≤ Chs+2‖f‖s,Ω, which is well-known to
be best possible. But when ε ≈ 0, (4.3) becomes in effect ‖u−uN‖0,Ω ≤ Chs‖f‖s,Ω.
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Heuristically, the loss here of two orders of convergence happens because no extra
smoothness is engendered by the term −ε∆u in (4.1); from a numerical point of
view, u is only as smooth as f is.

In [6, Theorem 4.1] is proved using the methodology of Section 2. To do this we
first decompose the solution u of (4.1) into a smooth component and a component
that contains all boundary layers, but this splitting is not the same as the decom-
positions one finds in standard asymptotic analyses of (4.1). The decomposition
is rather intricate and certain exceptional values of s are excluded in Theorem 4.1
because they lead to some technical difficulties regarding traces. Our approximat-
ing subspace has O(N) degrees of freedom, of which O(

√
N) degrees of freedom

are used to approximate the boundary layer.
Melenk [9] also considers (4.1), but in a d-dimensional domain where d ≥ 2,

and the differential operator is permitted to have variable coefficients. The analysis
of [9] is very different from that of [6]: Melenk shows that the desired N -width
can be expressed in terms of the asymptotic behaviour (as N → ∞) of the Nth
eigenvalue of a certain boundary value problem (see [8] for similar arguments), then
invokes a classical result regarding the asymptotic behaviour of these eigenvalues.
The argument is very elegant, simpler than that of [6], and treats a larger class
of norms. In particular it needs no decomposition of u and consequently, unlike
Theorem 4.1, no values of s are excluded in the final result. It does not seem
possible however to obtain sharp results by applying arguments of this nature to
nonsymmetric operators of convection-diffusion type, so we shall not discuss [9]
further here.

5 Convection-diffusion problems in two dimensions

In this Section we examine the N -width in L2 of the set of solutions of two elliptic
singularly perturbed convection-diffusion problems posed on the unit square. These
N -widths are discussed in [7].

Let Ω = (0, 1)× (0, 1) be the unit square, with boundary Γ . Let ΓE denote the
intersection of Γ with the line x = 1. Our two boundary value problems are

Lu := −ε∆u+ ux + u = f in Ω, u = 0 on Γ (5.1)

and
Lv = f in Ω, v = 0 on Γ \ ΓE , vx = 0 on ΓE , (5.2)

where f ∈ L2(Ω).
Consider the bilinear form Φ(v, w) =

∫
Ω

(ε∇v·∇w+vxw+vw)dxdy. For problem
(5.1), the bilinear form is taken on H1

0 (Ω), and for problem (5.2) the bilinear form
is taken on the space of functions in H1(Ω) that vanish on Γ \ ΓE . In each case
the bilinear form is easily seen to be bounded and coercive, so it follows from the
Lax-Milgram lemma that, for each f ∈ L2(Ω), the problem (5.1) has a solution
u ∈ H1

0 (Ω) and (5.2) has a solution v ∈ H1(Ω) which vanishes on Γ \ ΓE . The
domain Ω is a polygon so the solution of (5.1) or (5.2) has corner singularities at
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the vertices of Ω. These singularities are however not very severe, and the solution
is in H2(Ω) (see, e.g., [4, Theorem 3.2, 1.2]).

The problems (5.1) and (5.2) differ in that while the solution to each problem
has in general an exponential outflow boundary layer on ΓE , the boundary layer
for (5.2) is weaker than that for (5.1). See, e.g., [12]. Parabolic boundary and
interior layers may appear in the solutions to both problems.

Let A1 : f #→ u denote the solution operator of (5.1) and let A2 : f #→ v
denote the solution operator of (5.2). The solution operators Al (for l = 1, 2) are
well-defined, bounded maps from L2(Ω) to H1(Ω).

The main result from [7] is as follows.

Theorem 5.1 ([7, Theorem 1.1]). Let N be a positive integer. There are posi-
tive constants C1 and C2, which are independent of ε and N , such that for l = 1, 2,
the N -widths satisfy

C1

εN
≤ dN (Al(B0(Ω)), L2(Ω)) ≤ C2

εN
if ε2N ≥ 1, (5.3)

C1

1 + ε1/3N2/3
≤ dN (Al(B0(Ω)), L2(Ω)) ≤ C2

1 + ε1/3N2/3
if ε2N ≤ 1. (5.4)

This theorem should be interpreted in terms of approximations. The upper
bound follows from the following approximation results. For each integer N > 1
there is a subspace UN ⊂ L2(Ω) of dimension N such that for any f ∈ L2(Ω) the
solution Alf of (5.1) or (5.2) can be approximated by a uN ∈ UN with approxi-
mation error

‖Alf − uN‖0,Ω ≤ C

εN
‖f‖0,Ω. (5.5)

For each integer N > 1 that satisfies ε2N ≤ 1 there is a subspace UN ⊂ L2(Ω) of
dimension N such that for any f ∈ L2(Ω) the solution Alf of (5.1) or (5.2) can
be approximated by a uN ∈ UN with approximation error

‖Alf − uN‖0,Ω ≤ C

1 + ε1/3N2/3
‖f‖0,Ω, if ε2N ≤ 1. (5.6)

Notice that although (5.5) holds true for all N , the bound in (5.6) is sharper in
the parameter range ε2N ≤ 1.

In our proof of the upper bound for the N -width, the construction of the
subspace UN can be modified to make it a subset of H1(Ω) and to satisfy the
essential boundary conditions in (5.1) or (5.2).

Theorem 5.1 shows that while the solution of (5.1) has a stronger boundary
layer than the solution of (5.2), this does not affect the approximability of the solu-
tion in our L2 setting. This latter qualification is important; it might be expected
that stronger norms are needed to discern the effect of the boundary layer. On the
other hand, a decomposition of u into its boundary layer and smooth components
is needed for the proof of Theorem 5.1 in the case of problem (5.1).
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On a quasiuniform mesh of diameter h we have N = O(h−2), so (5.3) becomes

dN (Al(B0(Ω)), L2(Ω)) = O

(
h2

ε

)
= O

(
h2

h+ ε

)
since ε2N ≥ 1 is equivalent to h ≤ Cε. That is, when the right-hand side f
lies only in L2 and ε is not small relative to the mesh diameter, the N -width
for convection-diffusion problems in two variables agrees with the N -width for
convection-diffusion two-point boundary value problems (Theorem 3.2).

The curious formula (5.4) for dN (Al(B0(Ω)), L2(Ω)) in the case of small ε
should also be noted. This formula comes from the area enclosed by a level curve
of the symbol of the operator L, as can be seen by a perusal of the proof of the
lower bound in [7]. To construct an approximating subspace with an error that
achieves this lower bound we have found it necessary to use a subspace that is not
a tensor product of functions in x and functions in y. In our subspace, functions
whose y variations are in a certain frequency range have degrees of freedom in the
x variable that depend on this frequency range.

As suggested by the above discussion, the proofs in [7] rely on very specific
constructions. We do not at present know how to generalize the results beyond
what is stated here. In particular, we do not see how to apply the general methods
of [9] to our problem. Furthermore, in the previous Sections we considered f ∈
Hk(Ω), but in [7] we are able to push through the analysis only when f ∈ L2(Ω).
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