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Bifurcation of periodic points and normal form
theory in reversible diffeomorphisms.
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Abstract. We survey a number of results on the bifurcation of periodic
points from a fixed point in parametrized families of reversible diffeo-
morphisms; such problems arise for example when stufying subharmonic
branching in reversible systems. We provide a structure preserving reduc-
tion result which can be used to study ’branching phenomena’ near a fixed
point. We also briefly discuss how one can determine the stability of bi-
furcating periodic orbits using normal form theory. Here an improvement
of a previous normal form result is given. As an application we give the
analysis of the branching of subharmonic solutions from a primary branch
of periodic solutions of a reversible system.
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1 Set up and basic reduction result

Consider a m-parameter family Φλ of reversible (local) diffeomorphisms on Rn

having a fixed point at the origin, i.e. Φ : Rn × Rm → Rn, (x, λ) -→ Φλ (x) is such
that
(H) - Φ(0, λ) = 0 for all λ ∈ Rm;

- Aλ := DxΦλ(0) ∈ L (Rn) is invertible for all λ ∈ Rm;

(R) there exists a linear involution R ∈ L (Rn) (i.e. R2 = Id) such that

R · Φλ ·R = Φ−1
λ , ∀λ ∈ Rm. (1)

This is an overview article.
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Such reversible diffeomorphisms arise for example as stroboscopic maps for peri-
odic non-autonomous time-reversible systems, or as Poincaré-maps for symmetric
periodic solutions of autonomous reversible systems. We study then the following
bifurcation problem.
(P) Given an integer q ≥ 1 and some λ0 ∈ Rm, find all the solutions (x, λ) ∈

Rn × Rm near (0, λ0) of the equation

Φqλ (x) = x; Φqλ = Φλ ◦ · · · ◦ Φλ (q-times). (2)

Without loss of generality we can set λ0 = 0. Let A0 = S0 + N0 be the unique
semisimple-nilpotent decomposition of A0 (i.e. S0 semisimple, N0 nilpotent and
S0N0 = N0S0). Setting N0 := log

(
I + S−1

0 N0

)
we also see that A0 can be written

in a unique way as
A0 = S0e

N0 , (3)

with N0 nilpotent and S0N0 = N0S0; we call (3) the semisimple-unipotent decom-
position of A0. One can easily verify that

RS0R
−1 = S−1

0 and RN0 = −N0R. (4)

Introduce then the so-called reduced phase space for our problem; this is a subspace
of Rn defined by

U := ker (Sq0 − I). (5)

Note that U is the generalized eigenspace corresponding to those eigenvalues of
A0 which are q-th roots of unity. Since S0 is semisimple we have that Rn =
U ⊕ Im (Sq0 − I); also, U is invariant under R. Moreover, S0 generates on U a
Zq-action. It is shown in [2] that problem (P) reduces via an adapted Liapunov-
Schmidt method to solving an appropriate determining equation (see equation
(6) below). A particular feature of this reduction is that it does not require any
restriction on the eigenvalues of A0, i.e. higher multiplicities and nilpotencies are
allowed. Also, the symmetry of the reduced diffeomorphism results in a very easy
form of the bifurcation equations. In the following theorem we summarize this
reduction result, referring to [2] for more details.

Theorem 1. Assume (H) and fix some q ≥ 1. Then there exist smooth mappings
x∗ : U ×Rm −→ Rn and Φr : U ×Rm −→ U , such that the following hold (we set
Φr,λ := Φr (·, λ)):
1. Φr(0, λ) = 0, DuΦr(0, 0) = A0|U , x∗(0, λ) = 0, and Dux

∗(0, 0)· u = u, (for all
u ∈ U);

2. Φr,λ(S0u) = S0Φr,λ(u), ∀ (u, λ) ∈ U × Rm i.e. Φr,λ is Zq-equivariant;
3. for all sufficiently small (x, λ) ∈ R2n×Rm we have that x is a q-periodic point

of Φλ if and only if x = x∗(u, λ) for some sufficiently small u ∈ U which itself
is a q-periodic point of Φr,λ;

4. for all sufficiently small (u, λ) ∈ U × Rm we have that u is a q-periodic point
of Φr,λ if and only if

Φr,λ(u) = S0u, (6)

i.e. all small q-periodic orbits of Φr (., λ) are necessarily Zq-orbits.
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Moreover, if (R) is satisfied we have

5. x∗ (Ru, λ) = Rx∗ (u, λ) ,
6. R ◦ Φr,λ ◦R = Φ−1

r,λ, i.e. Φr,λ is R-reversible.

This theorem establishes a one-to-one relation between the small q-periodic orbits
of Φλ and those of the reduced diffeomorphism Φr,λ which lives on a reduced
space U . This reduced diffeomorphism also retains the additonal structures of the
original one, and, as we will explain in section 2, it can be approximated up to
any order by using normal forms. Moreover, one can also prove the following.

Proposition 2. For sufficiently small (u, λ) ∈ U×R
m the equation (6) is equiva-

lent to the equation

B (u, λ) := Φr,λ
(
S−1
0 u

)
− S0Φ−1

r,λ (u) = 0. (7)

Observe that this equation is Dq-equivariant: indeed, we have that

B (S0u, λ) = S0B (u, λ) and B (Ru, λ) = −RB (u, λ) , (8)

with S0 and R generating a Dq-action on U , see properties (4).

2 Approximating the reduced mapping Φr,λ

One of the possibilities to calculate the reduced mapping Φr,λ is to use normal
form theory. The normal form techniques as well as the Lyapunov-Schmidt-like
reductions are very popular tools for studying bifurcations. Here we provide a
theorem on a reversible normal form for diffeomorphisms. More details and proofs
can be found in [2]. These proofs are mainly inductive and are based on a combined
use of the adjoint action of the group of diffeomorphisms satisfying (H) on itself
and the implicit function theorem. Some technical results are of course needed to
take care of the reversible structure1; to this purpose the following is a crucial
Lemma.

Lemma 3. Let S0 be reversible and semisimple. Then there exists a scalar product
〈·, ·〉 on Rn such that when we denote the transpose of a linear operator A ∈
GL−(n,R) with respect to this scalar product by AT the following holds:

(i) the involution R is orthogonal, i.e. RTR = IRn ;

(ii) a linear operator A ∈ L(Rn) commutes with S0 if and only if it commutes
with ST0 .

Here we use 〈x,Ay〉 = 〈ATx, y〉 for all x, y ∈ Rn. For a detailed proof see [2] or [6]
where a similar statement is proved when S0 satisfies S0R = −RS0.
Denoting by the exponential the time-one map, one proves the following.

1 The set of reversible diffeomorphisms does not form a Lie group.
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Theorem 4. For each k ≥ 1 there exists a neighbourhood ωk of the origin in Rm

and a parameter dependent near identity transformation which brings Φλ in the
form

Φλ = S0e
N0+Xλ + Rk+1, (9)

with Rk+1 (x, λ) = O
(
‖x‖k+1

)
uniformily for λ ∈ ωk, and with Xλ a smooth

parameter-dependent vectorfield on Rn such that Xλ (0) = 0, DX0 (0) = 0 and

Xλ (S0x) = S0Xλ(x), etN
T
0 Xλ = Xλe

tNT
0 . (10)

Moreover, the vectorfield Xλ is reversible:

Xλ (Rx) = −RXλ(x). (11)

Then we call ΦNF
λ = S0e

N0+Xλ the normal form of Φλ up to order k.
This normal form can be used to approximate the reduced mapping Φr,λ: if Φλ is
in normal form up to order k then

Φr,λ (u) = ΦNF
λ (u) +O

(
‖u‖k+1

)
and x∗ (u, λ) = u+O

(
‖u‖k+1

)
.

Just to give an idea on how to deal with the reversibility in normal forms, we
prove Theorem 4 in the case of linear reversible operators. We use the following
notations

GL±(n,R) := {A ∈ GL(n,R)|RAR = A±1}
gl±R(n,R) := {A ∈ gl(n,R)|RA = ±AR}.

Notice that gl+R(n,R) is a Lie algebra and the corresponding Lie group is then
GL+(n,R). Also, for Ψ ∈ GL(n,R) define the operator Ad(Ψ) : GL(n,R) →
GL(n,R) by

Ad(Ψ)Φ := Ψ · Φ · Ψ−1, ∀Φ ∈ GL(n,R), (12)

and for ψ ∈ gl(n,R) define ad(ψ) ∈ L
(
gl(n,R)

)
by

ad(ψ)A = ψA−Aψ, ∀A ∈ gl(n,R). (13)

Observe that for each Ψ ∈ GL(n,R) the automorphismAd(Ψ) on GL(n,R) induces
a linear mapping on gl(n,R) obviously given by

Ad(Ψ) ·A := Ψ ·A · Ψ−1, ∀A ∈ gl(n,R).

Notice also that if Ψ ∈ GL+R(n,R) then Ad(Ψ) : gl±(n,R)→ gl±R(n,R), while if
ψ ∈ gl−R(n,R) then ad(ψ) : gl±R(n,R)→ gl∓R(n,R). We start with the following
consequence of Lemma 3, which is crucial in the proof Theorem 4.

Corollary 5. Let A0 = S0e
N0 be the SU-decomposition of A0 ∈ GL−(n,R) and

let 〈·, ·〉 be a scalar product as in as in Lemma 3. Then also AT
0 , S

T
0 belong to
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GL−(n,R), and N0
T belongs to gl−R(n,R). Moreover, the following direct sum

splitting holds:

ker
(
Ad(S0)− I

)
∩ gl−R(n,R) =

[
adN0

(
gl+R(n,R) ∩ ker(Ad(S0)− I)

)]
⊕
[
ker
(
Ad(S0)− I

)
∩ gl−R(n,R) ∩ kerad

(
N T

0

)]
. (14)

For the proof we again refer to [2]. We have now all the ingredients to prove the
main result on normal forms of linear reversible operators.

Proposition 6. Let A0 = S0e
N0 be the SU-decomposition of a given R-reversible

operator on Rn. Then there exist a neighbourhood U of A0 in GL−(n,R) and a
mapping Ψ : U → GL+(n,R) such that

Ψ(A0) = I and Ad
(
Ψ(A)

)
·A = S0e

N0+B(A), ∀A ∈ U, (15)

with B(A0) = 0 and B(A) ∈ ker
(
Ad(S0)− I

)
∩ker

(
ad(N T

0 )
)
∩gl−(n,R), i.e. B(A)

commutes with S0 and N T
0 .

Proof. Consider the direct sum splitting (14) and denote by π the linear projection
of ker

(
Ad(S0)−I

)
∩gl−R(n,R) onto the first component and parallel to the second

component. Referring to a previous normal form result in [3], (see also [2]), we
may assume the existence of a neighbourhood V of A0 in GL−(n,R) such that all
A ∈ V can, via an appropriate near identity transfomation, be written in the form
A = S0e

C(A), for some smooth

C : V → ker
(
Ad(S0)− I

)
∩ gl−R(n,R)

such that C(A0) = N0. Knowing that if Ψ ∈ ker
(
Ad(S0)− I

)
∩GL+(n,R) then

Ad(Ψ) · (A) = S0e
Ad(Ψ)·C(A),

with Ad(Ψ) ·C(A) ∈ ker
(
Ad(S0)−I

)
∩gl−R(n,R), then we only have to determine

Ψ , dependent on A, such that

Ad(Ψ) · C(A) = N0 +B,

with B ∈ ker
(
Ad(S0)− I

)
∩ker

(
ad(N T

0 )
)
∩gl−(n,R). To do so we define a mapping

F :
[
ker
(
Ad(S0)− I

)
∩ gl+R(n,R)

]
× V → adN0

(
ker
(
Ad(S0)− I

)
∩ gl+R(n,R)

)
by

F (ϕ,A) := π
(
Ad(Ψ) · C(A)−N0

)
.

It follows that

F (I, A0) = 0 and DΨF (I, A0) = π · ad(N0)|
ker
(
Ad(S0)−I

)
∩gl+R(n,R)

.
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The linear operatorDΨF (I, A0) is surjective from ker
(
Ad(S0)−I

)
∩gl+R(n,R) onto

adN0

(
gl+R(n,R) ∩ ker

(
Ad(S0)− I

))
. Hence we can invoke the Implicit Function

Theorem to conclude that there exist a neighbourhood U ⊂ V ⊂ GL−(n,R) of A0

and a smooth mapping Ψ : U → ker
(
Ad(S0) − I

)
∩ GL+R(n,R) with Ψ(A0) = I

and such that F (Ψ(A), A) = 0, for all A ∈ U. By definition of F and π it follows
that

B(A) := Ad
(
Ψ(A)

)
· C(A) −N0 ∈ ker

(
Ad(S0)− I

)
∩ ker

(
ad(N T

0 )
)
∩ gl−R(n,R),

which proves the proposition.

3 Generic bifurcation of periodic points

In this section we show how the foregoing reduction can be used to describe a
simple type of bifurcation which occurs generically when studying branching of
solutions at a symmetric periodic solution of an autonomous time-reversible sys-
tem. To this purpose, consider a 2k-dimensional autonomous time-reversible vector
field such that dim Fix(R) = k. Assume that the system has a non-constant R-
symmetric periodic solution γ0 with period T0. We are interested in other periodic
orbits of the system nearby the given γ0. In order to study such orbits we consider
the Poincaré map Φ associated to γ0. It turns out that Φ is a local diffeomorphism
satisfying (H) and (R) with n = 2k − 1 and m = 0. Cfr. [2,5]. The fixed point
0 of Φ corresponds to γ0, other fixed points correspond to periodic orbits of the
system close to γ0 with minimal period close to T0. Finally, q-periodic orbits of
Φ correspond to so-called subharmonic solutions of the system, that is, periodic
orbits near γ0 with minimal period near qT0.

We first study the periodic orbits near γ0 with minimal period near T0 by looking
for fixed points of Φ near 0 (i.e. q = 1 in (P)). Assume the simplest possible
situation:

(H1) the operator A0 has +1 as simple eigenvalue.

It follows that ker(S0 − I) is one-dimensional, moreover Ru = u, for all u ∈
ker(S0 − I), [2,3]. Then via the reduction we obtain the following result.

Theorem 7. Assume (H), (R), (H1). Then there exists a smooth mapping x∗ :
ker(S0 − I)→ Rn such that

a) x∗(0) = 0;
b) Rx∗(u) = x∗(u), ∀u ∈ ker(S0 − I);
c) Φ(x∗(u)) = x∗(u), for all sufficiently small u ∈ ker(S0 − I).

Moreover, Φ has in some neighbourhood of the origin no other fixed points than
those on the curve {x∗(u)| |u| < u0}.
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We shall call this branch of fixed point the primary branch. The matrixDΦ (x∗(u))
is reversible, and hence if µ ∈ C is an eigenvalue, so is µ−1. It follows that if
DΦ (x∗(u)) has for u = u0 a pair of simple eigenvalues on the unit circle, these
eigenvalues will stay on the unit circle for all u near u0. Assuming that they
move with non-zero speed it follows that along the primary branch one may find
symmetric fixed points at which the linearization has eigenvalues which are q-th
roots of unity, for some q ≥ 3. As shown in the next paragraph, this situation leads
to branching of periodic points for Φ, which means subharmonic branching for the
original system.

Take q ≥ 3 in (P) and assume the following

(H2)- A0 has a pair of simple eigenvalues
(
χq, χq

)
, with χq = exp

(
2iπ p

q

)
and

q ≥ 3, 0 < p < q, gcd (p, q) = 1;
- A0 has, besides 1, χq and χq, no other eigenvalues µ ∈ C such that µq = 1.

One can easily see that the continuation of the eigenvalue χq can be written as
eiαq(λ)χq, with αq (λ) ∈ R and αq (0) = 0. More precisely, the eigenvalues will
move along the unit circle as we move along the primary branch. We assume the
transversality condition

(T) α′q (λ) �= 0.

Notice that dimker (Sq0 − I) = dim U = 3 and that ker (S0 − I) ⊂ ker (Sq0 − I).
Also, denoting by V the S0-invariant complement of ker (S0 − I) in U , we can
identify U with the direct product R × C, where ker (S0 − I) ∼= R and V ∼= C.
Moreover, S0|C acts as multiplication by χq and R|C acts as z -→ z. It follows that
the reduced bifurcation mapping (7) on U = R× C takes the form:

B(α, z) =
(
b0(α, z), b1(α, z)

)
, (16)

with b0 : R× C → R and b1 : R× C → C such that

b0(0, 0) = 0, b1(0, 0) = 0
b0(α, χqz) = b0(α, z), b1(α, χqz) = χqb1(α, z)

b0(α, z) = −b0(α, z), b1(α, z) = −b1(α, z).

Compare with [2,3]. Using a result on the normal form of complex Dq-equivariant
functions, see [4,1], it follows that the non-trivial solutions of the bifurcation equa-
tion not lying on the primary branch are the solutions of

b1(α, z) = iθ1 (α, z) z + iθ2 (α, z) zq−1 = 0 (17)

with θi : R× C → R (i = 1, 2) smooth, real-valued and Dq-invariant functions.
Using polar coordinates and some generically satisfied conditions one obtains the
existence of exactly two R-symmetric branches of q-periodic orbits bifurcating
from the fixed point-branch. These branches have the form

γi =
{
(α̃i (ρ)) , χjqz̃i (ρ)

∣∣ 0 < ρ < ρ0, 0 ≤ j ≤ q − 1
}
, (i = 1, 2) (18)
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with z̃1 (ρ) := ρ, z̃2 (ρ) := ρei
π
q , while the functions α = α̃i (ρ) are the solutions of

the equation

θ1
(
α, z̃i (ρ)

)
+ (−1)i ρq−2θ2

(
α, z̃i (ρ)

)
= 0 (i = 1, 2), (19)

such that α̃i(0) = 0. Setting x̃i (ρ) := x∗
(
α̃i (ρ) , z̃i (ρ)

)
gives then two branches

of q-periodic points of Φ bifurcating from the fixed point, since
(
α̃i (0) , x̃i (0)

)
= (0, 0). We conclude with some remarks:

(a) the greater is q the closer are the two branches in parameter space. Indeed,

one can show that |α̃1 (ρ)− α̃2 (ρ)| = O
(
ρ
q−2
2

)
;

(b) if θ2 (0, 0) �= 0 there are no other q-periodic orbits (close to (0, 0)) than the
two branches we have found.

For similar bifurcation results in the symplectic case we refer to [4].

4 Stability

In this section we show how one can obtain some information on the stability
of bifurcating periodic orbits. When x ∈ Rn generates a q-periodic orbit of Φλ
then the stability of this orbit is determined by the eigenvalues of DΦqλ (x): the
orbit is stable if all eigenvalues are inside the unit circle, and unstable if some
eigenvalues are outside the unit circle. When the periodic orbit is symmetric (i.e.
invariant under R) then together with µ ∈ C also µ−1 will be an eigenvalue of
DΦqλ (x); in such case the orbit will be unstable if some eigenvalue is off the unit
circle, and there will be a weak form of stability if all eigenvalues are on the unit
circle. When applying this to bifurcating periodic orbits we have to determine the
eigenvalues of DΦqλ (x

∗ (u, λ)) for all small (u, λ) ∈ U × Rm which satisfy (6). For
(u, λ) = (0, 0) this operator reduces to Aq

0, which has eigenvalues 1 on U and
eigenvalues away from 1 on V := Im (Sq0 − I); it follows that for small (u, λ) the
operator DΦqλ (x

∗ (u, λ)) will have some eigenvalues near 1, with total multiplicity
equal to dimU , and all other eigenvalues uniformly bounded away from 1. We call
the eigenvalues near 1 the critical eigenvalues. If the non-critical eigenvalues of Aq

0

are all simple and on the unit circle then the critical eigenvalues of DΦqλ (x
∗ (u, λ))

will determine the stability of the corresponding periodic orbit. To approximate
these critical eigenvalues, define a smooth mapping D : U × Rm → L (Rn) by

D (u, λ) := DΦλ

(
x∗
(
Sq−1
0 u, λ

))
· · ·DΦλ (x∗ (S0u, λ)) ·DΦλ (x∗ (u, λ)) . (20)

When (u, λ) satisfies (6) then Φλ
(
x∗ (u, λ)

)
= x∗ (S0u, λ) and DΦqλ (x

∗ (u, λ)) =
D (u, λ); therefore it is sufficient to determine the critical eigenvalues of D (u, λ)
for such (u, λ) . As an example, it turns out that the stability of the symmetric
periodic orbits along the branch γi (see (18)), is determined by the number

τi (ρ) := tr D̃
(
z̃i (ρ) , λ̃i (ρ)

)
, (21)
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where
D̃
(
ũ (ρ) , λ̃ (ρ)

)
= exp

(
DXλ̃(ρ) (ũ (ρ))

)
+O

(
ρk
)
; (22)

see [2,3] for the details. The calculations show that one of the two branches is
stable, the other is unstable, (cfr. [2,3]).

5 1:1 resonance: some remarks

Returning to the situation described in section 3 the following scenario can happen.
The mapping Φ has a fixed point at which the linearization of Φ has two pairs
of simple complex conjugate eigenvalues on the unit circle close to each other.
Then, when moving along the corresponding primary branch, phenomena such as
’collision’ and ’splitting’ may happen, that is: the eigenvalues collide into a pair of
non-semisimple double eigenvalues on the unit circle and then plitt off the circle.
Introducing an external parameter λ ∈ R, one may arrange things such that for
some value of the parameter, λ = λ0, the collision happens at a q-th root of unity.
It is then natural to ask what kind of bifurcation scenario emerges when solving
problem (P) for a one-parameter family of reversible mappings satisfying (H),
(R) and the following:

(H3)- A0 has simple eigenvalue 1 and eigenvalues
(
χq, χq

)
with algebraic multi-

plicity 2 (and geometric multiplicity 1),
- A0 has no other eigenvalues on the unit circle.

Application of the reduction result of section 1 shows that we are left with a 5-
dimensional problem on U , dimU = 5. Also in this case ker (S0 − I) ⊂ U can
be identified with R and its 4-dimensional S0-invariant complement in U with
C × C. So the reduced bifurcation equation consists of one real equation and
two complex ones. A combined use of the Normal Form Theorem 4 and Implicit
Function Theorem allows us to solve one of the two complex equation; we are then
left with a problem similar to that of subharmonic branching analized in section 3.
In a forthcoming paper we will describe the full bifurcation picture.
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