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Abstract. The solvability of the singular Cauchy problem for the system
of nonlinear differential equations

g(x)y′ = A(x)α(y)− ω(x),
y(0+) = 0

is investigated.
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Let us consider the system of nonlinear differential equations

g(x)y′ = A(x)α(y) − ω(x) (1)

and initial Cauchy problem
y(0+) = 0. (2)

Here y = (y1, . . . , yn)T is the vector of unknown functions; α(y) = (α1(y1), . . . , αn
(yn))T is a nonlinearity vector with entries αi, i = 1, . . . , n; A(x) is n × n ma-
trix with elements aij(x), i, j = 1 . . . , n; ω(x) = (ω1(x), . . . , ωn(x))T and g(x) =
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diag(g1(x), . . . , gn(x)) is a diagonal matrix with diagonal entries indicated. The
symbol Is indicate an interval of the form (0, s] with a fixed s > 0. The system (1)
is considered under the following main assumptions:

(C1) gi ∈ C(Ix0 ,R
+), i = 1, . . . , n with R+ = (0,∞);

(C2) α ∈ C1(Iy0 ,R
n), α(y)6 0 on Iy0 , α

′(y)6 0 on Iy0 and α(0+) = 0;
(C3) ω ∈ C1(Ix0 ,R

n);
(C4) aij ∈ C1(Ix0 ,R), aii(x) �= 0, i, j = 1, . . . , n and detA(x) �= 0 on Ix0 ;
(C5) αi(y) ≤Mα′i(y), i = 1, . . . , n on Iy0 with a constant M ∈ R+;
(C6) Ω(x) ≡ A−1(x)ω(x)6 0, Ω′(x)6 0 on Ix0 and Ω(0+) = 0.

The problem (1), (2) is a singular problem if assumptions (C1)–(C6) hold and if,
in additional, gi(0+) = 0 for at least one i ∈ {1, . . . , n}. The latter condition is
implicitly contained in the assumptions of Theorem 2.

Definition 1. A function y = y(x) ∈ C1 (Ix∗ ,Rn) with 0 < x∗ ≤ x0 is said to
be a solution of the problem (1), (2) on interval Ix∗ if y satisfies (1) on Ix∗ and
y(0+) = 0.

Theorem 2. Suppose that conditions (C1)− (C6) are satisfied. Let
A) for i = 1, . . . , p ≤ n:

ωi(x) < 0, ω′i(x) < 0, x ∈ Ix0 , (3)

aij(x) ≥ 0, j �= i, j = 1, . . . , n and a′ij(x) ≥ 0, j = 1, . . . , n, x ∈ Ix0 , (4)

and

ωi(δx) > ωi(x) + δMgi(x)
Ω′
i(δx)

Ωi(δx)
, x ∈ Ix0

for a constant δ ∈ (0, 1);
B) for i = p+ 1, . . . , n:

ωi(x) > 0, ω′i(x) > 0, x ∈ Ix0 , (5)

aij(x) ≤ 0, j �= i, j = 1, . . . , n and a′ij(x) ≤ 0, j = 1, . . . , n, x ∈ Ix0 , (6)

and

ωi(Kx) > ωi(x) +KMgi(x)
Ω′
i(Kx)

Ωi(Kx)
, x ∈ Ix0

for a constant K > 1. Then there exists (n− p)-parametric family of solutions of
the problem (1), (2), having positive coordinates, on an interval Ix∗ ⊆ Ix∗∗ with
x∗∗ ≤ min{x0K−1, y0}.
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Consequence. If Theorem 2 holds then there exist (n− p)-parametric family of
solutions y = y∗(x) of the problem (1), (2) each of which satisfies on interval Ix∗

the inequalities
ϕ(δx)7 y∗(x)7 ϕ(Kx).

Consider the linear system

g(x)y′ = A(x)y − ω(x). (7)

Theorem 3 (Linear case). Suppose that conditions (C1), (C3), (C4), (C6), (3) –
(6) are satisfied. Let, moreover,

ωi(δx) > ωi(x) + δgi(x)Ω′
i(δx), x ∈ Ix0 , i = 1, . . . , p ≤ n

for a constant δ ∈ (0, 1) and

ωi(Kx) > ωi(x) +Kgi(x)Ω′
i(Kx) , x ∈ Ix0 , i = p+ 1, . . . , n

for a constant K > 1. Then there exists (n−p)-parametric family of solutions y =
y∗(x) of the problem (7), (2), having positive coordinates on an interval Ix∗ ⊂ Ix0 ,
each of which satisfies here the inequalities

Ω(δx)7 y∗(x)7 Ω(Kx).

Example 4. Let us consider a linear singular problem of the type (7), (2):

x2 y′1 = −5y1 + y2 + y3 + x + x2,
x2 y′2 = y1 − 5y2 + y3 + x + x2,
x2 y′3 = −2y1 − 3y2 + 2y3 − x + 3x2,

y1(0+) = y2(0+) = y3(0+) = 0.

This problem has (by Theorem 3) one-parametric family of positive solutions.
Really, the general solution of system considered is expressed by means of relations

y1 = x + 11C1 exp(6/x) + C2 exp(3/x) + C3 exp(−1/x),
y2 = x − 10C1 exp(6/x) + C2 exp(3/x) + C3 exp(−1/x),
y3 = 3x − C1 exp(6/x) + C2 exp(3/x) + 5C3 exp(−1/x)

with arbitrary constants C1, C2 and C3. By Theorem 2 there exist one-parametric
family of positive solutions of nonlinear problem

x3 y′1 = −5y21 + y52 + y33 + x + x2,
x4 y′2 = y21 − 5y52 + y33 + x + x2,
x5 y′3 = −2y21 − 3y52 + 2y33 − x + 3x2,

y1(0+) = y2(0+) = y3(0+) = 0.
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