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Abstract. The paper gives a survey of a class of novel stationary and
nonstationary methods for the simulation of the induction heating of non-
ferromagnetic metal bodies in harmonic electromagnetic fields. One of the
main advantages of the presented method is the elimination of the sur-
rounding air from the electromagnetic model, which strongly reduces the
necessity of meshing and simplifies the computation. The task is formu-
lated either as a stationary or as a non-stationary quasi-coupled problem,
with respecting the temperature dependencies of all important material
parameters. Distribution of the eddy currents and Joule losses in the metal
body is solved by a system of second-kind Fredholm integral equations.
Existence and uniqueness of solution for the continuos as well as discrete
problem is shown. Convergence results for the numerical scheme are pre-
sented. The theoretical analysis is supplemented with examples motivated
in the engineering practise. .
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1 Introduction

Mathematical modelling of the induction heating belongs to relatively well ex-
plored disciplines. The model consists of two second-order (generally non-linear)
partial differential equations of the elliptic and/or parabolic types, whose solu-
tion yields distribution of the electromagnetic field, eddy currents, corresponding
Joule losses and consequent temperature rise of the heated body. Sometimes, how-
ever, certain difficulties have to be overcome for obtaining correct results. We can
mention, for example, the temperature dependent parameters of the materials in-
volved, specific arrangements of the heaters etc. Nevertheless, in most geometries
the field equations supplemented with correct boundary conditions may be solved
by existing FEM-based professional programs (FLUX, ANSYS, MARC), and the
results well correspond to the physical reality.

In case of thin metal slabs of negligible thickness or general three-dimensional
metal bodies surrounded by (possibly moving) inductors of often very complicated
shapes, the basic complication consists in the geometrical incommensurability of
particular subregions in the investigated area (geometry of the metal body versus
3D inductor and/or practically unbounded air). Using methods such as FEM can
lead to serious problems associated with generation of the discretisation grid that
may result in unacceptable errors occurring particularly at the electromagnetic
field calculation.

The paper offers an alternative method for direct determining the local Joule
losses (that represent the input data for the consequent thermal calculation) based
on solution of a system of second-kind Fredholm integral equations for the eddy
current density in the metal body. Detailed knowledge of the 3D electromagnetic
field is, therefore, unnecessary (here the atribute fieldless of the proposed method
is originated) and the mentioned problems are avoided. The temperature field dis-
tribution is then solved by means of the non-stationary heat transfer equation with
a special procedure for correcting values of the temperature dependent material
properties.

2 Heating of thin non-ferromagnetic metal slabs (2D case)

A thin non-ferromagnetic slabΩ1 of sizes a, b and h is heated by an inductor formed
by two equal coils Ω2 and Ω

′
2. positioned symmetrically with respect to the plate

(Fig. 1). Both coils carrying identical harmonic currents Iext and I
′
ext of angular

frequency ω produce a field perfectly perpendicular to the slab. Thickness h of the
slab is very small with respect to the other measures, so that the electromagnetic
quantities may be considered independent of co-ordinate y. The inductor contains
no ferromagnetic parts.

Due to absence of non-linearities within the investigated domain all quantities
of the electromagnetic field may be expressed in terms of their phasors.
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Fig. 1. The investigated arrangement

3 The coupled electromagnetic-thermal model (2D case)

Let Q be a point within the slab lying in plane y = 0. Phasor A of the vector
potential at this point is given by superposition of three components excited by
the field currents Iext and I

′
ext and the eddy currents in the slab

A(Q) = A(PQ) +A(P
′
Q) +A(RQ) =

=
µ0
4π

(
Iext

∫
Ω2

dl(P )
rPQ

+ I
′
ext

∫
Ω

′
2

dl
′
(P

′
)

rP ′Q
+
∫
Ω1

Jeddy(R)
rRQ

dV

)
=

=
µ0
4π

(
Iext

∫
Ω2

dl(P )
rPQ

+ I
′
ext

∫
Ω

′
2

dl
′
(P

′
)

rP ′Q
+
∫∫

S

Jeddy(R)
rRQ

hdS

)
. (1)

Here, µ0 denotes the permeability of vacuum, dl and dl
′
are vectors denoting the

elementary lengths of conductors of the field coils, dV the elementary volume of
the slab and S the cross-section of the slab in plane y = 0. All remaining symbols
follow from Fig. 1.

Phasors A(PQ) and A(P
′
Q) have generally three components, according to

the shape of the coil. In our case these components in direction x are equal, in
direction z as well, and components in direction y eliminate one another. Equation
(1) may be now rewritten as follows

A(Q) =
µ0
4π

(
2Iext

∫
Ω2

dl(P )
rPQ

+ h

∫
Ω1

Jeddy(R)
rRQ

dS

)
. (2)

For the next considerations it is useful to express vector potential A(Q) in
the slab in terms of the eddy current density Jeddy(Q). Starting from the second
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Maxwell equation

rotE = −∂B
∂t

= −∂rotA
∂t

(3)

and interchanging the order of the operators we get

E = −∂A
∂t
− gradϕ, (4)

where ϕ denotes the scalar potential. Applying this equation to the slab that is
not connected to any external source of voltage (ϕ = 0) and rewriting it in terms
of the corresponding phasor quantities we finally obtain

E = −jωA⇒ Jeddy = −jωγA. (5)

Hence, using the symbolics from (1),

A(Q) =
j
ωγ
Jeddy(Q), (6)

where γ denotes the electrical conductivity of the slab and ω the angular frequency
of the field currents Iext (I

′
ext). Substitution of (6) into (2) provides the basic

integral equation for Jeddy

jJeddy(Q)− κ1
∫
S

Jeddy(R)
rRQ

dS = κ2Iext

∫
Ω2

dl(P )
rPQ

, (7)

where

κ1 =
ωγµ0h

4π
, κ2 =

ωγµ0
2π

.

This phasor equation may easily be subdivided into two equations (for the
components in directions x and z) of the complex character.

The specific average Joule losses wJa in the metal body are then given by
formula

wJa =
Jeddy · J ∗eddy

γ
, (8)

where J ∗eddy is the complex conjugate to Jeddy. The non-stationary distribution
of the temperature in the metal body is generally described (for example [2]) by
equation

div(λ gradT ) = ρc
∂T

∂t
− wJa, (9)

where λ denotes the thermal conductivity, ρ the specific mass of the heated mate-
rial, c its specific heat and wJa the specific Joule losses given by (8). The boundary
condition along the whole surface of the body reads (radiation is not considered)

−λ∂T
∂n

= α(T − Text), (10)
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where α denotes the coefficient of the convective heat transfer, Text the temperature
of the surrounding medium (moving or quiet air) and n direction of the outward
normal.

As this simpler 2D case is analogous to the next (slightly more complex) 3D one
concerning the discretization, analysis of solvability and uniqueness both of the
continuous and discrete problem and also concerning the convergence of the numer-
ical scheme, we shall perform these considerations only for the three-dimensional
model.

4 Heating of non-ferromagnetic metal bodies (3D case)

A bounded metal body Ω1 with a Lipschitz-continuous boundary is heated by an
inductor formed by a system of conductors and/or coils Ω2 (Fig. 2). For simplic-
ity, let the conductors and coils carry identical harmonic current Iext of angular
frequency ω. The inductor contains no ferromagnetic parts.

Fig. 2. The investigated arrangement

Due to absence of non-linearities within the investigated domain all quantities
of the electromagnetic field may be expressed in terms of their phasors.

5 The coupled electromagnetic-thermal model (3D case)

Let Q ∈ Ω1. PhasorA of the vector potential at this point is given by superposition
of two components excited by the field currents Iext and the eddy currents Jeddy
in Ω1:

A(Q) = A(PQ) +A(RQ) =
µ0
4π

(
Iext

∫
Ω2

dl(P )
rPQ

+
∫
Ω1

Jeddy(R)
rRQ

dV

)
. (11)
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Similarly as in the previous case, the second Maxwell equation yields

A(Q) =
j
ωγ
Jeddy(Q) (12)

where γ denotes the electrical conductivity of the metal and ω the angular fre-
quency of the field currents Iext. Substitution of (12) into (11) provides the basic
integral equation for Jeddy

jJeddy(Q)− κ
∫
Ω1

Jeddy(R)
rRQ

dV = κ Iext

∫
Ω2

dl(P )
rPQ

(13)

where κ = ωγµ0h/(4π). Here, µ0 denotes the permeability of vacuum, dl and dl
′

are vectors denoting the elementary lengths of conductors of the field coils and dV
the elementary volume of Ω1. All remaining symbols follow from Fig. 2.

Coupling with the heat transfer equation occurs in the same way as in the
previous case, using Joule losses as source terms.

The system (13) is discretized (see also [3]) using a first-order collocation
scheme based on a discretitation of Ω1 with piecewise linear approximation of
all components of Jeddy in each cell. The only difficulty is with the diagonal co-
efficients of the corresponding matrix that are given by improper integrals. Their
values are, however, finite and may be, with some effort, determined analytically.
The arising dense system of linear equations can be solved e.g. by the Gauss elim-
ination. The heat transfer equation (9) (formally the same in the 2D and 3D case)
is semi-discretized in space using the method of lines and integrated in time us-
ing higher-order explicit Runge-Kutta schemes. Temperature-dependent material
parameters are adjusted automatically during the time-evolution.

6 Analysis of solvability and uniqueness (3D case)

The phasor equation (13) may easily be subdivided into three identical equations
(for the components in spatial directions x, y, z) of a complex form. For the x-
component, we obtain

jJeddy,x(Q)− κ
∫
Ω1

Jeddy,x(R)
rRQ

dV = κ Iext

∫
Ω2

dx(P )
rPQ

. (14)

Using a substitution

Lx(v) =
(−Im{Jeddy,x}

κ
,
Re{Jeddy,x}

κ

)T

(v), (15)

Fx(v) =
∫
Ω2

dx
|u− v| (Re{Iext}, Im{Iext})

T , (16)

we can rewrite (14) into an operator form

(I+K)Lx = Fx (17)
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with

(KLx)(v) =
∫
Ω1

k(v,w)Lx(w)dw, (18)

k(v,w) =
κ

|v−w|M, M =
(
0 −1
1 0

)
. (19)

It is easy to see that the operator K: C(Ω1)→ C(Ω1) is compact and self adjoint
in a weighted L2(Ω1)-norm with a weighting factor 1/κ. Therefore, under a tech-
nical assumption – let us denote it by (A−1) – that the homogeneous equation
(I +K)Lx = 0 has only trivial solution (i.e. −1 is not an eigenvalue of K), the
Fredholm alternative immediately yields the solvability, uniqueness and continu-
ous dependence on the right-hand-side for (17). An analogous conclusion holds, of
course, for the remaining spatial components. Let us remark that the assumption
(A−1) is obviously satisfied from the physical point of view. However, its correct
mathematical proof exhibits some difficulties and is still in progress.

There are no problems with the exiatence and uniqueness of solution for the
parabolic heat transfer equation (9) in a weak sense as all the temperature-
dependent material parameters are Lipschitz-continuous functions.

Analysis of the solvability and uniqueness of the discrete problem is performed
in an analogous way.

7 Convergence of the numerical scheme (3D case)

Let us consider the continuous problem (17). For simplicity, let us further consider
that the domain Ω1 is covered by the discretization mesh exactly (Ω1,h ≡ Ω1).
With a function κh obtained by elementwise averaging the function κ from (14),
we can write the discrete problem for the eddy currents Jeddy in Ω1 as

(I+Kh)Lx,h = Fx,h. (20)

with

(KhLx,h)(v) =
∫
Ω1

kh(v,w)Lx,h(w)dw, (21)

kh(v,w) =
κh

|v−w|M, M =
(
0 −1
1 0

)
. (22)

Subtracting (20) from (17) we obtain that Lerr = Lx − Lx,h is governed by

Lerr = (I+K)−1 [Ferr − (K−Kh)Lx,h] (23)

where obviously Ferr = Fx − Fx,h → 0 as the grid diameter h → 0, K−Kh → 0
as h → 0 from the definition of κh and Lx,h is bounded from the compactness
of (I + Kh)−1. Note that again we used the technical assumption (A−1) from
the previous section together with a similar assumption (A−1,h) for the discrete
problem.
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Finally, convergence in the source terms of the heat transfer equation (9) yields
also the convergence of the whole discrete coupled model for all finite times. Ob-
viously, when integrating explicitly in time one has to fulfil the classical stability
condition for the time step 8t ∈ O(h2) for parabolic equation.

8 Example: Temperature-Dependent Material Parameters
for Copper

Fig. 3. Temperature-dependent γ, λ and ρc for copper
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9 Example 1: Heating of a thin copper plate

The suggested methodology has been applied to an arrangement depicted in Fig. 4.
A copper slab of sizes 0.3×0.6m was heated by two helicoidal inductors (number
of turns N = 10) of the indicated geometry.
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Fig. 4. The investigated arrangement

The dependencies of parameters γ and λ on temperature T have been shown in
Fig. 3. The temperature dependence of product ρc is considered linear: ρc = 3.6312·
106+934.5 · (T −20)J/degm3. Parameter α = 25W/m2 deg and Text = 20 ◦C. All
numerical computations have been performed by a special user program package
developed by the authors and written in C++.

Several results for parameters f = 1000Hz and h = 0.0005m are shown in
Figs. 5 to 7. Fig. 5 depicts the distribution of the temperature (at various time
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levels) in the slab along line z = 0.05m and Fig. 6 the same distribution along
line z = 0.15m. Fig. 7 shows the time evolution of temperature T at the “hottest”
point of the slab (co-ordinates 0.25m and z = 0.15m).
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Fig. 5. Distribution of temperature along line z = 0.05m
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Fig. 6. Distribution of temperature along line z = 0.15m
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Fig. 7. Evolution of the temperature at point [0.25, 0.15] m

10 Example 2: Heating of a brass prism

A prismatic brass bar (Fig. 8) is heated by a coil-shaped inductor formed by a
hollow tubular water-cooled conductor.
The basic arrangement of the system is obvious from parts A and B of Fig. 8.
The field current in the inductor I = 550 A, its frequency f = 150 kHz. As
the inductor is formed by a massive conductor, it was substituted by 8 thinner
conductors located at points indicated in partC of Fig. 8. Each of these conductors
carries current Ik = 68.75 A, k = 1, 2, . . ., 8.

The starting temperature Tstart of the body and temperature Text of the sur-
rounding air is 20 ◦C. Coefficient of the convective heat transfer is 25 W/m2. The
discretisation grid covering the body consists of 750 cubic elements sized 5 × 5 ×
5 mm.

In the following Fig. 9 we present a series of color plots for the temperature
evolution in the investigated metal body. The Fig. 10 shows steady-state temper-
ature cutlines at the time t = 90 min corresponding to its axis and to one of its
longest edges.
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Fig. 8. The investigated arrangement
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Fig. 9. Temperature distribution after 1, 2, 5, 10, 30 and 60 minutes.
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Fig. 10. Temperature cutlines after 90 minutes of heating (axis and edge).
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11 Example 3: Heating of a brass frame

In this section we present another example related to the induction heating of a
brass frame. The outer measures of the frame are 25 × 25 × 150 mm. Its geometry
and the discretization grid consisting of cubic elements sized 1 × 1 × 1 mm are
shown in Fig. 11. The inductor is formed by a single coil with N = 6 turns, radius
r = 19 mm, which carries a harmonic current I = 500 A of frequency f = 2000
Hz. The length-increment corresponding to one turn of the coil is 8l = 13 mm.
Remaining parameters are the same as in the previous example.

Fig. 11. Brass frame, geometry and mesh.
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Fig. 12. Temperature distribution after 1, 3, 5, 9, 13, 15 seconds.

The Fig. 12 shows the temperature evolution during the first 15 seconds of the
heating. After approximately 15 seconds, the steady state is reached The reader
may notice that in this case the temperature distribution is not uniform (as e.g.
in the last example), which may indicate that, from the engineering point of view,
the inductor may undergo some additional re-arrangements.
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